

AIDA Simulation MODELICA model How to use the model

Abstract This document presents the way to install and run the model with OpenModelica

Content

1	Op	pen the model	2			
2	Se	etup the Remote Control parameters	2			
	2.1	Manual mode	2			
	2.2	Autopilot mode	2			
3	Ini	itialization	3			
4	Simulation setup					
5	Adjust the PID parameters					
6	Open loop setting					
7	W	/ind force	5			

1 Open the model

Copy the AIDAModelica directory and the AIDA_System.mo model on your local workspace.

With OpenModelica (tested with OME Edit 1.11.0), import the AIDAModelica library using the OpenLibrary function and choose the AIDAModelica directory.

Then open the AIDA_System.mo model and double clic on it at the bottom of the file explorer.

2 Setup the Remote Control parameters

2.1 Manual mode

Default setting on AIDA_System.mo.

The drone starts on ground.

<u>VerticalSpeedCommand</u>: For takeoff, set the **VS_cmd_t[1]** to define the start time and **VS_cmd_t[2]** the end time. Set **VS_cmd** a negative value (Z axis oriented down) : e.g.-0.5 m/s

Ensure to have reach an altitude (**Position[3]** of the QuadcopterModel) above 1m to be able to flight without touching the ground *integration* the ground *simulation* is made with a simple spring simulation and the model is not ready for landing phase.

Then for each *direction* (Roll, Pitch and Yaw), set :

- **Direction_cmd** a value in rad
- Direction_cmd_t[] two values in sec for start and end of the command, which is counted from VS_cmd_t[2]

Command smoothing :

On all manual command, a 1 order low filter with time constant Tcst is applied.

Figure 1: Vertical position and Pitch/Roll command and result in manual mode

2.2 Autopilot mode

The remote control parameter include the capacity to start the autopilot mode.

The auto pilot mode is started at: Auto_Ctl_t sec.

The flight plan includes the takeoff phase.

It is deactivated at the first manual mode input, which is : **VS_cmd_t[1]** sec, and cannot be reactivated. *Justification: reactivation of the autopilot need specific algorithm to decide where to start the flight plan back and has not been developed*

If VS_cmd_t[1] happens before Auto_Ctl_t, the autopilot is not activated.

The flight plan include the full inspection of the aircraft in 250sec.

Figure 2: XY path of the drone following the flight plan

3 Initialization

By default, the model start motors off, on ground. To start at a position compatible with the flight plan, the Y position (Position[2]) integrator is initialized at 39m.

The Z position is initialized at -29cm which correspond to the drone feets 1cm compression, simulated as a single spring (see drone_feets model). The stability constrains at initialization compute the exact Z position corresponding to the drone mass.

4 Simulation setup

The following setup has been used for OpenModelica tests:

a.		OMEdit - Re-simulation - AIDA_System	?	x			
Re-simulation - AIDA_System							
Général So	ortie Balise	es de Simulation Simulations Enregistrées					
Intervalle de	Simulation			^			
Temps de début:		0					
Temps de fin	:	20					
O Nombre o	d'Intervalles:	500	<u>^</u>				
Interval:		0.002					
-Intégration -	Intégration						
Méthode:	Méthode: dassl						
Tolérance:	Tolérance: 1e-06						
Jacobienne: coloredNumerical •							
Options de DASSL							
✓ Recher	✓ Recherche de Zéros						
✓ Redémarrage Après Evènement							
Taille du Pa	Taille du Pas Initial:						
Taille du Pa	Taille du Pas Maximale:						
Ordre Maximal d'Intégration: 5							
Balises du Compilateur (Optionnel):							
		ОК	Annule	er			

Figure 3: simulation setup

5 Adjust the PID parameters

For cosimulation purpose, the PID parameters have be adjusted to have a smooth control. For the same purpose, the Nd parameter of the Derivation block, which set the continuous derivation approximation dynamic has been reduced to lower the Derivation dynamic evaluation.

Warning : for co-simulation, the direct derivation (using the der() function) is not allowed by SimulationX For information, the Attitude control has an effect on both Manual and Autopilot mode.

6 Open loop setting

In the LowLevelFlightControlSystem / AttitudeControl model, specific parameter can be activated to set openloop capacity and constant attitude command:

The **Test_open_loop[]** vector can force the angular speed feedback to zero on each axis respectively.

Test_CstMomentumActiv and Test_CstMomentumValues[] vector can override the momentum consign with constant momentums, on each axis:

```
MomentumsConsign[3] = if Test_CstMomentumActiv then Test_CstMomentumValues[3]
else controlYawAngle1.MomentumZ;
   MomentumsConsign[2] = if Test_CstMomentumActiv then
Test_CstMomentumValues[2] else controlPitchAngle1.MomentumY;
   MomentumsConsign[1] = if Test_CstMomentumActiv then
Test_CstMomentumValues[1] else controlRollAngle1.MomentumX;
```

7 Wind force

On Quadcoptermodel, the Fx and Fy parameter can set a constant force on X and Y direction