// CP: 65001 // SimulationX Version: 3.8.2.45319 x64 within AIDAModelica; model ControlPositionV0 "ControlPosition_Modelica.ism" Modelica.Blocks.Interfaces.RealOutput Position_command[3] "'output Real' as connector" annotation(Placement( transformation(extent={{40,50},{60,70}}), iconTransformation(extent={{90,-10},{110,10}}))); Modelica.Blocks.Interfaces.RealInput Drone_position_consign[3] "'input Real' as connector" annotation(Placement( transformation(extent={{-140,40},{-100,80}}), iconTransformation(extent={{-120,-70},{-80,-30}}))); Modelica.Blocks.Interfaces.RealInput Drone_position[3] "'input Real' as connector" annotation(Placement( transformation(extent={{-85,-15},{-45,25}}), iconTransformation(extent={{-120,30},{-80,70}}))); Modelica.Blocks.Continuous.LimPID PID[3]( controllerType=Modelica.Blocks.Types.SimpleController.P, k={1.26,1.26,1.26}, Ti={0.5,0.5,0.5}, Td={0.1,0.1,0.1}, yMax={1000,1000,1000}, initType=Modelica.Blocks.Types.InitPID.SteadyState, limitsAtInit={false, false, false}, y_start={1,58,0}) "P, PI, PD, and PID controller with limited output, anti-windup compensation and setpoint weighting" annotation(Placement(transformation(extent={{-30,50},{-10,70}}))); equation connect(PID.y,Position_command[:]) annotation(Line( points={{-9,60},{-4,60},{45,60},{50,60}}, color={0,0,127}, thickness=0.0625)); connect(Drone_position_consign[:],PID.u_s) annotation(Line( points={{-120,60},{-115,60},{-37,60},{-32,60}}, color={0,0,127}, thickness=0.0625)); connect(Drone_position[:],PID.u_m) annotation(Line( points={{-65,5},{-60,5},{-20,5},{-20,43},{-20,48}}, color={0,0,127}, thickness=0.0625)); annotation( Icon(graphics={ Rectangle( fillColor={255,255,255}, fillPattern=FillPattern.Solid, extent={{-100,100},{100,-100}}), Bitmap( imageSource="iVBORw0KGgoAAAANSUhEUgAAAtYAAAG6CAIAAACjrJYtAAAABGdBTUEAALGOfPtRkwAAACBjSFJN AACHDwAAjA8AAP1SAACBQAAAfXkAAOmLAAA85QAAGcxzPIV3AAAKOWlDQ1BQaG90b3Nob3AgSUND IHByb2ZpbGUAAEjHnZZ3VFTXFofPvXd6oc0wAlKG3rvAANJ7k15FYZgZYCgDDjM0sSGiAhFFRJoi SFDEgNFQJFZEsRAUVLAHJAgoMRhFVCxvRtaLrqy89/Ly++Osb+2z97n77L3PWhcAkqcvl5cGSwGQ yhPwgzyc6RGRUXTsAIABHmCAKQBMVka6X7B7CBDJy82FniFyAl8EAfB6WLwCcNPQM4BOB/+fpFnp fIHomAARm7M5GSwRF4g4JUuQLrbPipgalyxmGCVmvihBEcuJOWGRDT77LLKjmNmpPLaIxTmns1PZ Yu4V8bZMIUfEiK+ICzO5nCwR3xKxRoowlSviN+LYVA4zAwAUSWwXcFiJIjYRMYkfEuQi4uUA4EgJ X3HcVyzgZAvEl3JJS8/hcxMSBXQdli7d1NqaQffkZKVwBALDACYrmcln013SUtOZvBwAFu/8WTLi 2tJFRbY0tba0NDQzMv2qUP91829K3NtFehn4uWcQrf+L7a/80hoAYMyJarPziy2uCoDOLQDI3fti 0zgAgKSobx3Xv7oPTTwviQJBuo2xcVZWlhGXwzISF/QP/U+Hv6GvvmckPu6P8tBdOfFMYYqALq4b Ky0lTcinZ6QzWRy64Z+H+B8H/nUeBkGceA6fwxNFhImmjMtLELWbx+YKuGk8Opf3n5r4D8P+pMW5 FonS+BFQY4yA1HUqQH7tBygKESDR+8Vd/6NvvvgwIH554SqTi3P/7zf9Z8Gl4iWDm/A5ziUohM4S 8jMX98TPEqABAUgCKpAHykAd6ABDYAasgC1wBG7AG/iDEBAJVgMWSASpgA+yQB7YBApBMdgJ9oBq UAcaQTNoBcdBJzgFzoNL4Bq4AW6D+2AUTIBnYBa8BgsQBGEhMkSB5CEVSBPSh8wgBmQPuUG+UBAU CcVCCRAPEkJ50GaoGCqDqqF6qBn6HjoJnYeuQIPQXWgMmoZ+h97BCEyCqbASrAUbwwzYCfaBQ+BV cAK8Bs6FC+AdcCXcAB+FO+Dz8DX4NjwKP4PnEIAQERqiihgiDMQF8UeikHiEj6xHipAKpAFpRbqR PuQmMorMIG9RGBQFRUcZomxRnqhQFAu1BrUeVYKqRh1GdaB6UTdRY6hZ1Ec0Ga2I1kfboL3QEegE dBa6EF2BbkK3oy+ib6Mn0K8xGAwNo42xwnhiIjFJmLWYEsw+TBvmHGYQM46Zw2Kx8lh9rB3WH8vE CrCF2CrsUexZ7BB2AvsGR8Sp4Mxw7rgoHA+Xj6vAHcGdwQ3hJnELeCm8Jt4G749n43PwpfhGfDf+ On4Cv0CQJmgT7AghhCTCJkIloZVwkfCA8JJIJKoRrYmBRC5xI7GSeIx4mThGfEuSIemRXEjRJCFp B+kQ6RzpLuklmUzWIjuSo8gC8g5yM/kC+RH5jQRFwkjCS4ItsUGiRqJDYkjiuSReUlPSSXK1ZK5k heQJyeuSM1J4KS0pFymm1HqpGqmTUiNSc9IUaVNpf+lU6RLpI9JXpKdksDJaMm4ybJkCmYMyF2TG KQhFneJCYVE2UxopFykTVAxVm+pFTaIWU7+jDlBnZWVkl8mGyWbL1sielh2lITQtmhcthVZKO04b pr1borTEaQlnyfYlrUuGlszLLZVzlOPIFcm1yd2WeydPl3eTT5bfJd8p/1ABpaCnEKiQpbBf4aLC zFLqUtulrKVFS48vvacIK+opBimuVTyo2K84p6Ss5KGUrlSldEFpRpmm7KicpFyufEZ5WoWiYq/C VSlXOavylC5Ld6Kn0CvpvfRZVUVVT1Whar3qgOqCmrZaqFq+WpvaQ3WCOkM9Xr1cvUd9VkNFw08j T6NF454mXpOhmai5V7NPc15LWytca6tWp9aUtpy2l3audov2Ax2yjoPOGp0GnVu6GF2GbrLuPt0b erCehV6iXo3edX1Y31Kfq79Pf9AAbWBtwDNoMBgxJBk6GWYathiOGdGMfI3yjTqNnhtrGEcZ7zLu M/5oYmGSYtJoct9UxtTbNN+02/R3Mz0zllmN2S1zsrm7+QbzLvMXy/SXcZbtX3bHgmLhZ7HVosfi g6WVJd+y1XLaSsMq1qrWaoRBZQQwShiXrdHWztYbrE9Zv7WxtBHYHLf5zdbQNtn2iO3Ucu3lnOWN y8ft1OyYdvV2o/Z0+1j7A/ajDqoOTIcGh8eO6o5sxybHSSddpySno07PnU2c+c7tzvMuNi7rXM65 Iq4erkWuA24ybqFu1W6P3NXcE9xb3Gc9LDzWepzzRHv6eO7yHPFS8mJ5NXvNelt5r/Pu9SH5BPtU +zz21fPl+3b7wX7efrv9HqzQXMFb0ekP/L38d/s/DNAOWBPwYyAmMCCwJvBJkGlQXlBfMCU4JvhI 8OsQ55DSkPuhOqHC0J4wybDosOaw+XDX8LLw0QjjiHUR1yIVIrmRXVHYqLCopqi5lW4r96yciLaI LoweXqW9KnvVldUKq1NWn46RjGHGnIhFx4bHHol9z/RnNjDn4rziauNmWS6svaxnbEd2OXuaY8cp 40zG28WXxU8l2CXsTphOdEisSJzhunCruS+SPJPqkuaT/ZMPJX9KCU9pS8Wlxqae5Mnwknm9acpp 2WmD6frphemja2zW7Fkzy/fhN2VAGasyugRU0c9Uv1BHuEU4lmmfWZP5Jiss60S2dDYvuz9HL2d7 zmSue+63a1FrWWt78lTzNuWNrXNaV78eWh+3vmeD+oaCDRMbPTYe3kTYlLzpp3yT/LL8V5vDN3cX KBVsLBjf4rGlpVCikF84stV2a9021DbutoHt5turtn8sYhddLTYprih+X8IqufqN6TeV33zaEb9j oNSydP9OzE7ezuFdDrsOl0mX5ZaN7/bb3VFOLy8qf7UnZs+VimUVdXsJe4V7Ryt9K7uqNKp2Vr2v Tqy+XeNc01arWLu9dn4fe9/Qfsf9rXVKdcV17w5wD9yp96jvaNBqqDiIOZh58EljWGPft4xvm5sU moqbPhziHRo9HHS4t9mqufmI4pHSFrhF2DJ9NProje9cv+tqNWytb6O1FR8Dx4THnn4f+/3wcZ/j PScYJ1p/0Pyhtp3SXtQBdeR0zHYmdo52RXYNnvQ+2dNt293+o9GPh06pnqo5LXu69AzhTMGZT2dz z86dSz83cz7h/HhPTM/9CxEXbvUG9g5c9Ll4+ZL7pQt9Tn1nL9tdPnXF5srJq4yrndcsr3X0W/S3 /2TxU/uA5UDHdavrXTesb3QPLh88M+QwdP6m681Lt7xuXbu94vbgcOjwnZHokdE77DtTd1PuvriX eW/h/sYH6AdFD6UeVjxSfNTws+7PbaOWo6fHXMf6Hwc/vj/OGn/2S8Yv7ycKnpCfVEyqTDZPmU2d mnafvvF05dOJZ+nPFmYKf5X+tfa5zvMffnP8rX82YnbiBf/Fp99LXsq/PPRq2aueuYC5R69TXy/M F72Rf3P4LeNt37vwd5MLWe+x7ys/6H7o/ujz8cGn1E+f/gUDmPP8usTo0wAAAAlwSFlzAAAyIQAA MiEBshlQUQAAKq9JREFUeF7t3UFuE83a6PGzk3ulOwaJMUiMQczfV8xBzEHMQcw/3QWEDfBuIGzg +zYQNuAVZAXnPqKKun3sSsdJ3PHT1b+fSufETniJu+yuv9tt869/A7/9vLz8P//rfxtGd8Tdo95R gBORIFD93//6r1hp3rx6/favvw2jjbhLxB0j7h71jgKciASBqiTI//z3f9fL8FvcJSQILEGCQCVB 6JIgsBAJApUEoUuCwEIkCFQShC4JAguRIFBJELokCCxEgkAlQeiSILAQCQKVBKFLgsBCJAhUEoQu CQILkSBQSRC6JAgsRIJAJUHokiCwEAkClQShS4LAQiQIVBKELgkCC5EgUEkQuiQILESCQCVB6JIg sBAJApUEoUuCwEIkCFQShC4JAguRIFBJELokCCxEgkAlQeiSILAQCQKVBKFLgsBCJAhUEoQuCQIL kSBQSRC6JAgsRIJAJUHokiCwEAkClQShS4LAQiQIVBKELgkCC5EgUEkQuiQILESCQCVB6JIgsBAJ ApUEoUuCwEIkCFQShC4JAguRIFBJELokCCxEgkAlQeiSILAQCQKVBKFLgsBCJAhUEoQuCQILkSBQ SRC6JAgsRIJAJUHokiCwEAkClQShS4LAQiQIVBtJkN1uF7cxbuyHd+9fPn9Rr+VmEgQWIkGgGjtB fl1dRXDEDZyOqJD6bW4mQWAhEgSqjRwFKTezjH9+/KjXcjMJAguRIFBtJEHKglrGbrer13IzCQIL kSBQbe0oyJtXr+tVzJIgsBAJAtVGEiTKoyTIty9f61XMkiCwEAkC1RYS5Pr6uvTH8Lf0hCQILESC QLWFBPnnx4/SH8+ePK1XcRsJAguRIFBtIUE+f/xUEsTbcY8nQWAhEgSqLSRI+2gQb8c9ngSBhUgQ qIZPkF9XV6U/Yng77vEkCCxEgkA1fIJ8v7go/TF9O27c6u7QKI0EgYVIEFYjVoKfl5fX19f18qnF GjN2grz96++SINO345at2t6pG+Pzx0+LbufVkSCwEAnCapREiBHrZSyiJ18mh0+QsvW6tzG2Z9mw v66u6lX8IUFgIRKE1WgJMh0nzJGxEyQ2Udlih2/HLeeIfHj33pGPLgkCC5EgrEY3QabjgTkydoKU 4xwx9t6OG/0RUfL546d6mQMSBBYiQViNWxNkOu6RI2MnSGyQsmWmb8ctn1TmDbrzJAgsRIKwGndK kOk4MkcGTpDdbte2Rnury/eLi2dPnsZmKRe5iQSBhUgQVuPeCTIdLUfqf3Ri4ARpn8seN79c8/nj p+gPJ58eQ4LAQiRIFrGbM+ZH+3DxU423f/0d60r8l8sUDJwgH969Lzc58uv6+rq8KOP8jyPFXaJs rnI/NM44fFzNYCRICid5fm88ZESOlI/NiN1cnZWBPHvytNzM7xcX7TPa40pvgTlG3CXKFjMyjDor DEGCpFASJJ5mxRfGTaN9stYSY+AEmX4ue2RH+4zUGE5EPUZJkLh77N0hjUcepZ7rrDAECZJCPLri oTXk8+8TKlvphKMsKm2zjzoLbbvFHryc/NFel2mnhjCjJEhsxnqZMylPEuoFhiBBUhh18TuttpQ+ ZOxlx9Sos1DO/Ijx/eKiXPPzz8eUxXBG6q0kSBISZDwSJAUJcox7J8hMdkwNOQvX19dtO0xro50R 4qTUW0mQJCTIeCRIChLkGHdKkCOzY2rIWWgHPJ795+eyTzemk1LnSZAkJMh4JEgKQy5+JzddNbvj HtkxNeQstHcy730u+/ToyHRxjeunF/fExonvxn8zNnX7WJG4phxTiWviW+MFjQRJQoKMR4KkEHu3 eGhJkHllK+2NB2bH1JCz0F5waSeCNK1O4mfqVb//KZmZt8lEc/y8vCz/zfjfqI3Y/vFHYtO1U1zj mvrTo5AgSUiQ8UiQFIZc/E6ubKWyyMXXJ99c481CFEPZYjEOP9Np+qntZX2N+DgmIMpKEM0RETP9 z5brYwz2+VESJAkJMh4JksJ4i98SYmFbdBONNwvtI0Cmxzmmvv3553NjxP792ZOnx9RD/Fj8/OEP lw0YY7B7sgRJQoKMR4KkIEEyGG8W2osjn29428v1nw9rjxFJccxtb0dWDpdkCcKiJMh4JEgKEiSD bc5CVMj3i4sYR7560o6sHJ522o6pSBCWIEHGI0FSkCAZmIVjlCMre++vKcoKMd4iIUGSkCDjkSAp WPwyMAvHiE0U4/D9Ndd/3uXbrZNVkyBJSJDxSJAULH4ZmIVblcU4xuGrNu0FmvE2oARJQoKMR4Kk YPHLwCzcqmyiw/fXXF9flw8L+fbla71qIBIkCQkyHgmSgsUvA7Nwq7IGHL6/pmy6Uf/dXQmShAQZ jwRJweKXgVm4VWyfGHsfn1pW6OiPw/fIjEGCJCFBxiNBUrD4ZWAW5rV/8W66ieLrZ0+efnj3ftT+ CBIkCQkyHgmSgsUvA7Mwr33sx5tXryNH/vnx4/PHTy+fv5j5N2XGIEGSkCDjkSApWPwyMAvzyueo RoiUT8qPUf6l3OFJkCQkyHgkSAoWvwzMwoz2sR/DH/M4JEGSkCDjkSApWPwyMAsz2okgR36O+0gk SBISZDwSJAWLXwZmYUY5EeSmf3F3bBIkCQkyHgmSgsUvA7Mwo3zy2Hgfvn4MCZKEBBmPBEnB4peB WbhJ+/D1WAMGfvPtTSRIEhJkPBIkBYtfBmahKzbL3tjaJpIgSUiQ8UiQFGLvZvE7O7NAlwRJQoKM R4KkYPHLwCzQJUGSkCDjkSApWPwyMAt0SZAkJMh4JEgKFr8MzAJdEiQJCTIeCZKCxS8Ds0CXBElC goxHgqRg8cvALNAlQZKQIOORIClY/DIwC3RJkCQkyHgkSAoWvwzMAl0SJAkJMh4JkoLFLwOzQJcE SUKCjEeCpGDxy8As0CVBkpAg45EgKVj8MjALdEmQJCTIeCRICha/DMwCXRIkCQkyHgmSgsUvA7NA lwRJQoKMR4KkYPHLwCzQJUGSkCDjkSApWPwyMAt0SZAkJMh4JEgKFr8MzAJdEiQJCTIeCZKCxS8D s0CXBElCgoxHgqRg8cvALNAlQZKQIOORIClY/DIwC3RJkCQkyHgkSAoWvwzMAl0SJAkJMh4JkoLF LwOzQJcESUKCjEeCpGDxy8As0CVBkpAg45EgKVj8MjALdEmQJCTIeCRICha/DMwCXRIkCQkyHgmS gsUvA7NAlwRJQoKMR4KkYPHLwCzQJUGSkCDjkSApWPwyMAt0SZAkJMh4JEgKFr8MzAJdEiQJCTIe CZKCxS8Ds0CXBElCgoxHgqRg8cvALNAlQZKQIOORIClY/DIos/Dm1evY0xlGG3GXkCAZxFxIkMFI kBQkSAY/Ly+fPXkaE2EYeyPuGHH3qHcUzkSCjEeCpCBBAOZJkPFIkBQkCMA8CTIeCZKCBAGYJ0HG I0FSkCAA8yTIeCRIChIEYJ4EGY8ESUGCAMyTIOORIClIEIB5EmQ8EiQFCQIwT4KMR4KkIEEA5kmQ 8UiQFCQIwDwJMh4JkoIEAZgnQcYjQVKQIADzJMh4JEgKEgRgngQZjwRJQYIAzJMg45EgKUgQgHkS ZDwSJAUJAjBPgoxHgqQgQQDmSZDxSJAUJAjAPAkyHgmSggQBmCdBxiNBUpAgAPMkyHgkSAoSBGCe BBmPBElBggDMkyDjkSApSBCAeRJkPBIkBQkCME+CjEeCpCBBAOZJkPFIkBQkCMA8CTIeCZKCBAGY J0HGI0FSkCAA8yTIeCRIChIEYJ4EGY8ESUGCAMyTIOORIClIEIB5EmQ8EiQFCQIwT4KMR4KkIEEA 5kmQ8UiQFCQIwDwJMh4JkoIEAZgnQcYjQVKQIADzJMh4JEgKEgRgngQZjwRJQYIAzJMg45EgKUgQ gHkSZDwSJAUJAjBPgoxHgqQgQQDmSZDxSJAUJAjAPAkyHgmSggQBmCdBxiNBUpAgAPMkyHgkSAoS BGCeBBmPBElBggDMkyDjkSApSBCAeRJkPBIkBQmSwc/Ly5gFwzgcz548jbtHvaOwsN1uFzvDw/Hm 1euYi70ry7i+vq5/mFWRIClIkAzKLMRuLp5sGUYbZeWLu0e9o7CwezwZsPNcKQmSggTJwCzQFXeJ uGNIkEdzfX1dwuL4Uf8kayNBUrD4ZWAW6JIgj68ceTpyvP3r7/rHWBsJkoLFLwOzQJcEeXzfvnwt eXHMMDXrJUFSsPhlsOVZ+HV19c+PH58/foov6lX8IUEe351OB7HnXC8JkoIEyWBrsxBPNNu5lm3U 7zEhQR7fnU4HqX+GFZIgKUiQDLY2C3FLY5RbXcaHd+/r95iQIGdx5OkgTgRZNQmSggTJYLOz0Pbm 3y8u6lVMSJCzOPJ0EPOyahIkBQmSwTZn4dfVVdub73a7ei0TEuQsjjwdxG5z1SRIChIkg23OwveL i7Irf/n8Rb2K/yRBzuLI00HqT7NOEiQFCZLBNmfh7e9/dyPGty9f61X8JwlyLreeDuJEkLWTIClI kAw2OAvTJ5r+DZSbSJBzufV0EJOydhIkBQmSwQZnYfpye72KAxLkXG49HcQ+c+0kSAoSJIMNzkJ7 luntuDMkyLncejpI/TlWS4KkIEEy2OAsvHz+ouzKvR13hgQ5o5nTQZwIMgAJkoIEyWBrs7Db7dre vL0d99fVVWyBw7Hl9+vGzY9NJEHOYuZ0EDMyAAmSggTJYGuz0H077j8/fsR2aEdHYjx78vTzx09b vnNKkDOaOR3EDnMAEiQFCZLB1mbhw7v3ZVd++HbcsuiWb11fX9drt0qCnNHM6SD1J1gzCZKCBMlg a7Pw7MnTsis/fDvu27/+ju/+8+NHvbxtEuS8uqeDOBFkDKMlSOwsYqzuHxyXIBlsahbKslpGveqP zx8/RX/4V/ubsq0kyLl0TwcZdTp2u92mjjsOkiDxdO3Du/cvn78oz97iDhpfr2gfKkEy2NQslBsb Y/p23Nj3xSMonnT6x2KmJMh5dU8HGeZxGjck1q/IrHjolZt208oVzw3iZ2KMdHhy9QkSs1UO07V3 FZb9RYxokXJNfhIkg03NQju43R440R9xZezgnPyxp+xSJMi5dE8Hqd9buYiJeMS1l0Rj3LRsTd+/ dvjK6XqtO0Fi/sqU7GVjm6q1LCcSJIPtzMJ0n14OeMQjKPZ98TSr/ABTEuTs9k4HiWW7fmMI08fj TY/B6atRIz1JWHGCxFSV+dg7KjWtRQnC8bYzC63dy9tx42L0x/StuUeKcImNdtNx42FIkLPbOx1k vLloN21vOWva++QHy6+1Jkjrj7hr1qv+aJ924IUY7mQ7szB9+JRbXcZdTwEpu8UVPdDuR4Kc3d7p IIM9SKe3rnuEY/oDg32Q8SoTZPocbm/C4mLsEMt3V7TLkCAZbGcW2jOq+OLNq9ft4mHQz2uPtXp5 UBLk7KYvVYx3f2vHeOLBWK/6T+0jfGIMdtBxfQkSE9AmY++YVdxN20uGN81lThIkg43MwvQR9Pnj p3jUtD3gXY9nxANwsPPzuyRIBm3fPtgrEaHdtO5zgOmpBeMdcVxfgrTZiqdu9arfpv0RzRgX6zfW QIJksJFZaK9Utl35dB83fE/cgwTJoIXyYBNx68mL7WXTGPF1vXYUK0uQ9hJMjOkd8eflZTmYHP+7 xn2oBMlgI7MQ5XH4CGpXjvcU8+EkSAbtfIjBHqHTRa1eNRGB0l4njTHeM4SVJch0MmJuQkxJOfix 0vgoJEgGG5mF8vDZu6XT/eDw73C5KwmSQTsdpF4eRTvIMf2QwCa+Oz0RJJa8+o1RrClBpq9hP/v9 HsL4Ip60ffvyde07TQmSwRZmYXpqfb3qj9b3ewd744/UryZiK0W1xBbr7jcHI0GSiGeb4x2la+d0 H77VJda1uMm3nqy6amtKkLJClBGzMlIPSpAMtjALbXd2uCufPr7aqVSxE9z7yXjcxU/GleUnJQiP Ju69g83C9Hn14YoWzRH3vXKYP0bc/PqNgawpQQY+HrWFxS+/LcxCO9Rx+JQrsqM9ISs7u3KKd/cQ Y1mVY4z34vQhCXIuseXjjhpbPpI3Rtx74w5Zvo4r41tjHP+OETetXvVHfKs80y4/EGPIXdOaEqQ9 8YpRrxpFuSOOvfjlN/wsTHdn3X132yHGiN1f7O7jmvq9/9TeVjPYk4EuCfKYInyja6dPOOdHdHP8 8EpTuC1qe69+xsMzoqRsinZL6/fGMmaCtMPIayFBMhh+FtrubObTBdpR3xgzL7KUFSJ+uF4emgR5 HJGzsRK3Q3GxBsfFiN3Y/nu79PjJuDK+Nf35+CLmaEU7//hVy28eY3rGVVwft73siOIGlh9oD8bB on9NCdImY2/C9sR+tvRjvbwGEiSD4Weh7LhjzBy+jgdOPNAi92P/Xq/qKfv9IV+cPhRbLG6sBFlO 3OvivhQbOUbcteIeeKdXWOKHW4usKESm54ZPf+F49LVHVrlRMcrjMX4sun8Vt+5Ia0qQ6SGp7jTE NZGKMWd3uvtmIEEyMAtHKkvydraVBFlUrMQnqYf4g/HHy3+qHUXIrFXX9GhieQJQvo6FrPxAjHJz 4o/MPzdYnTUlSIg7VpuSmLZ2LCSmqtz54so1Hqey+GVgFo5UNlSMenl0EmQ5bRmOL07y5L48ES3/ zeRT1k4tKIftY+WKa6bPrqeHSeJiPAlvdTKMlSVIpEaJ3O5Y7z7C4peBWThS7CVjQ82cKTIYCbKE WGjLGhy79JM/6NqRlc+//xWkem0yLZXaiA0y/W33DvxP62QYK0uQEKkY96o2MTEiIaOgV32SjsUv A7NwjNgJlsfdYAeEZ0iQk4t7UQnZ5ZbVWBGW/iseaPqMOr44fEDFr91+IHNLPcT6EqSIyYj9QoxV l0dj8cvALByjHRwuD7343yH3jFMS5LTiDvM4cdD+osyvX8S9a+bkxbLSjbHMda01QQZj8cvALByj vHj/8vcnKcX+MS6W6wcmQU6rvADxOAcnWoV8Hu7fmB2DBEnB4peBWThGef2+vGi999L1qCTICX3/ /aF2j9MfRfxF5X0M/2zgk3xXR4KkYPHLwCwco52J9WyF736/HwlyKnGHOcs9p/29A7+isVISJAWL XwZm4RjxnDI2VDyX3cLxj0KCnEo5hHaWE5nLozvzSSHbJEFSsPhlYBbokiAnUd5iesYIKCeFeICn IkFSsPhlYBbokiAnUU7IOOPjq8yjAyGpSJAULH4ZmAW6JMjDnf0QSFFeCfIYz0OCpGDxO8avq6tF N5FZoGvsBNntdj8vL5c+s6e8EffsD67yqTbeoHukCMelT+CVIClY/I5RtlKMeCoTX598c5kFusZO kHLrYrx59frbl69L5EgsY/HfL58lc3bl80a3czL1Q5Q7RkxcRNtCOSJBUrD4HaMlyHScMEfMAl0b SZDpOG2OlFdhknyKXflsvbhp9TI3a/eHNk6eIxIkBYvfMboJMh0PzBGzQNcGE2Q6Hp4j5bNkknyK THktJkkPJdfuA91xkhyRIClY/I5xa4JMxz1yxCzQtfEEmY775Uh5L0y9kEC5IfUCN2vzfuu4d45I kBQsfse4U4JMx5E5YhbokiDdcXyOxA/HY7BeSCB+8/iV6gVu1ub6TuNOOSJBUrD4HePeCTIdMzky 6izEChE36tFGkuPtJxQ3Ku4YEmRmzORI+e/HmlQvJxA7gfiVlji5cjBtfu89bs2Rfz3y7snojpik mK3vFxd71xvTUbbSCcdejoyaIOV2Peaof/Eo4i4RNyrufuV+ONgo/27cCcdejsRfEVemCrjyiLC/ vXW0OT3J6ObIv8o7lAxj4yNypDw3igdefXCM4tfVVexzH22c5V8AWdTJ98XbGZEj5RNB4o5Rt2YC 5Vcyzjhajvwr9hfT3YdxllEWv5iSveuN6ShbaaExcILwQCVB4u6xd4ccY5z84OJ05EyQb7/fl2t/ e+to83jy8f8TpM4JZ1Um2+I37+QPibKotM1uFugqCRJ3j3p5LOXWnXCs5YUYj/RbtTk9yei/EFP/ n7PykDhG2UoPHHvZMWUW6Eq4iJ5QuXUPHLeejppq63mkH6nN773H7aej1v/nrDwkjlG20j3GTHZM mQW6Ei6iJ1Ru3T3GTHZMlf9+/GS9nEB5bcg7Ym7V5vpO49bsmJIgKVj8jnGnBDkyO6bMAl1lEZUg MY7Mjj3xB+PxWC8kELcifqV6gZu1eb913Ck7piRICha/Y9yaIPfIjimzQNfGE+R+2TEV69OzJ0/r hQTKjaoXuNn0bnA47p0dUxIkBYvfMboJ8sDsmDILdG0wQR6eHVPlhY8kn1lXbm+snfUyN2v3hzZO kh1TEiQFi98xWoKcMDumzAJdZdEaPkFOmx1T5dPPknxgTNzG+GViEa2XuVm5Y5w8O6YkSAoWv2PE s6hFN5FZoGvsBIl1ZYnsmIq/IjZgktc+YkGNX2bR2zuMhbJjSoKkYPHLwCzQNXaCPI63vz/37+yv xURsxa/x4d37eplzkyApWPwyMAt0SZCHi+fTsQ3PfgZGKaEIkXqZc5MgKVj8MjALdEmQkyivgCx9 YH9Gmcf4NeplEpAgKVj8MjALdEmQkygHQt6e7wNCyiEQJ6KmIkFSsPhlYBbokiCn8ub3Z4Kd5XWQ 8q6cMwYQXRIkBYtfBmaBLglyKmVLPnvy9JFfjvl1dRV/afzVST6bhEaCpGDxy8As0CVBTqg8yt68 ev1ob4uNv6gcfUnywSRMSZAULH4ZmAW6JMhplXMyHufdMa0/vBE3JwmSgsUvA7NAlwQ5rZYFS1dI /EXls+Ef86ALdyJBUrD4ZWAW6JIgJ9cq5O1ffy8UB+2v0B+ZSZAULH4ZmAW6JMgSWiK8fP7i5GeJ xpSV80/1R3ISJAWLXwZmgS4JspCIg88fP8W2LZv3JK0Q/5HyD9HFOPuHsXIrCZKCxS8DszAVu/LY FDGm75+MK8/46ZbnIkEW9c+PH+WIxcvnLx74uWHtPxX/61PYV0GCpGDxy8AsFNPnpm//+jtGrA1x TWyfN69eb/CdjRJkadG17S4Xd7bY1Hcq3fjhb1++lviIEf+pkxxQ4RFIkBQsfhmYhRD77vIKfezQ 2yv0sYsvV25z+0iQxzENkRhxl4uw+Hl52T1TJK6Mb8UPtHtmjPjjd2oXzk6CpGDxy8AshLIRYsTO vV71W6RJeZYpQVhUNMT3i4tpWNw64ofjjzjysUYSJAWLXwZmIbz8/c+ZxjhccctZfvXClkiQs4ik +Hl5GZv9w7v35QXBiOC4f5av48r4VkyN8lg1CZKCxS8DsxBiC5QRe/l61R9lJa4XtkSCJPHm1evD uyWrJkFSsPhlYBZCO6fvcFPE081tLgASJIO4+5W7Zb3MECRICha/DMxCmJ4P+PL5C0e5gwTJ4Ofl Zblb2k+ORIKkYPHLwCyE3W43PRCyd1LqNkmQDMqpSCZiMBIkBYtfBmah+H5xUfb1ZdggEiSD9h4Z p4OMRIKkYPHLwCw0sZcvu/sYXo6RIGfXTgQpo17L+kmQFCx+GZiFxssxUxLk7NqJIGV4kA5DgqRg 8cvALEztvRyz5Q+dlCBn104EKcNcDEOCpGDxy8As7Pnw7n3b6X/e8D86KkHObu/DUp0OMgwJkoLF L4PNzkLc5O5LLdd/PpQ9RnxRr90eCXJeeyeClFG/x8pJkBQkSAabnYXyT3LUC/9p+jEh9artkSDn tXciSBn2lmOQIClIkAw2Owvlhnff9lK+FcNREAlyLnsngpRhOsYgQVLY7OKXymZnoRzq+H5xUS9P tL2/c0GseeeydyJIGU4HGYMESUGCZLDZWSifAvLsydPDAyHlH86Nb3lHjAQ5i+6JIGXUn2DNJEgK EiSDjSdIjHi62VIjdv3l6Ej0x6+rq3LlNkmQM+qeCFKGHeYAJEgKEiSDzc5C3OpvX75GcJQj3vG/ ESVRHjFim3TPEdkUCXJG3RNByjAjA5AgKUiQDDY7C3sHOWILxNj4kY8pCXJG3RNBynA6yAAkSAoS JAOzQJcEOZeZE0HKqD/HakmQFCx+GZgFuiTIucycCFKGR+vaSZAULH4ZmAW6JMi5zJwIUoZJWTsJ koLFLwOzQJcEOZeZE0HKcDrI2kmQFCx+GZgFuiTIWdx6IkgZ9adZJwmSgsUvA7NAlwQ5i1tPBCnD A3bVJEgKFr8MzAJdEuQsbj0RpAzzsmoSJAWLXwZmgS4Jcha3nghShtNBVk2CpGDxy8As0CVBHt+R J4KUUf8MKyRBUrD4ZWAW6JIgj+/IE0HK8JhdLwmSgsUvA7NAlwR5fEeeCFKGqVkvCZKCxS8Ds0CX BHl8R54IUobTQdZLgqRg8cvALNAlQR7ZnU4EKaP+SdZGgqRg8cugzEL5p+oNo43yjFyCPJo7nQhS hp3nSkmQFCRIBvfY8RnbGXH3qHcUFrbb7WJneDhKC+5dWcb19XX9w6yKBElBggDMe/vX37GfrBcY ggRJQYIAzJMg45EgKUgQgHkSZDwSJAUJAjBPgoxHgqQgQQDmSZDxSJAUJAjAPAkyHgmSggQBmCdB xiNBUpAgAPMkyHgkSAoSBGCeBBmPBElBggDMkyDjkSApSBCAeRJkPBIkBQkCME+CjEeCpCBBAOZJ kPFIkBQkCMA8CTIeCZKCBAGYJ0HGI0FSkCAA8yTIeCRIChIEYJ4EGY8ESUGCAMyTIOORIClIEIB5 EmQ8EiQFCQIwT4KMR4KkIEEA5kmQ8UiQFCQIwDwJMh4JkoIEAZgnQcYjQVKQIADzJMh4JEgKEgRg ngQZjwRJQYIAzJMg45EgKUgQgHkSZDwSJAUJAjBPgoxHgqQgQQDmSZDxSJAUJAjAPAkyHgmSggQB mCdBxiNBUpAgAPMkyHgkSAoSBGCeBBmPBElBggDMkyDjkSApSBCAeRJkPBIkBQkCME+CjEeCpCBB AOZJkPFIkBQkCMA8CTIeCZKCBAGYJ0HGI0FSkCAA8yTIeCRIChIEYJ4EGY8ESUGCAMyTIOORIClI EIB5EmQ8EiQFCQIwT4KMR4KkIEEA5kmQ8UiQFCQIwDwJMh4JkoIEAZgnQcYjQVKQIBn8vLx89uRp TIRh7I24Y8Tdo95ROBMJMh4JkoIEyaDMwptXr2NPZxhtxF0i7hhx96h3FM4k5kKCDEaCpCBBMjAL dMVdQoJkIEHGI0FSsPhlYBbokiBJSJDxSJAULH4ZmAW6JEgSEmQ8EiQFi18GZoEuCZKEBBmPBEnB 4peBWaBLgiQhQcYjQVKw+GVgFuiSIElIkPFIkBQsfhmYBbokSBISZDwSJAWLXwZmgS4JkoQEGY8E ScHil4FZoEuCJCFBxiNBUrD4ZWAW6JIgSUiQ8UiQFCx+GZgFuiRIEhJkPBIkBYtfBmaBLgmShAQZ jwRJweKXgVmgS4IkIUHGI0FSsPhlYBbokiBJSJDxSJAULH4ZmAW6JEgSEmQ8EiQFi18GZoEuCZKE BBmPBEnB4peBWaBLgiQhQcYjQVKw+GVgFuiSIElIkPFIkBQsfhmYBbokSBISZDwSJAWLXwZmgS4J koQEGY8EScHil4FZoEuCJCFBxiNBUrD4ZWAW6JIgSUiQ8UiQFCx+GZgFuiRIEhJkPBIkBYtfBmaB LgmShAQZjwRJweKXgVmgS4IkIUHGI0FSsPhlYBbokiBJSJDxSJAULH4ZmAW6JEgSEmQ8EiQFi18G ZoEuCZKEBBmPBEnB4peBWaBLgiQhQcYjQVKw+GVgFuiSIElIkPFIkBQsfhmYBbokSBISZDwSJAWL XwZmgS4JkoQEGY8EScHil4FZoEuCJCFBxiNBUrD4ZWAW6JIgSUiQ8UiQFCx+GZgFuiRIEhJkPBIk BYtfBsPMwvX1ddyK7xcXnz9+evn8xa+rq/oN7kWCJCFBxiNBUpAgGQwwC29evY6bMB3Pnjyt3+O+ JEgSEmQ8EiQFCZLBMLNQlswyPn/8VK/lviRIEhJkPBIkBQmSwUizEDekjH9+/KhXcV8SJAkJMh4J koIEyWCYWShLZhnX19f1Wu5LgiQhQcYjQVKQIBkMMwvfvnyNGxLjzavX9SoeQIIkIUHGI0FSkCAZ DDML7aRUq+ZJSJAkJMh4JEgKEiSDMWZht9vFrSjD23FPQoIkIUHGI0FSkCAZjDEL//z4Ebcihrfj nooESUKCjEeCpCBBMhhjFj5//BS3Ioa3456KBElCgoxHgqQgQTIYYxaePXkatyKGt+OeigRJQoKM R4KkIEEyGGAWfl1dxU0oo70dN1okbtrhWPSWxt8ef8XL5y/KL/Pm1etvX77+vLyMvzS+XtdGjt82 bkLcnHqZM5Eg45EgKcTeLR5aq178HsFut1t0Ew0wC+UmxJi+HTe6JG7Uh3fvy7dixK48uiS2Z/2J U4v+KO/KefbkadmepUjaL1B+bC3iJsTvLEHOToKMR4KkIEGO0daw2BPF1yffXAPMQtlHxzhcL39e Xsb10QTxRb1qMe18lL0Xg75fXJTr6+WVkCBJSJDxSJAUBlj8HkHZSnvjhDmy9lm4vr5um2Xv7bjx rZfPX7x59foR3qY7/TUON2b5NeqFlZAgSUiQ8UiQFCTIMboJMh0PzJG1z0I5zhFj7+245WWRGPFF vWpJZcEu4/CU2G9fvsY01QsrIUGSkCDjkSApSJBj3Jog03GPHFn7LLTPZZ++HffX1VUUyWO+QXea IC+fv6jX/hFREr9nvbASEiQJCTIeCZKCBDnGnRJkOo7MkbXPQnv7STv2ELcl+uPx1874S8tvEmPv b7++vl7uNNiFSJAkJMh4JEgKa1/8HkfZSg8cMzmy6lmYfi57ecElQiS+Pnwp5N7KO5JiK916Quve TD3CCSiLkiBJSJDxSJAUVr34PZq9he3hYy9HVj0L7c0m5WTP8p6Uw9dB7ifi49uXr+0oS/xd9Rs3 i1+j/HCM1Z1/ukeCJCFBxiNBUjj54mrcdcTerezgVpog7WM/yvme5evT3pxyWCXGMUc14mfa7xBj 1et3SRAjyaizwhAkSAqxjytLoDEz2rPwJUb5K+KLlSZIO/2inHzaDkKc8ETUEsrHH1nZC+v1vhxT EiRueLsrGucaj3liNY9AgrAaJz9WFOv0t9+fGl5Onij//TUmSHuaHv1RTv5or8vEONV7cUvW3GkN mL4cE+tHvXZtyuZd9YEcyEmCsBonSZC97Jhab4LELSq37sO79+WauHXlmhjHnLpxq/YfvNP5reUt we03WeO2DRIEFiJBWI17J8hMdkytN0HawYZpbZQzUmOc5KTUdiLITW+pjR/ovtQyPR6z0qPoEgQW IkFYjTslyJHZMbXSBJke8JhGQFk4y7j1bbS3KkETW7VePhA/cNMi3Q6ErPS1GAkCC5EgrMatCXKP 7JhaaYK04xOx0ter/mhHR/bW/thK9asb7Ha7SIpyAmb8R6JsyrnAM38wfvKmwojru7/GWkgQWIgE YTW6CfLA7JhaaYK0F1zaiSBNq5MY7QWU2FbzL4jEnypvqymbNP63pczM0ZTyM92XaVqCnOSslMcn QWAhEoTVaAlywuyYWmmCtJc5Ih3qVRPl6EWMcgSiHM+Y2W7l1I29RmkNMfMHyw8cHiaJP1K+Fb/n aefr0UgQWIgEYTViJTh5dkytMUEiKcoCH6N7BCK2WPuBSLfogJkjGeWoSfxYvfxHSZD5l1Ha37JX QuUgTfy93ZNVV0GCwEIkCFRrTJD2fpOZt720V2pizLwUUhbaGIetUF5kmVmDSwlFo5RDMvHz8cMx yjGY+AVueh/NKkgQWIgEgWqNCXKkf378iFs3cxzi+vq65UK96o/2SsrMH4/CaAdXytclQeLvXXV8 FBIEFiJBoBo4QW5VbnuMw2Ior848O3i7zXZIEFiIBIFqywnSXkCplyfKiSCHb7fZDgkCC5EgUG02 QcoS211l27f2TjLdFAkCC5EgUG02QcoN7972ciJqjAFO6bg3CQILkSBQSZC92/794qKco9peoJl5 Q+/AJAgsRIJAtdkEae/snb7aEl9/+/K1nAhSPnAsrtnmMixBYCESBKrNJshutysJUj64LLbA54+f yrtzy2mqH969j41z+H7djZAgsBAJAtVmEySUd96WEdnRltt2LsjhJ69vhwSBhUgQqLacIGG328Vt jzH9CPxy5ZbPRQ0SBBYiQaDaeIJwEwkCC5EgUEkQuiQILESCQCVB6JIgsBAJApUEoUuCwEIkCFQS hC4JAguRIFBJELokCCxEgkAlQeiSILAQCQKVBKFLgsBCJAhUEoQuCQILkSBQSRC6JAgsRIJAJUHo kiCwEAkClQShS4LAQiQIVBKELgkCC5EgUEkQuiQILESCQCVB6JIgsBAJApUEoUuCwEIkCFQShC4J AguRIFBJELokCCxEgkAlQeiSILAQCQKVBKFLgsBCJAhUEoQuCQILkSBQSRC6JAgsRIJAJUHokiCw EAkClQShS4LAQiQIVBKELgkCC5EgUEkQuiQILESCQCVB6JIgsBAJApUEoUuCwEIkCFQShC4JAguR IFBJELokCCxEgkAlQeiSILAQCQKVBKFLgsBCJAhUEoQuCQILkSBQSRC6JAgsRIJAJUHokiCwEAkC lQShS4LAQiQIVCVB3rx6/favvw2jjbhLSBBYggSB6uflZaw0htEdcfeodxTgJP797/8H9iJ/3lrZ 9jUAAAAASUVORK5CYII=", extent={{-100,-60.9},{100,60.9}})}), experiment( StopTime=1, StartTime=0, Interval=0.002, MaxInterval="0.001")); end ControlPositionV0;