within AIDAModelica; block PID_discrete "PID-controller in additive description form" import Modelica.Blocks.Types.InitPID; import Modelica.Blocks.Types.Init; extends Modelica.Blocks.Interfaces.SISO; parameter Real k(unit = "1") = 1 "Gain"; parameter SIunits.Time Ti(min = Modelica.Constants.small, start = 0.5) "Time Constant of Integrator"; parameter SIunits.Time Td(min = 0, start = 0.1) "Time Constant of Derivative block"; parameter Real Nd(min = Modelica.Constants.small) = 10 "The higher Nd, the more ideal the derivative block"; parameter Modelica.Blocks.Types.InitPID initType = Modelica.Blocks.Types.InitPID.DoNotUse_InitialIntegratorState "Type of initialization (1: no init, 2: steady state, 3: initial state, 4: initial output)" annotation( Evaluate = true, Dialog(group = "Initialization")); parameter Real xi_start = 0 "Initial or guess value value for integrator output (= integrator state)" annotation( Dialog(group = "Initialization")); parameter Real xd_start = 0 "Initial or guess value for state of derivative block" annotation( Dialog(group = "Initialization")); parameter Real y_start = 0 "Initial value of output" annotation( Dialog(enable = initType == InitPID.InitialOutput, group = "Initialization")); constant SI.Time unitTime = 1 annotation( HideResult = true); Blocks.Math.Gain P(k = 1) "Proportional part of PID controller" annotation( Placement(transformation(extent = {{-60, 60}, {-20, 100}}))); Blocks.Continuous.Integrator I(k = unitTime / Ti, y_start = xi_start, initType = if initType == InitPID.SteadyState then Init.SteadyState else if initType == InitPID.InitialState or initType == InitPID.DoNotUse_InitialIntegratorState then Init.InitialState else Init.NoInit) "Integral part of PID controller" annotation( Placement(transformation(extent = {{-60, -20}, {-20, 20}}))); Blocks.Continuous.Derivative D(k = Td / unitTime, T = max([Td / Nd, 100 * Modelica.Constants.eps]), x_start = xd_start, initType = if initType == InitPID.SteadyState or initType == InitPID.InitialOutput then Init.SteadyState else if initType == InitPID.InitialState then Init.InitialState else Init.NoInit) "Derivative part of PID controller" annotation( Placement(transformation(extent = {{-60, -100}, {-20, -60}}))); Blocks.Math.Gain Gain(k = k) "Gain of PID controller" annotation( Placement(transformation(extent = {{60, -10}, {80, 10}}))); Blocks.Math.Add3 Add annotation( Placement(transformation(extent = {{20, -10}, {40, 10}}))); initial equation if initType == InitPID.InitialOutput then y = y_start; end if; equation connect(u, P.u) annotation( Line(points = {{-120, 0}, {-80, 0}, {-80, 80}, {-64, 80}}, color = {0, 0, 127})); connect(u, I.u) annotation( Line(points = {{-120, 0}, {-64, 0}}, color = {0, 0, 127})); connect(u, D.u) annotation( Line(points = {{-120, 0}, {-80, 0}, {-80, -80}, {-64, -80}}, color = {0, 0, 127})); connect(P.y, Add.u1) annotation( Line(points = {{-18, 80}, {0, 80}, {0, 8}, {18, 8}}, color = {0, 0, 127})); connect(I.y, Add.u2) annotation( Line(points = {{-18, 0}, {18, 0}}, color = {0, 0, 127})); connect(D.y, Add.u3) annotation( Line(points = {{-18, -80}, {0, -80}, {0, -8}, {18, -8}}, color = {0, 0, 127})); connect(Add.y, Gain.u) annotation( Line(points = {{41, 0}, {58, 0}}, color = {0, 0, 127})); connect(Gain.y, y) annotation( Line(points = {{81, 0}, {110, 0}}, color = {0, 0, 127})); annotation( defaultComponentName = "PID", Icon(coordinateSystem(preserveAspectRatio = true, extent = {{-100.0, -100.0}, {100.0, 100.0}}), graphics = {Line(points = {{-80.0, 78.0}, {-80.0, -90.0}}, color = {192, 192, 192}), Polygon(lineColor = {192, 192, 192}, fillColor = {192, 192, 192}, fillPattern = FillPattern.Solid, points = {{-80.0, 90.0}, {-88.0, 68.0}, {-72.0, 68.0}, {-80.0, 90.0}}), Line(points = {{-90.0, -80.0}, {82.0, -80.0}}, color = {192, 192, 192}), Polygon(lineColor = {192, 192, 192}, fillColor = {192, 192, 192}, fillPattern = FillPattern.Solid, points = {{90.0, -80.0}, {68.0, -72.0}, {68.0, -88.0}, {90.0, -80.0}}), Line(points = {{-80, -80}, {-80, -20}, {60, 80}}, color = {0, 0, 127}), Text(lineColor = {192, 192, 192}, extent = {{-20.0, -60.0}, {80.0, -20.0}}, textString = "PID"), Text(extent = {{-150.0, -150.0}, {150.0, -110.0}}, textString = "Ti=%Ti")}), Documentation(info = "

This is the text-book version of a PID-controller. For a more practically useful PID-controller, use block LimPID.

The PID block can be initialized in different ways controlled by parameter initType. The possible values of initType are defined in Modelica.Blocks.Types.InitPID. This type is identical to Types.Init, with the only exception that the additional option DoNotUse_InitialIntegratorState is added for backward compatibility reasons (= integrator is initialized with InitialState whereas differential part is initialized with NoInit which was the initialization in version 2.2 of the Modelica standard library).

Based on the setting of initType, the integrator (I) and derivative (D) blocks inside the PID controller are initialized according to the following table:

initType I.initType D.initType
NoInit NoInit NoInit
SteadyState SteadyState SteadyState
InitialState InitialState InitialState
InitialOutput
and initial equation: y = y_start
NoInit SteadyState
DoNotUse_InitialIntegratorState InitialState NoInit

In many cases, the most useful initial condition is SteadyState because initial transients are then no longer present. If initType = InitPID.SteadyState, then in some cases difficulties might occur. The reason is the equation of the integrator:

   der(y) = k*u;

The steady state equation \"der(x)=0\" leads to the condition that the input u to the integrator is zero. If the input u is already (directly or indirectly) defined by another initial condition, then the initialization problem is singular (has none or infinitely many solutions). This situation occurs often for mechanical systems, where, e.g., u = desiredSpeed - measuredSpeed and since speed is both a state and a derivative, it is natural to initialize it with zero. As sketched this is, however, not possible. The solution is to not initialize u or the variable that is used to compute u by an algebraic equation.

")); end PID_discrete;