// CP: 65001 // SimulationX Version: 3.8.2.45319 x64 model TrajectoryManagement "TrajectoryManagement.ism" ImportedTypes.Modelica.Blocks.Interfaces.RealOutput Drone_coordinates[3] "'output Real' as connector" annotation(Placement( transformation(extent={{55,0},{75,20}}), iconTransformation(extent={{90,-10},{110,10}}))); ImportedTypes.Modelica.Blocks.Interfaces.RealInput Position_Command[3] "'input Real' as connector" annotation(Placement( transformation(extent={{-150,-10},{-110,30}}), iconTransformation(extent={{-120,30},{-80,70}}))); _iti_startparam Real y0[*]( quantity="Basics.Real", displayUnit="-")=0 "Initial Value (integral1)"; Modelica.Blocks.Continuous.LimIntegrator limIntegrator1(outMax=1000) annotation(Placement(transformation(extent={{-45,0},{-25,20}}))); extends SimModel( dtMax=0.001, dtProtMin=(tStop-tStart)/500); package ImportedTypes package Modelica extends Modelica.Icons.Package; package Blocks import SI = ImportedTypes.Modelica.SIunits; extends Modelica.Icons.Package; package Interfaces import ImportedTypes.Modelica.SIunits; extends Modelica.Icons.InterfacesPackage; connector RealInput = input Real "'input Real' as connector" annotation( defaultComponentName="u", Icon( graphics={ Polygon( lineColor={0,0,127}, fillColor={0,0,127}, fillPattern=FillPattern.Solid, points={{-100.0,100.0},{100.0,0.0},{-100.0,-100.0}})}, coordinateSystem( extent={{-100.0,-100.0},{100.0,100.0}}, preserveAspectRatio=true, initialScale=0.2)), Diagram( coordinateSystem( preserveAspectRatio=true, initialScale=0.2, extent={{-100.0,-100.0},{100.0,100.0}}), graphics={ Polygon( lineColor={0,0,127}, fillColor={0,0,127}, fillPattern=FillPattern.Solid, points={{0.0,50.0},{100.0,0.0},{0.0,-50.0},{0.0,50.0}}), Text( lineColor={0,0,127}, extent={{-10.0,60.0},{-10.0,85.0}}, textString="%name")}), Documentation(info="
Connector with one input signal of type Real.
")); connector RealOutput = output Real "'output Real' as connector" annotation( defaultComponentName="y", Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100.0,-100.0},{100.0,100.0}}, initialScale=0.1), graphics={ Polygon( lineColor={0,0,127}, fillColor={255,255,255}, fillPattern=FillPattern.Solid, points={{-100.0,100.0},{100.0,0.0},{-100.0,-100.0}})}), Diagram( coordinateSystem( preserveAspectRatio=true, extent={{-100.0,-100.0},{100.0,100.0}}, initialScale=0.1), graphics={ Polygon( lineColor={0,0,127}, fillColor={255,255,255}, fillPattern=FillPattern.Solid, points={{-100.0,50.0},{0.0,0.0},{-100.0,-50.0}}), Text( lineColor={0,0,127}, extent={{30.0,60.0},{30.0,110.0}}, textString="%name")}), Documentation(info="Connector with one output signal of type Real.
")); annotation(Documentation( info="This package contains interface definitions for continuous input/output blocks with Real, Integer and Boolean signals. Furthermore, it contains partial models for continuous and discrete blocks.
", revisions="Block that has only the basic icon for an input/output block (no declarations, no equations). Most blocks of package Modelica.Blocks inherit directly or indirectly from this block.
")); end Block; end Icons; annotation( dateModified="2017-09-12 08:29:24Z", Icon(graphics={ Rectangle( fillColor={255,255,255}, fillPattern=FillPattern.None, extent={{-30,-20.1488},{30,20.1488}}, origin={0,35.1488}), Rectangle( fillColor={255,255,255}, fillPattern=FillPattern.None, extent={{-30,-20.1488},{30,20.1488}}, origin={0,-34.8512}), Line( points={{21.25,-35},{-13.75,-35},{-13.75,35},{6.25,35}}, origin={-51.25,0}), Polygon( points={{10,0},{-5,5},{-5,-5}}, pattern=LinePattern.None, fillPattern=FillPattern.Solid, origin={-40,35}), Line( points={{-21.25,35},{13.75,35},{13.75,-35},{-6.25,-35}}, origin={51.25,0}), Polygon( points={{-10,0},{5,5},{5,-5}}, pattern=LinePattern.None, fillPattern=FillPattern.Solid, origin={40,-35})}), Documentation( info="This library contains input/output blocks to build up block diagrams.
Copyright © 1998-2015, Modelica Association and DLR.
This Modelica package is free software and the use is completely at your own risk; it can be redistributed and/or modified under the terms of the Modelica License 2. For license conditions (including the disclaimer of warranty) see Modelica.UsersGuide.ModelicaLicense2 or visit https://www.modelica.org/licenses/ModelicaLicense2.
", revisions="replaceable type SignalType = Realin order that the type of the signal of an input/output block can be changed to a physical type, for example:
Sine sin1(outPort(redeclare type SignalType=Modelica.SIunits.Torque))
When implementing a Modelica model, every variable needs to be declared. Physical variables should be declared with a unit. The basic approach in Modelica is that the unit attribute of a variable is the unit in which the equations are written, for example:
model MassOnGround parameter Real m(quantity=\"Mass\", unit=\"kg\") \"Mass\"; parameter Real f(quantity=\"Force\", unit=\"N\") \"Driving force\"; Real s(unit=\"m\") \"Position of mass\"; Real v(unit=\"m/s\") \"Velocity of mass\"; equation der(s) = v; m*der(v) = f; end MassOnGround;
This means that the equations in the equation section are only correct for the specified units. A different issue is the user interface, i.e., in which unit the variable is presented to the user in graphical user interfaces, both for input (e.g., parameter menu), as well as for output (e.g., in the plot window). Preferably, the Modelica tool should provide a list of units from which the user can select, e.g., \"m\", \"cm\", \"km\", \"inch\" for quantity \"Length\". When storing the value in the model as a Modelica modifier, it has to be converted to the unit defined in the declaration. Additionally, the unit used in the graphical user interface has to be stored. In order to have a standardized way of doing this, Modelica provides the following three attributes for a variable of type Real:
Note, a unit, such as \"N.m\", is not sufficient to define uniquely the physical quantity, since, e.g., \"N.m\" might be either \"torque\" or \"energy\". The \"quantity\" attribute might therefore be used by a tool to select the corresponding menu from which the user can select a unit for the corresponding variable.
For example, after providing a value for \"m\" and \"f\" in a parameter menu of an instance of MassOnGround, a tool might generate the following code:
MassOnGround myObject(m(displayUnit=\"g\")=2, f=3);
The meaning is that in the equations a value of \"2\" is used and that in the graphical user interface a value of \"2000\" should be used, together with the unit \"g\" from the unit set \"Mass\" (= the quantity name). Note, according to the Modelica specification a tool might ignore the \"displayUnit\" attribute.
In order to help the Modelica model developer, the Modelica.SIunits library provides about 450 predefined type names, together with values for the attributes quantity, unit and sometimes displayUnit and min. The unit is always selected as SI-unit according to the ISO standard. The type and the quantity names are the quantity names used in the ISO standard. \"quantity\" and \"unit\" are defined as \"final\" in order that they cannot be modified. Attributes \"displayUnit\" and \"min\" can, however, be changed in a model via a modification. The example above, might therefore be alternatively also defined as:
model MassOnGround parameter Modelica.SIunits.Mass m \"Mass\"; parameter Modelica.SIunits.Force f \"Driving force\"; ... end MassOnGround;
or in a short hand notation as
model MassOnGround import SI = Modelica.SIunits; parameter SI.Mass m \"Mass\"; parameter SI.Force f \"Driving force\"; ... end MassOnGround;
For some often used Non SI-units (like hour), some additional type definitions are present as Modelica.SIunits.Conversions.NonSIunits. If this is not sufficient, the user has to define its own types or use the attributes directly in the declaration as in the example at the beginning.
Complex units are also included in Modelica.SIunits. A complex unit is declared as:
model QuasiStationaryMachine parameter Modelica.SIunits.ComplexPower SNominal = Complex(10000,4400) \"Nominal complex power\"; ... end QuasiStationaryMachine;")); end HowToUseSIunits; class Conventions "Conventions" extends Modelica.Icons.Information; annotation( DocumentationClass=true, Documentation(info="
The following conventions are used in package SIunits:
Chapter 1: Space and Time Chapter 2: Periodic and Related Phenomena Chapter 3: Mechanics Chapter 4: Heat Chapter 5: Electricity and Magnetism Chapter 6: Light and Related Electro-Magnetic Radiations Chapter 7: Acoustics Chapter 8: Physical Chemistry Chapter 9: Atomic and Nuclear Physics Chapter 10: Nuclear Reactions and Ionizing Radiations Chapter 11: (not defined in ISO 31-1992) Chapter 12: Characteristic Numbers Chapter 13: Solid State Physics
This package is based on the following references
Acknowledgements:
Library SIunits is a free Modelica package providing predefined types, such as Mass, Length, Time, based on the international standard on units.
")); end UsersGuide; package Icons "Icons for SIunits" extends Modelica.Icons.IconsPackage; partial function Conversion "Base icon for conversion functions" annotation(Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={ Rectangle( extent={{-100,100},{100,-100}}, lineColor={191,0,0}, fillColor={255,255,255}, fillPattern=FillPattern.Solid), Line(points={{-90,0},{30,0}}, color={191,0,0}), Polygon( points={{90,0},{30,20},{30,-20},{90,0}}, lineColor={191,0,0}, fillColor={191,0,0}, fillPattern=FillPattern.Solid), Text( extent={{-115,155},{115,105}}, textString="%name", lineColor={0,0,255})})); end Conversion; end Icons; package Conversions "Conversion functions to/from non SI units and type definitions of non SI units" extends Modelica.Icons.Package; package NonSIunits "Type definitions of non SI units" extends Modelica.Icons.Package; type Temperature_degC = Real( final quantity="ThermodynamicTemperature", final unit="degC") "Absolute temperature in degree Celsius (for relative temperature use SIunits.TemperatureDifference)" annotation(absoluteValue=true); type Temperature_degF = Real( final quantity="ThermodynamicTemperature", final unit="degF") "Absolute temperature in degree Fahrenheit (for relative temperature use SIunits.TemperatureDifference)" annotation(absoluteValue=true); type Temperature_degRk = Real( final quantity="ThermodynamicTemperature", final unit="degRk") "Absolute temperature in degree Rankine (for relative temperature use SIunits.TemperatureDifference)" annotation(absoluteValue=true); type Angle_deg = Real( final quantity="Angle", final unit="deg") "Angle in degree"; type AngularVelocity_rpm = Real( final quantity="AngularVelocity", final unit="rpm") "Angular velocity in revolutions per minute. Alias unit names that are outside of the SI system: rpm, r/min, rev/min"; type Velocity_kmh = Real( final quantity="Velocity", final unit="km/h") "Velocity in kilometers per hour"; type Time_day = Real( final quantity="Time", final unit="d") "Time in days"; type Time_hour = Real( final quantity="Time", final unit="h") "Time in hours"; type Time_minute = Real( final quantity="Time", final unit="min") "Time in minutes"; type Volume_litre = Real( final quantity="Volume", final unit="l") "Volume in litres"; type ElectricCharge_Ah = Real( final quantity="ElectricCharge", final unit="A.h") "Electric charge in Ampere hours"; type Energy_Wh = Real( final quantity="Energy", final unit="W.h") "Energy in Watt hours"; type Energy_kWh = Real( final quantity="Energy", final unit="kW.h") "Energy in kilo watt hours"; type Pressure_bar = Real( final quantity="Pressure", final unit="bar") "Absolute pressure in bar"; type MassFlowRate_gps = Real( final quantity="MassFlowRate", final unit="g/s") "Mass flow rate in gram per second"; type FirstOrderTemperaturCoefficient = Real( final quantity="FirstOrderTemperatureCoefficient", final unit="Ohm/degC") "First Order Temperature Coefficient" annotation(absoluteValue=true); type SecondOrderTemperaturCoefficient = Real( final quantity="SecondOrderTemperatureCoefficient", final unit="Ohm/degC2") "Second Order Temperature Coefficient" annotation(absoluteValue=true); type Area_cm = Real( final quantity="Area", final unit="cm2") "Area in cm"; type PerArea_cm = Real( final quantity="PerArea", final unit="1/cm2") "Per Area in cm"; type Area_cmPerVoltageSecond = Real( final quantity="AreaPerVoltageSecond", final unit="cm2/(V.s)") "Area in cm per voltage second"; annotation( Documentation(info="This package provides predefined types, such as Angle_deg (angle in degree), AngularVelocity_rpm (angular velocity in revolutions per minute) or Temperature_degF (temperature in degree Fahrenheit), which are in common use but are not part of the international standard on units according to ISO 31-1992 \"General principles concerning quantities, units and symbols\" and ISO 1000-1992 \"SI units and recommendations for the use of their multiples and of certain other units\".
If possible, the types in this package should not be used. Use instead types of package Modelica.SIunits. For more information on units, see also the book of Francois Cardarelli Scientific Unit Conversion - A Practical Guide to Metrication (Springer 1997).
Some units, such as Temperature_degC/Temp_C are both defined in Modelica.SIunits and in Modelica.Conversions.NonSIunits. The reason is that these definitions have been placed erroneously in Modelica.SIunits although they are not SIunits. For backward compatibility, these type definitions are still kept in Modelica.SIunits.
"), Icon( coordinateSystem(extent={{-100,-100},{100,100}}), graphics={ Text( origin={15.0,51.8518}, extent={{-105.0,-86.8518},{75.0,-16.8518}}, lineColor={0,0,0}, textString="[km/h]")})); end NonSIunits; function to_unit1 "Change the unit of a Real number to unit=\"1\"" extends Modelica.SIunits.Icons.Conversion; input Real r "Real number"; output Real result(unit="1") "Real number r with unit=\"1\""; algorithm result := r; annotation( Inline=true, Documentation(info="SIunits.Conversions.to_unit1(r);
The function call \"Conversions.to_unit1(r)
\" returns r with unit=\"1\".
"), Icon( coordinateSystem( preserveAspectRatio=false, extent={{-100,-100},{100, 100}}), graphics={Text( extent={{-90,86},{32,50}}, lineColor={0,0,0}, textString="any", horizontalAlignment=TextAlignment.Left), Text( extent={{-36,-52},{86,-88}}, lineColor={0,0,0}, horizontalAlignment=TextAlignment.Right, textString="1")})); end to_unit1; function to_degC "Convert from Kelvin to degCelsius" extends Modelica.SIunits.Icons.Conversion; input Temperature Kelvin "Kelvin value"; output NonSIunits.Temperature_degC Celsius "Celsius value"; algorithm Celsius := Kelvin + Modelica.Constants.T_zero; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{-20,100},{-100,20}}, lineColor={0,0,0}, textString="K"), Text( extent={{100,-20},{20,-100}}, lineColor={0,0,0}, textString="degC")})); end to_degC; function from_degC "Convert from degCelsius to Kelvin" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.Temperature_degC Celsius "Celsius value"; output Temperature Kelvin "Kelvin value"; algorithm Kelvin := Celsius - Modelica.Constants.T_zero; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{-20,100},{-100,20}}, lineColor={0,0,0}, textString="degC"), Text( extent={{100,-20},{20,-100}}, lineColor={0,0,0}, textString="K")})); end from_degC; function to_degF "Convert from Kelvin to degFahrenheit" extends Modelica.SIunits.Icons.Conversion; input Temperature Kelvin "Kelvin value"; output NonSIunits.Temperature_degF Fahrenheit "Fahrenheit value"; algorithm Fahrenheit := (Kelvin + Modelica.Constants.T_zero)*(9/5) + 32; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{-20,100},{-100,20}}, lineColor={0,0,0}, textString="K"), Text( extent={{100,-20},{20,-100}}, lineColor={0,0,0}, textString="degF")})); end to_degF; function from_degF "Convert from degFahrenheit to Kelvin" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.Temperature_degF Fahrenheit "Fahrenheit value"; output Temperature Kelvin "Kelvin value"; algorithm Kelvin := (Fahrenheit - 32)*(5/9) - Modelica.Constants.T_zero; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{-20,100},{-100,20}}, lineColor={0,0,0}, textString="degF"), Text( extent={{100,-20},{20,-100}}, lineColor={0,0,0}, textString="K"), Text( extent={{-20,100},{-100,20}}, lineColor={0,0,0}, textString="degF")})); end from_degF; function to_degRk "Convert from Kelvin to degRankine" extends Modelica.SIunits.Icons.Conversion; input Temperature Kelvin "Kelvin value"; output NonSIunits.Temperature_degRk Rankine "Rankine value"; algorithm Rankine := (9/5)*Kelvin; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{-20,100},{-100,20}}, lineColor={0,0,0}, textString="K"), Text( extent={{100,-32},{-18,-100}}, lineColor={0,0,0}, textString="degRk")})); end to_degRk; function from_degRk "Convert from degRankine to Kelvin" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.Temperature_degRk Rankine "Rankine value"; output Temperature Kelvin "Kelvin value"; algorithm Kelvin := (5/9)*Rankine; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{-8,100},{-100,42}}, lineColor={0,0,0}, textString="degRk"), Text( extent={{100,-20},{20,-100}}, lineColor={0,0,0}, textString="K")})); end from_degRk; function to_deg "Convert from radian to degree" extends Modelica.SIunits.Icons.Conversion; input Angle radian "radian value"; output NonSIunits.Angle_deg degree "degree value"; algorithm degree := (180.0/Modelica.Constants.pi)*radian; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{10,100},{-100,46}}, lineColor={0,0,0}, textString="rad"), Text( extent={{100,-44},{-10,-100}}, lineColor={0,0,0}, textString="deg")})); end to_deg; function from_deg "Convert from degree to radian" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.Angle_deg degree "degree value"; output Angle radian "radian value"; algorithm radian := (Modelica.Constants.pi/180.0)*degree; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{4,100},{-102,46}}, lineColor={0,0,0}, textString="deg"), Text( extent={{100,-32},{-18,-100}}, lineColor={0,0,0}, textString="rad")})); end from_deg; function to_rpm "Convert from radian per second to revolutions per minute" extends Modelica.SIunits.Icons.Conversion; input AngularVelocity rs "radian per second value"; output NonSIunits.AngularVelocity_rpm rpm "revolutions per minute value"; algorithm rpm := (30/Modelica.Constants.pi)*rs; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{30,100},{-100,50}}, lineColor={0,0,0}, textString="rad/s"), Text( extent={{100,-52},{-40,-98}}, lineColor={0,0,0}, textString="rpm")})); end to_rpm; function from_rpm "Convert from revolutions per minute to radian per second" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.AngularVelocity_rpm rpm "revolutions per minute value"; output AngularVelocity rs "radian per second value"; algorithm rs := (Modelica.Constants.pi/30)*rpm; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{14,100},{-102,56}}, lineColor={0,0,0}, textString="rpm"), Text( extent={{100,-56},{-32,-102}}, lineColor={0,0,0}, textString="rad/s")})); end from_rpm; function to_kmh "Convert from metre per second to kilometre per hour" extends Modelica.SIunits.Icons.Conversion; input Velocity ms "metre per second value"; output NonSIunits.Velocity_kmh kmh "kilometre per hour value"; algorithm kmh := 3.6*ms; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{8,100},{-100,58}}, lineColor={0,0,0}, textString="m/s"), Text( extent={{100,-56},{-16,-100}}, lineColor={0,0,0}, textString="km/h")})); end to_kmh; function from_kmh "Convert from kilometre per hour to metre per second" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.Velocity_kmh kmh "kilometre per hour value"; output Velocity ms "metre per second value"; algorithm ms := kmh/3.6; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{10,100},{-100,56}}, lineColor={0,0,0}, textString="km/h"), Text( extent={{100,-50},{-20,-100}}, lineColor={0,0,0}, textString="m/s")})); end from_kmh; function to_day "Convert from second to day" extends Modelica.SIunits.Icons.Conversion; input Time s "second value"; output NonSIunits.Time_day day "day value"; algorithm day := s/86400; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{-6,100},{-100,48}}, lineColor={0,0,0}, textString="s"), Text( extent={{100,-48},{-10,-98}}, lineColor={0,0,0}, textString="day")})); end to_day; function from_day "Convert from day to second" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.Time_day day "day value"; output Time s "second value"; algorithm s := 86400*day; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{10,100},{-100,52}}, lineColor={0,0,0}, textString="day"), Text( extent={{100,-54},{20,-100}}, lineColor={0,0,0}, textString="s")})); end from_day; function to_hour "Convert from second to hour" extends Modelica.SIunits.Icons.Conversion; input Time s "second value"; output NonSIunits.Time_hour hour "hour value"; algorithm hour := s/3600; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{12,100},{-100,50}}, lineColor={0,0,0}, textString="s"), Text( extent={{100,-56},{-20,-100}}, lineColor={0,0,0}, textString="hour")})); end to_hour; function from_hour "Convert from hour to second" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.Time_hour hour "hour value"; output Time s "second value"; algorithm s := 3600*hour; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{12,100},{-100,58}}, lineColor={0,0,0}, textString="hour"), Text( extent={{100,-50},{16,-100}}, lineColor={0,0,0}, textString="s")})); end from_hour; function to_minute "Convert from second to minute" extends Modelica.SIunits.Icons.Conversion; input Time s "second value"; output NonSIunits.Time_minute minute "minute value"; algorithm minute := s/60; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{-26,100},{-100,52}}, lineColor={0,0,0}, textString="s"), Text( extent={{100,-54},{-20,-100}}, lineColor={0,0,0}, textString="min")})); end to_minute; function from_minute "Convert from minute to second" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.Time_minute minute "minute value"; output Time s "second value"; algorithm s := 60*minute; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{26,100},{-100,48}}, lineColor={0,0,0}, textString="min"), Text( extent={{100,-46},{0,-100}}, lineColor={0,0,0}, textString="s")})); end from_minute; function to_litre "Convert from cubic metre to litre" extends Modelica.SIunits.Icons.Conversion; input Volume m3 "cubic metre value"; output NonSIunits.Volume_litre litre "litre value"; algorithm litre := 1000*m3; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{100,-56},{0,-100}}, lineColor={0,0,0}, textString="litre"), Text( extent={{6,100},{-100,56}}, lineColor={0,0,0}, textString="m3")})); end to_litre; function from_litre "Convert from litre to cubic metre" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.Volume_litre litre "litre value"; output Volume m3 "cubic metre value"; algorithm m3 := litre/1000; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{-4,100},{-100,62}}, lineColor={0,0,0}, textString="litre"), Text( extent={{100,-56},{-6,-100}}, lineColor={0,0,0}, textString="m3")})); end from_litre; function from_Ah "Convert from Ampere hours to Coulomb" extends Modelica.SIunits.Icons.Conversion; input Modelica.SIunits.Conversions.NonSIunits.ElectricCharge_Ah AmpereHour "Ampere hours"; output Modelica.SIunits.ElectricCharge Coulomb "Coulomb"; algorithm Coulomb := AmpereHour * 3600; annotation(Icon(graphics={ Text( extent={{-2,100},{-100,48}}, lineColor={0,0,0}, textString="Ah"), Text( extent={{100,-46},{0,-100}}, lineColor={0,0,0}, textString="C")})); end from_Ah; function to_Ah "Convert from Coulomb to Ampere hours" extends Modelica.SIunits.Icons.Conversion; input Modelica.SIunits.ElectricCharge Coulomb "Coulomb"; output Modelica.SIunits.Conversions.NonSIunits.ElectricCharge_Ah AmpereHour "Ampere hours"; algorithm AmpereHour := Coulomb/3600; annotation(Icon(graphics={ Text( extent={{-18,100},{-100,48}}, lineColor={0,0,0}, textString="C"), Text( extent={{100,-48},{2,-100}}, lineColor={0,0,0}, textString="Ah")})); end to_Ah; function from_Wh "Convert from Watt hour to Joule" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.Energy_Wh WattHour "Watt hour"; output Modelica.SIunits.Energy Joule "Joule"; algorithm Joule := WattHour * 3600; annotation(Icon(graphics={ Text( extent={{-20,100},{-100,54}}, lineColor={0,0,0}, textString="Wh"), Text( extent={{100,-38},{4,-100}}, lineColor={0,0,0}, textString="J")})); end from_Wh; function to_Wh "Convert from Joule to Watt hour" extends Modelica.SIunits.Icons.Conversion; input Modelica.SIunits.Energy Joule "Joule"; output NonSIunits.Energy_Wh WattHour "Watt hour"; algorithm WattHour := Joule/3600; annotation(Icon(graphics={ Text( extent={{-30,100},{-100,48}}, lineColor={0,0,0}, textString="J"), Text( extent={{100,-46},{-14,-100}}, lineColor={0,0,0}, textString="Wh")})); end to_Wh; function to_kWh "Convert from Joule to kilo Watt hour" extends Modelica.SIunits.Icons.Conversion; input Energy J "Joule value"; output NonSIunits.Energy_kWh kWh "kWh value"; algorithm kWh := J/3.6e6; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{-20,100},{-100,54}}, lineColor={0,0,0}, textString="J"), Text( extent={{100,-50},{-10,-100}}, lineColor={0,0,0}, textString="kWh")})); end to_kWh; function from_kWh "Convert from kilo Watt hour to Joule" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.Energy_kWh kWh "kWh value"; output Energy J "Joule value"; algorithm J := 3.6e6*kWh; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{12,100},{-100,52}}, lineColor={0,0,0}, textString="kWh"), Text( extent={{100,-44},{12,-100}}, lineColor={0,0,0}, textString="J")})); end from_kWh; function to_bar "Convert from Pascal to bar" extends Modelica.SIunits.Icons.Conversion; input Pressure Pa "Pascal value"; output NonSIunits.Pressure_bar bar "bar value"; algorithm bar := Pa/1e5; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{-12,100},{-100,56}}, lineColor={0,0,0}, textString="Pa"), Text( extent={{98,-52},{-4,-100}}, lineColor={0,0,0}, textString="bar")})); end to_bar; function from_bar "Convert from bar to Pascal" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.Pressure_bar bar "bar value"; output Pressure Pa "Pascal value"; algorithm Pa := 1e5*bar; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{100,-56},{12,-100}}, lineColor={0,0,0}, textString="Pa"), Text( extent={{2,100},{-100,52}}, lineColor={0,0,0}, textString="bar")})); end from_bar; function to_gps "Convert from kilogram per second to gram per second" extends Modelica.SIunits.Icons.Conversion; input MassFlowRate kgps "kg/s value"; output NonSIunits.MassFlowRate_gps gps "g/s value"; algorithm gps := 1000*kgps; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{-12,100},{-100,60}}, lineColor={0,0,0}, textString="kg/s"), Text( extent={{100,-46},{-6,-100}}, lineColor={0,0,0}, textString="g/s")})); end to_gps; function from_gps "Convert from gram per second to kilogram per second" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.MassFlowRate_gps gps "g/s value"; output MassFlowRate kgps "kg/s value"; algorithm kgps := gps/1000; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{-8,100},{-100,54}}, lineColor={0,0,0}, textString="g/s"), Text( extent={{100,-44},{-10,-100}}, lineColor={0,0,0}, textString="kg/s")})); end from_gps; function from_Hz "Convert from Hz to rad/s" extends Modelica.SIunits.Icons.Conversion; input SIunits.Frequency f "frequency"; output SIunits.AngularVelocity w "angular velocity"; algorithm w := 2*Modelica.Constants.pi*f; annotation( Inline=true, Icon(graphics={ Text( extent={{2,100},{-100,52}}, lineColor={0,0,0}, textString="Hz"), Text( extent={{100,-56},{12,-100}}, lineColor={0,0,0}, textString="1/s")})); end from_Hz; function to_Hz "Convert from rad/s to Hz" extends Modelica.SIunits.Icons.Conversion; input SIunits.AngularVelocity w "angular velocity"; output SIunits.Frequency f "frequency"; algorithm f := w/(2*Modelica.Constants.pi); annotation( Inline=true, Icon(graphics={ Text( extent={{100,-52},{-2,-100}}, lineColor={0,0,0}, textString="Hz"), Text( extent={{-12,100},{-100,56}}, lineColor={0,0,0}, textString="1/s")})); end to_Hz; function to_cm2 "Convert from square metre to square centimetre" extends Modelica.SIunits.Icons.Conversion; input Area m2 "square metre value"; output NonSIunits.Area_cm cm2 "square centimetre value"; algorithm cm2 := 10000*m2; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{-20,100},{-100,58}}, lineColor={0,0,0}, textString="m/s"), Text( extent={{100,-50},{-18,-100}}, lineColor={0,0,0}, textString="cm2")})); end to_cm2; function from_cm2 "Convert from square centimetre to square metre" extends Modelica.SIunits.Icons.Conversion; input NonSIunits.Area_cm cm2 "square centimetre value"; output Area m2 "square metre value"; algorithm m2 := 0.0001*cm2; annotation( Inline=true, Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={Text( extent={{2,100},{-100,58}}, lineColor={0,0,0}, textString="cm2"), Text( extent={{100,-50},{-16,-98}}, lineColor={0,0,0}, textString="m/s")})); end from_cm2; partial function ConversionIcon "This icon will be removed in future Modelica versions." extends Modelica.Icons.ObsoleteModel; annotation( Icon( coordinateSystem( preserveAspectRatio=true, extent={{-100, -100},{100,100}}), graphics={ Rectangle( extent={{-100,100},{100,-100}}, lineColor={191,0,0}, fillColor={255,255,255}, fillPattern=FillPattern.Solid), Line(points={{-90,0},{30,0}}, color={191,0,0}), Polygon( points={{90,0},{30,20},{30,-20},{90,0}}, lineColor={191,0,0}, fillColor={191,0,0}, fillPattern=FillPattern.Solid), Text( extent={{-115,155},{115,105}}, textString="%name", lineColor={0,0,255})}), Documentation(info="Modelica.SIunits.Velocity v = {3,2,1}; Real direction[3](unit=\"1\") = to_unit1(v); // Automatically vectorized call of to_unit1
This icon of a conversion symbol will be removed in future versions of the library. Instead the icon Modelica.SIunits.Icons.Conversion shall be used.
")); end ConversionIcon; annotation(Documentation(info="This package provides conversion functions from the non SI Units defined in package Modelica.SIunits.Conversions.NonSIunits to the corresponding SI Units defined in package Modelica.SIunits and vice versa. It is recommended to use these functions in the following way (note, that all functions have one Real input and one Real output argument):
import SI = Modelica.SIunits; import Modelica.SIunits.Conversions.*; ... parameter SI.Temperature T = from_degC(25); // convert 25 degree Celsius to Kelvin parameter SI.Angle phi = from_deg(180); // convert 180 degree to radian parameter SI.AngularVelocity w = from_rpm(3600); // convert 3600 revolutions per minutes // to radian per seconds")); end Conversions; type Angle = Real( final quantity="Angle", final unit="rad", displayUnit="deg"); type SolidAngle = Real( final quantity="SolidAngle", final unit="sr"); type Length = Real( final quantity="Length", final unit="m"); type PathLength = Length; type Position = Length; type Distance = Length(min=0); type Breadth = Length(min=0); type Height = Length(min=0); type Thickness = Length(min=0); type Radius = Length(min=0); type Diameter = Length(min=0); type Area = Real( final quantity="Area", final unit="m2"); type Volume = Real( final quantity="Volume", final unit="m3"); type Time = Real( final quantity="Time", final unit="s"); type Duration = Time; type AngularVelocity = Real( final quantity="AngularVelocity", final unit="rad/s"); type AngularAcceleration = Real( final quantity="AngularAcceleration", final unit="rad/s2"); type Velocity = Real( final quantity="Velocity", final unit="m/s"); type Acceleration = Real( final quantity="Acceleration", final unit="m/s2"); type Period = Real( final quantity="Time", final unit="s"); type Frequency = Real( final quantity="Frequency", final unit="Hz"); type AngularFrequency = Real( final quantity="AngularFrequency", final unit="rad/s"); type Wavelength = Real( final quantity="Wavelength", final unit="m"); type Wavelenght = Wavelength; type WaveNumber = Real( final quantity="WaveNumber", final unit="m-1"); type CircularWaveNumber = Real( final quantity="CircularWaveNumber", final unit="rad/m"); type AmplitudeLevelDifference = Real( final quantity="AmplitudeLevelDifference", final unit="dB"); type PowerLevelDifference = Real( final quantity="PowerLevelDifference", final unit="dB"); type DampingCoefficient = Real( final quantity="DampingCoefficient", final unit="s-1"); type LogarithmicDecrement = Real( final quantity="LogarithmicDecrement", final unit="1/S"); type AttenuationCoefficient = Real( final quantity="AttenuationCoefficient", final unit="m-1"); type PhaseCoefficient = Real( final quantity="PhaseCoefficient", final unit="m-1"); type PropagationCoefficient = Real( final quantity="PropagationCoefficient", final unit="m-1"); type Damping = DampingCoefficient; type Mass = Real( quantity="Mass", final unit="kg", min=0); type Density = Real( final quantity="Density", final unit="kg/m3", displayUnit="g/cm3", min=0.0); type RelativeDensity = Real( final quantity="RelativeDensity", final unit="1", min=0.0); type SpecificVolume = Real( final quantity="SpecificVolume", final unit="m3/kg", min=0.0); type LinearDensity = Real( final quantity="LinearDensity", final unit="kg/m", min=0); type SurfaceDensity = Real( final quantity="SurfaceDensity", final unit="kg/m2", min=0); type Momentum = Real( final quantity="Momentum", final unit="kg.m/s"); type Impulse = Real( final quantity="Impulse", final unit="N.s"); type AngularMomentum = Real( final quantity="AngularMomentum", final unit="kg.m2/s"); type AngularImpulse = Real( final quantity="AngularImpulse", final unit="N.m.s"); type MomentOfInertia = Real( final quantity="MomentOfInertia", final unit="kg.m2"); type Inertia = MomentOfInertia; type Force = Real( final quantity="Force", final unit="N"); type TranslationalSpringConstant = Real( final quantity="TranslationalSpringConstant", final unit="N/m"); type TranslationalDampingConstant = Real( final quantity="TranslationalDampingConstant", final unit="N.s/m"); type Weight = Force; type Torque = Real( final quantity="Torque", final unit="N.m"); type ElectricalTorqueConstant = Real( final quantity="ElectricalTorqueConstant", final unit="N.m/A"); type MomentOfForce = Torque; type ImpulseFlowRate = Real( final quantity="ImpulseFlowRate", final unit="N"); type AngularImpulseFlowRate = Real( final quantity="AngularImpulseFlowRate", final unit="N.m"); type RotationalSpringConstant = Real( final quantity="RotationalSpringConstant", final unit="N.m/rad"); type RotationalDampingConstant = Real( final quantity="RotationalDampingConstant", final unit="N.m.s/rad"); type Pressure = Real( final quantity="Pressure", final unit="Pa", displayUnit="bar"); type AbsolutePressure = Pressure( min=0.0, nominal=1e5); type PressureDifference = Pressure; type BulkModulus = AbsolutePressure; type Stress = Real(final unit="Pa"); type NormalStress = Stress; type ShearStress = Stress; type Strain = Real( final quantity="Strain", final unit="1"); type LinearStrain = Strain; type ShearStrain = Strain; type VolumeStrain = Real( final quantity="VolumeStrain", final unit="1"); type PoissonNumber = Real( final quantity="PoissonNumber", final unit="1"); type ModulusOfElasticity = Stress; type ShearModulus = Stress; type SecondMomentOfArea = Real( final quantity="SecondMomentOfArea", final unit="m4"); type SecondPolarMomentOfArea = SecondMomentOfArea; type SectionModulus = Real( final quantity="SectionModulus", final unit="m3"); type CoefficientOfFriction = Real( final quantity="CoefficientOfFriction", final unit="1"); type DynamicViscosity = Real( final quantity="DynamicViscosity", final unit="Pa.s", min=0); type KinematicViscosity = Real( final quantity="KinematicViscosity", final unit="m2/s", min=0); type SurfaceTension = Real( final quantity="SurfaceTension", final unit="N/m"); type Work = Real( final quantity="Work", final unit="J"); type Energy = Real( final quantity="Energy", final unit="J"); type EnergyDensity = Real( final quantity="EnergyDensity", final unit="J/m3"); type PotentialEnergy = Energy; type KineticEnergy = Energy; type Power = Real( final quantity="Power", final unit="W"); type EnergyFlowRate = Power; type EnthalpyFlowRate = Real( final quantity="EnthalpyFlowRate", final unit="W"); type Efficiency = Real( final quantity="Efficiency", final unit="1", min=0); type MassFlowRate = Real( quantity="MassFlowRate", final unit="kg/s"); type VolumeFlowRate = Real( final quantity="VolumeFlowRate", final unit="m3/s"); type MomentumFlux = Real( final quantity="MomentumFlux", final unit="N"); type AngularMomentumFlux = Real( final quantity="AngularMomentumFlux", final unit="N.m"); type ThermodynamicTemperature = Real( final quantity="ThermodynamicTemperature", final unit="K", min=0.0, start=288.15, nominal=300, displayUnit="degC") "Absolute temperature (use type TemperatureDifference for relative temperatures)" annotation(absoluteValue=true); type Temp_K = ThermodynamicTemperature; type Temperature = ThermodynamicTemperature; type TemperatureDifference = Real( final quantity="ThermodynamicTemperature", final unit="K") annotation(absoluteValue=false); type Temp_C = SIunits.Conversions.NonSIunits.Temperature_degC; type TemperatureSlope = Real( final quantity="TemperatureSlope", final unit="K/s"); type LinearTemperatureCoefficient = Real( final quantity="LinearTemperatureCoefficient", final unit="1/K"); type QuadraticTemperatureCoefficient = Real( final quantity="QuadraticTemperatureCoefficient", final unit="1/K2"); type LinearExpansionCoefficient = Real( final quantity="LinearExpansionCoefficient", final unit="1/K"); type CubicExpansionCoefficient = Real( final quantity="CubicExpansionCoefficient", final unit="1/K"); type RelativePressureCoefficient = Real( final quantity="RelativePressureCoefficient", final unit="1/K"); type PressureCoefficient = Real( final quantity="PressureCoefficient", final unit="Pa/K"); type Compressibility = Real( final quantity="Compressibility", final unit="1/Pa"); type IsothermalCompressibility = Compressibility; type IsentropicCompressibility = Compressibility; type Heat = Real( final quantity="Energy", final unit="J"); type HeatFlowRate = Real( final quantity="Power", final unit="W"); type HeatFlux = Real( final quantity="HeatFlux", final unit="W/m2"); type DensityOfHeatFlowRate = Real( final quantity="DensityOfHeatFlowRate", final unit="W/m2"); type ThermalConductivity = Real( final quantity="ThermalConductivity", final unit="W/(m.K)"); type CoefficientOfHeatTransfer = Real( final quantity="CoefficientOfHeatTransfer", final unit="W/(m2.K)"); type SurfaceCoefficientOfHeatTransfer = CoefficientOfHeatTransfer; type ThermalInsulance = Real( final quantity="ThermalInsulance", final unit="m2.K/W"); type ThermalResistance = Real( final quantity="ThermalResistance", final unit="K/W"); type ThermalConductance = Real( final quantity="ThermalConductance", final unit="W/K"); type ThermalDiffusivity = Real( final quantity="ThermalDiffusivity", final unit="m2/s"); type HeatCapacity = Real( final quantity="HeatCapacity", final unit="J/K"); type SpecificHeatCapacity = Real( final quantity="SpecificHeatCapacity", final unit="J/(kg.K)"); type SpecificHeatCapacityAtConstantPressure = SpecificHeatCapacity; type SpecificHeatCapacityAtConstantVolume = SpecificHeatCapacity; type SpecificHeatCapacityAtSaturation = SpecificHeatCapacity; type RatioOfSpecificHeatCapacities = Real( final quantity="RatioOfSpecificHeatCapacities", final unit="1"); type IsentropicExponent = Real( final quantity="IsentropicExponent", final unit="1"); type Entropy = Real( final quantity="Entropy", final unit="J/K"); type EntropyFlowRate = Real( final quantity="EntropyFlowRate", final unit="J/(K.s)"); type SpecificEntropy = Real( final quantity="SpecificEntropy", final unit="J/(kg.K)"); type InternalEnergy = Heat; type Enthalpy = Heat; type HelmholtzFreeEnergy = Heat; type GibbsFreeEnergy = Heat; type SpecificEnergy = Real( final quantity="SpecificEnergy", final unit="J/kg"); type SpecificInternalEnergy = SpecificEnergy; type SpecificEnthalpy = SpecificEnergy; type SpecificHelmholtzFreeEnergy = SpecificEnergy; type SpecificGibbsFreeEnergy = SpecificEnergy; type MassieuFunction = Real( final quantity="MassieuFunction", final unit="J/K"); type PlanckFunction = Real( final quantity="PlanckFunction", final unit="J/K"); type DerDensityByEnthalpy = Real(final unit="kg.s2/m5"); type DerDensityByPressure = Real(final unit="s2/m2"); type DerDensityByTemperature = Real(final unit="kg/(m3.K)"); type DerEnthalpyByPressure = Real(final unit="J.m.s2/kg2"); type DerEnergyByDensity = Real(final unit="J.m3/kg"); type DerEnergyByPressure = Real(final unit="J.m.s2/kg"); type DerPressureByDensity = Real(final unit="Pa.m3/kg"); type DerPressureByTemperature = Real(final unit="Pa/K"); type ElectricCurrent = Real( final quantity="ElectricCurrent", final unit="A"); type Current = ElectricCurrent; type CurrentSlope = Real( final quantity="CurrentSlope", final unit="A/s"); type ElectricCharge = Real( final quantity="ElectricCharge", final unit="C"); type Charge = ElectricCharge; type VolumeDensityOfCharge = Real( final quantity="VolumeDensityOfCharge", final unit="C/m3", min=0); type SurfaceDensityOfCharge = Real( final quantity="SurfaceDensityOfCharge", final unit="C/m2", min=0); type ElectricFieldStrength = Real( final quantity="ElectricFieldStrength", final unit="V/m"); type ElectricPotential = Real( final quantity="ElectricPotential", final unit="V"); type Voltage = ElectricPotential; type PotentialDifference = ElectricPotential; type ElectromotiveForce = ElectricPotential; type VoltageSecond = Real( final quantity="VoltageSecond", final unit="V.s") "Voltage second"; type VoltageSlope = Real( final quantity="VoltageSlope", final unit="V/s"); type ElectricFluxDensity = Real( final quantity="ElectricFluxDensity", final unit="C/m2"); type ElectricFlux = Real( final quantity="ElectricFlux", final unit="C"); type Capacitance = Real( final quantity="Capacitance", final unit="F", min=0); type CapacitancePerArea = Real( final quantity="CapacitancePerArea", final unit="F/m2") "Capacitance per area"; type Permittivity = Real( final quantity="Permittivity", final unit="F/m", min=0); type PermittivityOfVacuum = Permittivity; type RelativePermittivity = Real( final quantity="RelativePermittivity", final unit="1"); type ElectricSusceptibility = Real( final quantity="ElectricSusceptibility", final unit="1"); type ElectricPolarization = Real( final quantity="ElectricPolarization", final unit="C/m2"); type Electrization = Real( final quantity="Electrization", final unit="V/m"); type ElectricDipoleMoment = Real( final quantity="ElectricDipoleMoment", final unit="C.m"); type CurrentDensity = Real( final quantity="CurrentDensity", final unit="A/m2"); type LinearCurrentDensity = Real( final quantity="LinearCurrentDensity", final unit="A/m"); type MagneticFieldStrength = Real( final quantity="MagneticFieldStrength", final unit="A/m"); type MagneticPotential = Real( final quantity="MagneticPotential", final unit="A"); type MagneticPotentialDifference = Real( final quantity="MagneticPotential", final unit="A"); type MagnetomotiveForce = Real( final quantity="MagnetomotiveForce", final unit="A"); type CurrentLinkage = Real( final quantity="CurrentLinkage", final unit="A"); type MagneticFluxDensity = Real( final quantity="MagneticFluxDensity", final unit="T"); type MagneticFlux = Real( final quantity="MagneticFlux", final unit="Wb"); type MagneticVectorPotential = Real( final quantity="MagneticVectorPotential", final unit="Wb/m"); type Inductance = Real( final quantity="Inductance", final unit="H"); type SelfInductance = Inductance(min=0); type MutualInductance = Inductance; type CouplingCoefficient = Real( final quantity="CouplingCoefficient", final unit="1"); type LeakageCoefficient = Real( final quantity="LeakageCoefficient", final unit="1"); type Permeability = Real( final quantity="Permeability", final unit="H/m"); type PermeabilityOfVacuum = Permeability; type RelativePermeability = Real( final quantity="RelativePermeability", final unit="1"); type MagneticSusceptibility = Real( final quantity="MagneticSusceptibility", final unit="1"); type ElectromagneticMoment = Real( final quantity="ElectromagneticMoment", final unit="A.m2"); type MagneticDipoleMoment = Real( final quantity="MagneticDipoleMoment", final unit="Wb.m"); type Magnetization = Real( final quantity="Magnetization", final unit="A/m"); type MagneticPolarization = Real( final quantity="MagneticPolarization", final unit="T"); type ElectromagneticEnergyDensity = Real( final quantity="EnergyDensity", final unit="J/m3"); type PoyntingVector = Real( final quantity="PoyntingVector", final unit="W/m2"); type Resistance = Real( final quantity="Resistance", final unit="Ohm"); type Resistivity = Real( final quantity="Resistivity", final unit="Ohm.m"); type Conductivity = Real( final quantity="Conductivity", final unit="S/m"); type Reluctance = Real( final quantity="Reluctance", final unit="H-1"); type Permeance = Real( final quantity="Permeance", final unit="H"); type PhaseDifference = Real( final quantity="Angle", final unit="rad", displayUnit="deg"); type Impedance = Resistance; type ModulusOfImpedance = Resistance; type Reactance = Resistance; type QualityFactor = Real( final quantity="QualityFactor", final unit="1"); type LossAngle = Real( final quantity="Angle", final unit="rad", displayUnit="deg"); type Conductance = Real( final quantity="Conductance", final unit="S"); type Admittance = Conductance; type ModulusOfAdmittance = Conductance; type Susceptance = Conductance; type InstantaneousPower = Real( final quantity="Power", final unit="W"); type ActivePower = Real( final quantity="Power", final unit="W"); type ApparentPower = Real( final quantity="Power", final unit="VA"); type ReactivePower = Real( final quantity="Power", final unit="var"); type PowerFactor = Real( final quantity="PowerFactor", final unit="1"); type Transconductance = Real( final quantity="Transconductance", final unit="A/V2"); type InversePotential = Real( final quantity="InversePotential", final unit="1/V"); type ElectricalForceConstant = Real( final quantity="ElectricalForceConstant", final unit="N/A"); type RadiantEnergy = Real( final quantity="Energy", final unit="J"); type RadiantEnergyDensity = Real( final quantity="EnergyDensity", final unit="J/m3"); type SpectralRadiantEnergyDensity = Real( final quantity="SpectralRadiantEnergyDensity", final unit="J/m4"); type RadiantPower = Real( final quantity="Power", final unit="W"); type RadiantEnergyFluenceRate = Real( final quantity="RadiantEnergyFluenceRate", final unit="W/m2"); type RadiantIntensity = Real( final quantity="RadiantIntensity", final unit="W/sr"); type Radiance = Real( final quantity="Radiance", final unit="W/(sr.m2)"); type RadiantExtiance = Real( final quantity="RadiantExtiance", final unit="W/m2"); type Irradiance = Real( final quantity="Irradiance", final unit="W/m2"); type Emissivity = Real( final quantity="Emissivity", final unit="1"); type SpectralEmissivity = Real( final quantity="SpectralEmissivity", final unit="1"); type DirectionalSpectralEmissivity = Real( final quantity="DirectionalSpectralEmissivity", final unit="1"); type LuminousIntensity = Real( final quantity="LuminousIntensity", final unit="cd"); type LuminousFlux = Real( final quantity="LuminousFlux", final unit="lm"); type QuantityOfLight = Real( final quantity="QuantityOfLight", final unit="lm.s"); type Luminance = Real( final quantity="Luminance", final unit="cd/m2"); type LuminousExitance = Real( final quantity="LuminousExitance", final unit="lm/m2"); type Illuminance = Real( final quantity="Illuminance", final unit="lx"); type LightExposure = Real( final quantity="LightExposure", final unit="lx.s"); type LuminousEfficacy = Real( final quantity="LuminousEfficacy", final unit="lm/W"); type SpectralLuminousEfficacy = Real( final quantity="SpectralLuminousEfficacy", final unit="lm/W"); type LuminousEfficiency = Real( final quantity="LuminousEfficiency", final unit="1"); type SpectralLuminousEfficiency = Real( final quantity="SpectralLuminousEfficiency", final unit="1"); type CIESpectralTristimulusValues = Real( final quantity="CIESpectralTristimulusValues", final unit="1"); type ChromaticityCoordinates = Real( final quantity="CromaticityCoordinates", final unit="1"); type SpectralAbsorptionFactor = Real( final quantity="SpectralAbsorptionFactor", final unit="1"); type SpectralReflectionFactor = Real( final quantity="SpectralReflectionFactor", final unit="1"); type SpectralTransmissionFactor = Real( final quantity="SpectralTransmissionFactor", final unit="1"); type SpectralRadianceFactor = Real( final quantity="SpectralRadianceFactor", final unit="1"); type LinearAttenuationCoefficient = Real( final quantity="AttenuationCoefficient", final unit="m-1"); type LinearAbsorptionCoefficient = Real( final quantity="LinearAbsorptionCoefficient", final unit="m-1"); type MolarAbsorptionCoefficient = Real( final quantity="MolarAbsorptionCoefficient", final unit="m2/mol"); type RefractiveIndex = Real( final quantity="RefractiveIndex", final unit="1"); type StaticPressure = AbsolutePressure; type SoundPressure = StaticPressure; type SoundParticleDisplacement = Real( final quantity="Length", final unit="m"); type SoundParticleVelocity = Real( final quantity="Velocity", final unit="m/s"); type SoundParticleAcceleration = Real( final quantity="Acceleration", final unit="m/s2"); type VelocityOfSound = Real( final quantity="Velocity", final unit="m/s"); type SoundEnergyDensity = Real( final quantity="EnergyDensity", final unit="J/m3"); type SoundPower = Real( final quantity="Power", final unit="W"); type SoundIntensity = Real( final quantity="SoundIntensity", final unit="W/m2"); type AcousticImpedance = Real( final quantity="AcousticImpedance", final unit="Pa.s/m3"); type SpecificAcousticImpedance = Real( final quantity="SpecificAcousticImpedance", final unit="Pa.s/m"); type MechanicalImpedance = Real( final quantity="MechanicalImpedance", final unit="N.s/m"); type SoundPressureLevel = Real( final quantity="SoundPressureLevel", final unit="dB"); type SoundPowerLevel = Real( final quantity="SoundPowerLevel", final unit="dB"); type DissipationCoefficient = Real( final quantity="DissipationCoefficient", final unit="1"); type ReflectionCoefficient = Real( final quantity="ReflectionCoefficient", final unit="1"); type TransmissionCoefficient = Real( final quantity="TransmissionCoefficient", final unit="1"); type AcousticAbsorptionCoefficient = Real( final quantity="AcousticAbsorptionCoefficient", final unit="1"); type SoundReductionIndex = Real( final quantity="SoundReductionIndex", final unit="dB"); type EquivalentAbsorptionArea = Real( final quantity="Area", final unit="m2"); type ReverberationTime = Real( final quantity="Time", final unit="s"); type LoudnessLevel = Real( final quantity="LoudnessLevel", final unit="phon"); type Loudness = Real( final quantity="Loudness", final unit="sone"); type LoundnessLevel = Real( final quantity="LoundnessLevel", final unit="phon") "Obsolete type, use LoudnessLevel instead!"; type Loundness = Real( final quantity="Loundness", final unit="sone") "Obsolete type, use Loudness instead!"; type RelativeAtomicMass = Real( final quantity="RelativeAtomicMass", final unit="1"); type RelativeMolecularMass = Real( final quantity="RelativeMolecularMass", final unit="1"); type NumberOfMolecules = Real( final quantity="NumberOfMolecules", final unit="1"); type AmountOfSubstance = Real( final quantity="AmountOfSubstance", final unit="mol", min=0); type MolarMass = Real( final quantity="MolarMass", final unit="kg/mol", min=0); type MolarVolume = Real( final quantity="MolarVolume", final unit="m3/mol", min=0); type MolarDensity = Real( final quantity="MolarDensity", unit="mol/m3"); type MolarEnergy = Real( final quantity="MolarEnergy", final unit="J/mol", nominal=2e4); type MolarInternalEnergy = MolarEnergy; type MolarHeatCapacity = Real( final quantity="MolarHeatCapacity", final unit="J/(mol.K)"); type MolarEntropy = Real( final quantity="MolarEntropy", final unit="J/(mol.K)"); type MolarEnthalpy = MolarEnergy; type MolarFlowRate = Real( final quantity="MolarFlowRate", final unit="mol/s"); type NumberDensityOfMolecules = Real( final quantity="NumberDensityOfMolecules", final unit="m-3"); type MolecularConcentration = Real( final quantity="MolecularConcentration", final unit="m-3"); type MassConcentration = Real( final quantity="MassConcentration", final unit="kg/m3"); type MassFraction = Real( final quantity="MassFraction", final unit="1", min=0, max=1); type Concentration = Real( final quantity="Concentration", final unit="mol/m3"); type VolumeFraction = Real( final quantity="VolumeFraction", final unit="1"); type MoleFraction = Real( final quantity="MoleFraction", final unit="1", min=0, max=1); type ChemicalPotential = Real( final quantity="ChemicalPotential", final unit="J/mol"); type AbsoluteActivity = Real( final quantity="AbsoluteActivity", final unit="1"); type PartialPressure = AbsolutePressure; type Fugacity = Real( final quantity="Fugacity", final unit="Pa"); type StandardAbsoluteActivity = Real( final quantity="StandardAbsoluteActivity", final unit="1"); type ActivityCoefficient = Real( final quantity="ActivityCoefficient", final unit="1"); type ActivityOfSolute = Real( final quantity="ActivityOfSolute", final unit="1"); type ActivityCoefficientOfSolute = Real( final quantity="ActivityCoefficientOfSolute", final unit="1"); type StandardAbsoluteActivityOfSolute = Real( final quantity="StandardAbsoluteActivityOfSolute", final unit="1"); type ActivityOfSolvent = Real( final quantity="ActivityOfSolvent", final unit="1"); type OsmoticCoefficientOfSolvent = Real( final quantity="OsmoticCoefficientOfSolvent", final unit="1"); type StandardAbsoluteActivityOfSolvent = Real( final quantity="StandardAbsoluteActivityOfSolvent", final unit="1"); type OsmoticPressure = Real( final quantity="Pressure", final unit="Pa", displayUnit="bar", min=0); type StoichiometricNumber = Real( final quantity="StoichiometricNumber", final unit="1"); type Affinity = Real( final quantity="Affinity", final unit="J/mol"); type MassOfMolecule = Real( final quantity="Mass", final unit="kg"); type ElectricDipoleMomentOfMolecule = Real( final quantity="ElectricDipoleMomentOfMolecule", final unit="C.m"); type ElectricPolarizabilityOfAMolecule = Real( final quantity="ElectricPolarizabilityOfAMolecule", final unit="C.m2/V"); type MicrocanonicalPartitionFunction = Real( final quantity="MicrocanonicalPartitionFunction", final unit="1"); type CanonicalPartitionFunction = Real( final quantity="CanonicalPartitionFunction", final unit="1"); type GrandCanonicalPartitionFunction = Real( final quantity="GrandCanonicalPartitionFunction", final unit="1"); type MolecularPartitionFunction = Real( final quantity="MolecularPartitionFunction", final unit="1"); type StatisticalWeight = Real( final quantity="StatisticalWeight", final unit="1"); type MeanFreePath = Length; type DiffusionCoefficient = Real( final quantity="DiffusionCoefficient", final unit="m2/s"); type ThermalDiffusionRatio = Real( final quantity="ThermalDiffusionRatio", final unit="1"); type ThermalDiffusionFactor = Real( final quantity="ThermalDiffusionFactor", final unit="1"); type ThermalDiffusionCoefficient = Real( final quantity="ThermalDiffusionCoefficient", final unit="m2/s"); type ElementaryCharge = Real( final quantity="ElementaryCharge", final unit="C"); type ChargeNumberOfIon = Real( final quantity="ChargeNumberOfIon", final unit="1"); type FaradayConstant = Real( final quantity="FaradayConstant", final unit="C/mol"); type IonicStrength = Real( final quantity="IonicStrength", final unit="mol/kg"); type DegreeOfDissociation = Real( final quantity="DegreeOfDissociation", final unit="1"); type ElectrolyticConductivity = Real( final quantity="ElectrolyticConductivity", final unit="S/m"); type MolarConductivity = Real( final quantity="MolarConductivity", final unit="S.m2/mol"); type TransportNumberOfIonic = Real( final quantity="TransportNumberOfIonic", final unit="1"); type ProtonNumber = Real( final quantity="ProtonNumber", final unit="1"); type NeutronNumber = Real( final quantity="NeutronNumber", final unit="1"); type NucleonNumber = Real( final quantity="NucleonNumber", final unit="1"); type AtomicMassConstant = Real( final quantity="Mass", final unit="kg"); type MassOfElectron = Real( final quantity="Mass", final unit="kg"); type MassOfProton = Real( final quantity="Mass", final unit="kg"); type MassOfNeutron = Real( final quantity="Mass", final unit="kg"); type HartreeEnergy = Real( final quantity="Energy", final unit="J"); type MagneticMomentOfParticle = Real( final quantity="MagneticMomentOfParticle", final unit="A.m2"); type BohrMagneton = MagneticMomentOfParticle; type NuclearMagneton = MagneticMomentOfParticle; type GyromagneticCoefficient = Real( final quantity="GyromagneticCoefficient", final unit="A.m2/(J.s)"); type GFactorOfAtom = Real( final quantity="GFactorOfAtom", final unit="1"); type GFactorOfNucleus = Real( final quantity="GFactorOfNucleus", final unit="1"); type LarmorAngularFrequency = Real( final quantity="AngularFrequency", final unit="s-1"); type NuclearPrecessionAngularFrequency = Real( final quantity="AngularFrequency", final unit="s-1"); type CyclotronAngularFrequency = Real( final quantity="AngularFrequency", final unit="s-1"); type NuclearQuadrupoleMoment = Real( final quantity="NuclearQuadrupoleMoment", final unit="m2"); type NuclearRadius = Real( final quantity="Length", final unit="m"); type ElectronRadius = Real( final quantity="Length", final unit="m"); type ComptonWavelength = Real( final quantity="Length", final unit="m"); type MassExcess = Real( final quantity="Mass", final unit="kg"); type MassDefect = Real( final quantity="Mass", final unit="kg"); type RelativeMassExcess = Real( final quantity="RelativeMassExcess", final unit="1"); type RelativeMassDefect = Real( final quantity="RelativeMassDefect", final unit="1"); type PackingFraction = Real( final quantity="PackingFraction", final unit="1"); type BindingFraction = Real( final quantity="BindingFraction", final unit="1"); type MeanLife = Real( final quantity="Time", final unit="s"); type LevelWidth = Real( final quantity="LevelWidth", final unit="J"); type Activity = Real( final quantity="Activity", final unit="Bq"); type SpecificActivity = Real( final quantity="SpecificActivity", final unit="Bq/kg"); type DecayConstant = Real( final quantity="DecayConstant", final unit="s-1"); type HalfLife = Real( final quantity="Time", final unit="s"); type AlphaDisintegrationEnergy = Real( final quantity="Energy", final unit="J"); type MaximumBetaParticleEnergy = Real( final quantity="Energy", final unit="J"); type BetaDisintegrationEnergy = Real( final quantity="Energy", final unit="J"); type ReactionEnergy = Real( final quantity="Energy", final unit="J"); type ResonanceEnergy = Real( final quantity="Energy", final unit="J"); type CrossSection = Real( final quantity="Area", final unit="m2"); type TotalCrossSection = Real( final quantity="Area", final unit="m2"); type AngularCrossSection = Real( final quantity="AngularCrossSection", final unit="m2/sr"); type SpectralCrossSection = Real( final quantity="SpectralCrossSection", final unit="m2/J"); type SpectralAngularCrossSection = Real( final quantity="SpectralAngularCrossSection", final unit="m2/(sr.J)"); type MacroscopicCrossSection = Real( final quantity="MacroscopicCrossSection", final unit="m-1"); type TotalMacroscopicCrossSection = Real( final quantity="TotalMacroscopicCrossSection", final unit="m-1"); type ParticleFluence = Real( final quantity="ParticleFluence", final unit="m-2"); type ParticleFluenceRate = Real( final quantity="ParticleFluenceRate", final unit="s-1.m2"); type EnergyFluence = Real( final quantity="EnergyFluence", final unit="J/m2"); type EnergyFluenceRate = Real( final quantity="EnergyFluenceRate", final unit="W/m2"); type CurrentDensityOfParticles = Real( final quantity="CurrentDensityOfParticles", final unit="m-2.s-1"); type MassAttenuationCoefficient = Real( final quantity="MassAttenuationCoefficient", final unit="m2/kg"); type MolarAttenuationCoefficient = Real( final quantity="MolarAttenuationCoefficient", final unit="m2/mol"); type AtomicAttenuationCoefficient = Real( final quantity="AtomicAttenuationCoefficient", final unit="m2"); type HalfThickness = Real( final quantity="Length", final unit="m"); type TotalLinearStoppingPower = Real( final quantity="TotalLinearStoppingPower", final unit="J/m"); type TotalAtomicStoppingPower = Real( final quantity="TotalAtomicStoppingPower", final unit="J.m2"); type TotalMassStoppingPower = Real( final quantity="TotalMassStoppingPower", final unit="J.m2/kg"); type MeanLinearRange = Real( final quantity="Length", final unit="m"); type MeanMassRange = Real( final quantity="MeanMassRange", final unit="kg/m2"); type LinearIonization = Real( final quantity="LinearIonization", final unit="m-1"); type TotalIonization = Real( final quantity="TotalIonization", final unit="1"); type Mobility = Real( final quantity="Mobility", final unit="m2/(V.s)"); type IonNumberDensity = Real( final quantity="IonNumberDensity", final unit="m-3"); type RecombinationCoefficient = Real( final quantity="RecombinationCoefficient", final unit="m3/s"); type NeutronNumberDensity = Real( final quantity="NeutronNumberDensity", final unit="m-3"); type NeutronSpeed = Real( final quantity="Velocity", final unit="m/s"); type NeutronFluenceRate = Real( final quantity="NeutronFluenceRate", final unit="s-1.m-2"); type TotalNeutronSourceDensity = Real( final quantity="TotalNeutronSourceDesity", final unit="s-1.m-3"); type SlowingDownDensity = Real( final quantity="SlowingDownDensity", final unit="s-1.m-3"); type ResonanceEscapeProbability = Real( final quantity="ResonanceEscapeProbability", final unit="1"); type Lethargy = Real( final quantity="Lethargy", final unit="1"); type SlowingDownArea = Real( final quantity="Area", final unit="m2"); type DiffusionArea = Real( final quantity="Area", final unit="m2"); type MigrationArea = Real( final quantity="Area", final unit="m2"); type SlowingDownLength = Real( final quantity="SLength", final unit="m"); type DiffusionLength = Length; type MigrationLength = Length; type NeutronYieldPerFission = Real( final quantity="NeutronYieldPerFission", final unit="1"); type NeutronYieldPerAbsorption = Real( final quantity="NeutronYieldPerAbsorption", final unit="1"); type FastFissionFactor = Real( final quantity="FastFissionFactor", final unit="1"); type ThermalUtilizationFactor = Real( final quantity="ThermalUtilizationFactor", final unit="1"); type NonLeakageProbability = Real( final quantity="NonLeakageProbability", final unit="1"); type Reactivity = Real( final quantity="Reactivity", final unit="1"); type ReactorTimeConstant = Real( final quantity="Time", final unit="s"); type EnergyImparted = Real( final quantity="Energy", final unit="J"); type MeanEnergyImparted = Real( final quantity="Energy", final unit="J"); type SpecificEnergyImparted = Real( final quantity="SpecificEnergy", final unit="Gy"); type AbsorbedDose = Real( final quantity="AbsorbedDose", final unit="Gy"); type DoseEquivalent = Real( final quantity="DoseEquivalent", final unit="Sv"); type AbsorbedDoseRate = Real( final quantity="AbsorbedDoseRate", final unit="Gy/s"); type LinearEnergyTransfer = Real( final quantity="LinearEnergyTransfer", final unit="J/m"); type Kerma = Real( final quantity="Kerma", final unit="Gy"); type KermaRate = Real( final quantity="KermaRate", final unit="Gy/s"); type MassEnergyTransferCoefficient = Real( final quantity="MassEnergyTransferCoefficient", final unit="m2/kg"); type Exposure = Real( final quantity="Exposure", final unit="C/kg"); type ExposureRate = Real( final quantity="ExposureRate", final unit="C/(kg.s)"); type ReynoldsNumber = Real( final quantity="ReynoldsNumber", final unit="1"); type EulerNumber = Real( final quantity="EulerNumber", final unit="1"); type FroudeNumber = Real( final quantity="FroudeNumber", final unit="1"); type GrashofNumber = Real( final quantity="GrashofNumber", final unit="1"); type WeberNumber = Real( final quantity="WeberNumber", final unit="1"); type MachNumber = Real( final quantity="MachNumber", final unit="1"); type KnudsenNumber = Real( final quantity="KnudsenNumber", final unit="1"); type StrouhalNumber = Real( final quantity="StrouhalNumber", final unit="1"); type FourierNumber = Real( final quantity="FourierNumber", final unit="1"); type PecletNumber = Real( final quantity="PecletNumber", final unit="1"); type RayleighNumber = Real( final quantity="RayleighNumber", final unit="1"); type NusseltNumber = Real( final quantity="NusseltNumber", final unit="1"); type BiotNumber = NusseltNumber; type StantonNumber = Real( final quantity="StantonNumber", final unit="1"); type FourierNumberOfMassTransfer = Real( final quantity="FourierNumberOfMassTransfer", final unit="1"); type PecletNumberOfMassTransfer = Real( final quantity="PecletNumberOfMassTransfer", final unit="1"); type GrashofNumberOfMassTransfer = Real( final quantity="GrashofNumberOfMassTransfer", final unit="1"); type NusseltNumberOfMassTransfer = Real( final quantity="NusseltNumberOfMassTransfer", final unit="1"); type StantonNumberOfMassTransfer = Real( final quantity="StantonNumberOfMassTransfer", final unit="1"); type PrandtlNumber = Real( final quantity="PrandtlNumber", final unit="1"); type SchmidtNumber = Real( final quantity="SchmidtNumber", final unit="1"); type LewisNumber = Real( final quantity="LewisNumber", final unit="1"); type MagneticReynoldsNumber = Real( final quantity="MagneticReynoldsNumber", final unit="1"); type AlfvenNumber = Real( final quantity="AlfvenNumber", final unit="1"); type HartmannNumber = Real( final quantity="HartmannNumber", final unit="1"); type CowlingNumber = Real( final quantity="CowlingNumber", final unit="1"); type BraggAngle = Angle; type OrderOfReflexion = Real( final quantity="OrderOfReflexion", final unit="1"); type ShortRangeOrderParameter = Real( final quantity="RangeOrderParameter", final unit="1"); type LongRangeOrderParameter = Real( final quantity="RangeOrderParameter", final unit="1"); type DebyeWallerFactor = Real( final quantity="DebyeWallerFactor", final unit="1"); type CircularWavenumber = Real( final quantity="CircularWavenumber", final unit="m-1"); type FermiCircularWavenumber = Real( final quantity="FermiCircularWavenumber", final unit="m-1"); type DebyeCircularWavenumber = Real( final quantity="DebyeCircularWavenumber", final unit="m-1"); type DebyeCircularFrequency = Real( final quantity="AngularFrequency", final unit="s-1"); type DebyeTemperature = ThermodynamicTemperature; type SpectralConcentration = Real( final quantity="SpectralConcentration", final unit="s/m3"); type GrueneisenParameter = Real( final quantity="GrueneisenParameter", final unit="1"); type MadelungConstant = Real( final quantity="MadelungConstant", final unit="1"); type DensityOfStates = Real( final quantity="DensityOfStates", final unit="J-1/m-3"); type ResidualResistivity = Real( final quantity="ResidualResistivity", final unit="Ohm.m"); type LorenzCoefficient = Real( final quantity="LorenzCoefficient", final unit="V2/K2"); type HallCoefficient = Real( final quantity="HallCoefficient", final unit="m3/C"); type ThermoelectromotiveForce = Real( final quantity="ThermoelectromotiveForce", final unit="V"); type SeebeckCoefficient = Real( final quantity="SeebeckCoefficient", final unit="V/K"); type PeltierCoefficient = Real( final quantity="PeltierCoefficient", final unit="V"); type ThomsonCoefficient = Real( final quantity="ThomsonCoefficient", final unit="V/K"); type RichardsonConstant = Real( final quantity="RichardsonConstant", final unit="A/(m2.K2)"); type FermiEnergy = Real( final quantity="Energy", final unit="eV"); type GapEnergy = Real( final quantity="Energy", final unit="eV"); type DonorIonizationEnergy = Real( final quantity="Energy", final unit="eV"); type AcceptorIonizationEnergy = Real( final quantity="Energy", final unit="eV"); type ActivationEnergy = Real( final quantity="Energy", final unit="eV"); type FermiTemperature = ThermodynamicTemperature; type ElectronNumberDensity = Real( final quantity="ElectronNumberDensity", final unit="m-3"); type HoleNumberDensity = Real( final quantity="HoleNumberDensity", final unit="m-3"); type IntrinsicNumberDensity = Real( final quantity="IntrinsicNumberDensity", final unit="m-3"); type DonorNumberDensity = Real( final quantity="DonorNumberDensity", final unit="m-3"); type AcceptorNumberDensity = Real( final quantity="AcceptorNumberDensity", final unit="m-3"); type EffectiveMass = Mass; type MobilityRatio = Real( final quantity="MobilityRatio", final unit="1"); type RelaxationTime = Time; type CarrierLifeTime = Time; type ExchangeIntegral = Real( final quantity="Energy", final unit="eV"); type CurieTemperature = ThermodynamicTemperature; type NeelTemperature = ThermodynamicTemperature; type LondonPenetrationDepth = Length; type CoherenceLength = Length; type LandauGinzburgParameter = Real( final quantity="LandauGinzburgParameter", final unit="1"); type FluxiodQuantum = Real( final quantity="FluxiodQuantum", final unit="Wb"); type TimeAging = Real( final quantity="1/Modelica.SIunits.Time", final unit="1/s"); type ChargeAging = Real( final quantity="1/Modelica.SIunits.ElectricCharge", final unit="1/(A.s)"); type PerUnit = Real(unit="1"); operator record ComplexCurrent = Complex( redeclare Modelica.SIunits.Current re, redeclare Modelica.SIunits.Current im) "Complex electrical current"; operator record ComplexCurrentSlope = Complex( redeclare Modelica.SIunits.CurrentSlope re, redeclare Modelica.SIunits.CurrentSlope im) "Complex current slope"; operator record ComplexCurrentDensity = Complex( redeclare Modelica.SIunits.CurrentDensity re, redeclare Modelica.SIunits.CurrentDensity im) "Complex electrical current density"; operator record ComplexElectricPotential = Complex( redeclare Modelica.SIunits.ElectricPotential re, redeclare Modelica.SIunits.ElectricPotential im) "Complex electric potential"; operator record ComplexPotentialDifference = Complex( redeclare Modelica.SIunits.PotentialDifference re, redeclare Modelica.SIunits.PotentialDifference im) "Complex electric potential difference"; operator record ComplexVoltage = Complex( redeclare Modelica.SIunits.Voltage re, redeclare Modelica.SIunits.Voltage im) "Complex electrical voltage"; operator record ComplexVoltageSlope = Complex( redeclare Modelica.SIunits.VoltageSlope re, redeclare Modelica.SIunits.VoltageSlope im) "Complex voltage slope"; operator record ComplexElectricFieldStrength = Complex( redeclare Modelica.SIunits.ElectricFieldStrength re, redeclare Modelica.SIunits.ElectricFieldStrength im) "Complex electric field strength"; operator record ComplexElectricFluxDensity = Complex( redeclare Modelica.SIunits.ElectricFluxDensity re, redeclare Modelica.SIunits.ElectricFluxDensity im) "Complex electric flux density"; operator record ComplexElectricFlux = Complex( redeclare Modelica.SIunits.ElectricFlux re, redeclare Modelica.SIunits.ElectricFlux im) "Complex electric flux"; operator record ComplexMagneticFieldStrength = Complex( redeclare Modelica.SIunits.MagneticFieldStrength re, redeclare Modelica.SIunits.MagneticFieldStrength im) "Complex magnetic field strength"; operator record ComplexMagneticPotential = Complex( redeclare Modelica.SIunits.MagneticPotential re, redeclare Modelica.SIunits.MagneticPotential im) "Complex magnetic potential"; operator record ComplexMagneticPotentialDifference = Complex( redeclare Modelica.SIunits.MagneticPotentialDifference re, redeclare Modelica.SIunits.MagneticPotentialDifference im) "Complex magnetic potential difference"; operator record ComplexMagnetomotiveForce = Complex( redeclare Modelica.SIunits.MagnetomotiveForce re, redeclare Modelica.SIunits.MagnetomotiveForce im) "Complex magneto motive force"; operator record ComplexMagneticFluxDensity = Complex( redeclare Modelica.SIunits.MagneticFluxDensity re, redeclare Modelica.SIunits.MagneticFluxDensity im) "Complex magnetic flux density"; operator record ComplexMagneticFlux = Complex( redeclare Modelica.SIunits.MagneticFlux re, redeclare Modelica.SIunits.MagneticFlux im) "Complex magnetic flux"; operator record ComplexReluctance = Complex( redeclare Modelica.SIunits.Reluctance re, redeclare Modelica.SIunits.Reluctance im) "Complex reluctance" annotation(Documentation(info="
Since magnetic material properties like reluctance and permeance often are anisotropic resp. salient, a special operator instead of multiplication (compare: tensor vs. vector) is required. Modelica.Magnetic.FundamentalWave uses a special record Salient which is only valid in the rotor-fixed coordinate system.
Note: To avoid confusion, no magnetic material properties should be defined as Complex units.
")); operator record ComplexImpedance = Complex( redeclare Resistance re, redeclare Reactance im) "Complex electrical impedance"; operator record ComplexAdmittance = Complex( redeclare Conductance re, redeclare Susceptance im) "Complex electrical admittance"; operator record ComplexPower = Complex( redeclare ActivePower re, redeclare ReactivePower im) "Complex electrical power"; annotation( Icon( coordinateSystem( preserveAspectRatio=false, extent={{-100, -100},{100,100}}), graphics={ Line( points={{-66,78},{-66,-40}}, color={64,64,64}, smooth=Smooth.None), Ellipse( extent={{12,36},{68,-38}}, lineColor={64,64,64}, fillColor={175,175,175}, fillPattern=FillPattern.Solid), Rectangle( extent={{-74,78},{-66,-40}}, lineColor={64,64,64}, fillColor={175,175,175}, fillPattern=FillPattern.Solid), Polygon( points={{-66,-4},{-66,6},{-16,56},{-16,46},{-66,-4}}, lineColor={64,64,64}, smooth=Smooth.None, fillColor={175,175,175}, fillPattern=FillPattern.Solid), Polygon( points={{-46,16},{-40,22},{-2,-40},{-10,-40},{-46,16}}, lineColor={64,64,64}, smooth=Smooth.None, fillColor={175,175,175}, fillPattern=FillPattern.Solid), Ellipse( extent={{22,26},{58,-28}}, lineColor={64,64,64}, fillColor={255,255,255}, fillPattern=FillPattern.Solid), Polygon( points={{68,2},{68,-46},{64,-60},{58,-68},{48,-72},{18,-72},{18,-64}, {46,-64},{54,-60},{58,-54},{60,-46},{60,-26},{64,-20},{68,-6},{68, 2}}, lineColor={64,64,64}, smooth=Smooth.Bezier, fillColor={175,175,175}, fillPattern=FillPattern.Solid)}), Documentation( info="This package provides predefined types, such as Mass, Angle, Time, based on the international standard on units, e.g.,
type Angle = Real(final quantity = \"Angle\", final unit = \"rad\", displayUnit = \"deg\");
as well as conversion functions from non SI-units to SI-units and vice versa in subpackage Conversions.
For an introduction how units are used in the Modelica standard library with package SIunits, have a look at: How to use SIunits.
Copyright © 1998-2015, Modelica Association and DLR.
This Modelica package is free software and the use is completely at your own risk; it can be redistributed and/or modified under the terms of the Modelica License 2. For license conditions (including the disclaimer of warranty) see Modelica.UsersGuide.ModelicaLicense2 or visit https://www.modelica.org/licenses/ModelicaLicense2.
", revisions="This icon shall be used for the contact information of the library developers.
")); end Contact; partial class ObsoleteModel "Icon for classes that are obsolete and will be removed in later versions" annotation( Icon( coordinateSystem( preserveAspectRatio=false, extent={{-100, -100},{100,100}}), graphics={Rectangle( extent={{-102,102},{102,-102}}, lineColor={255,0,0}, pattern=LinePattern.Dash, lineThickness=0.5)}), Documentation(info="This partial class is intended to provide a default icon for an obsolete model that will be removed from the corresponding library in a future release.
")); end ObsoleteModel; partial package IconsPackage "Icon for packages containing icons" extends Modelica.Icons.Package; annotation(Icon( coordinateSystem( preserveAspectRatio=false, extent={{-100, -100},{100,100}}), graphics={Polygon( origin={-8.167,-17}, fillColor={128,128,128}, pattern=LinePattern.None, fillPattern=FillPattern.Solid, points={{-15.833,20.0},{-15.833,30.0},{14.167,40.0},{24.167,20.0},{ 4.167,-30.0},{14.167,-30.0},{24.167,-30.0},{24.167,-40.0},{-5.833, -50.0},{-15.833,-30.0},{4.167,20.0},{-5.833,20.0}}, smooth=Smooth.Bezier, lineColor={0,0,0}), Ellipse( origin={-0.5,56.5}, fillColor={128,128,128}, pattern=LinePattern.None, fillPattern=FillPattern.Solid, extent={{-12.5,-12.5},{12.5,12.5}}, lineColor={0,0,0})})); end IconsPackage; partial class References "Icon for external references" annotation( Icon( coordinateSystem( preserveAspectRatio=false, extent={{-100, -100},{100,100}}), graphics={ Polygon( points={{-100,-80},{-100,60},{-80,54},{-80,80},{-40,58},{-40,100},{ -10,60},{90,60},{100,40},{100,-100},{-20,-100},{-100,-80}}, lineColor={0,0,255}, pattern=LinePattern.None, fillColor={245,245,245}, fillPattern=FillPattern.Solid), Polygon(points={{-20,-100},{-10,-80},{90,-80},{100,-100},{-20,-100}}, lineColor={0,0,0}), Line(points={{90,-80},{90,60},{100,40},{100,-100}}, color={0,0,0}), Line(points={{90,60},{-10,60},{-10,-80}}, color={0,0,0}), Line(points={{-10,60},{-40,100},{-40,-40},{-10,-80},{-10,60}}, color= {0,0,0}), Line(points={{-20,-88},{-80,-60},{-80,80},{-40,58}}, color={0,0,0}), Line(points={{-20,-100},{-100,-80},{-100,60},{-80,54}}, color={0,0,0}), Line(points={{10,30},{72,30}}, color={0,0,0}), Line(points={{10,-10},{70,-10}}, color={0,0,0}), Line(points={{10,-50},{70,-50}}, color={0,0,0})}), Documentation(info="This icon indicates a documentation class containing references to external documentation and literature.
")); end References; partial class Information "Icon for general information packages" annotation( Icon( coordinateSystem( preserveAspectRatio=false, extent={{-100,-100},{100,100}}), graphics={ Ellipse( lineColor={75,138,73}, fillColor={75,138,73}, pattern=LinePattern.None, fillPattern=FillPattern.Solid, extent={{-100.0,-100.0},{100.0,100.0}}), Polygon(origin={-4.167,-15.0}, fillColor={255,255,255}, pattern=LinePattern.None, fillPattern=FillPattern.Solid, points={{-15.833,20.0},{-15.833,30.0},{14.167,40.0},{24.167,20.0},{4.167,-30.0},{14.167,-30.0},{24.167,-30.0},{24.167,-40.0},{-5.833,-50.0},{-15.833,-30.0},{4.167,20.0},{-5.833,20.0}}, smooth=Smooth.Bezier), Ellipse(origin={7.5,56.5}, fillColor={255,255,255}, pattern=LinePattern.None, fillPattern=FillPattern.Solid, extent={{-12.5,-12.5},{12.5,12.5}})}), Documentation(info="This icon indicates classes containing only documentation, intended for general description of, e.g., concepts and features of a package.
")); end Information; partial package Package "Icon for standard packages" annotation( Icon( coordinateSystem( preserveAspectRatio=false, extent={{-100,-100},{100,100}}), graphics={ Rectangle( lineColor={200,200,200}, fillColor={248,248,248}, fillPattern=FillPattern.HorizontalCylinder, extent={{-100.0,-100.0},{100.0,100.0}}, radius=25.0), Rectangle( lineColor={128,128,128}, fillPattern=FillPattern.None, extent={{-100.0,-100.0},{100.0,100.0}}, radius=25.0)}), Documentation(info="Standard package icon.
")); end Package; annotation( Icon( coordinateSystem( preserveAspectRatio=false, extent={{-100, -100},{100,100}}), graphics={Polygon( origin={-8.167,-17}, fillColor={128,128,128}, pattern=LinePattern.None, fillPattern=FillPattern.Solid, points={{-15.833,20.0},{-15.833,30.0},{14.167,40.0},{24.167,20.0},{ 4.167,-30.0},{14.167,-30.0},{24.167,-30.0},{24.167,-40.0},{-5.833, -50.0},{-15.833,-30.0},{4.167,20.0},{-5.833,20.0}}, smooth=Smooth.Bezier, lineColor={0,0,0}), Ellipse( origin={-0.5,56.5}, fillColor={128,128,128}, pattern=LinePattern.None, fillPattern=FillPattern.Solid, extent={{-12.5,-12.5},{12.5,12.5}}, lineColor={0,0,0})}), Documentation(info="This package contains definitions for the graphical layout of components which may be used in different libraries. The icons can be utilized by inheriting them in the desired class using "extends" or by directly copying the "icon" layer.
Copyright © 1998-2015, Modelica Association, DLR, AIT, and Modelon AB.
This Modelica package is free software; it can be redistributed and/or modified under the terms of the Modelica license, see the license conditions and the accompanying disclaimer in Modelica.UsersGuide.ModelicaLicense2.
")); end Icons; annotation( version="3.2.1", versionDate="2013-08-14", versionBuild="4", dateModified="2017-09-12 08:29:24Z", revisionId="$Id:: package.mo 8524 2015-10-02 09:12:09Z #$", Icon(graphics={ Polygon( points={{-93.0112,10.3188},{-93.0112,10.3188},{-73.011,24.6},{-63.011,31.221},{-51.219,36.777},{-39.842, 38.629},{-31.376,36.248},{-25.819,29.369},{-24.232,22.49},{-23.703,17.463},{-15.501,25.135},{-6.24, 32.015},{3.02,36.777},{15.191,39.423},{27.097,37.306},{32.653,29.633},{35.035,20.108},{43.501, 28.046},{54.085,35.19},{65.991,39.952},{77.89700000000001,39.688},{87.422,33.338},{91.126,21.696},{90.068, 9.525},{86.099,-1.058},{79.749,-10.054},{71.283,-21.431},{62.816,-33.337},{60.964,-32.808},{70.489, -16.14},{77.36799999999999,-2.381},{81.072,10.054},{79.749,19.05},{72.605,24.342},{61.758,23.019},{49.587, 14.817},{39.003,4.763},{29.214,-6.085},{21.012,-16.669},{13.339,-26.458},{5.401,-36.777},{-1.213, -46.037},{-6.24,-53.446},{-8.092000000000001,-52.387},{-0.6840000000000001,-40.746},{5.401,-30.692},{12.81,-17.198},{19.424, -3.969},{23.658,7.938},{22.335,18.785},{16.514,23.283},{8.047000000000001,23.019},{-1.478,19.05},{-11.267, 11.113},{-19.734,2.381},{-29.259,-8.202},{-38.519,-19.579},{-48.044,-31.221},{-56.511,-43.392},{-64.449, -55.298},{-72.386,-66.93899999999999},{-77.678,-74.61199999999999},{-79.53,-74.083},{-71.857,-61.383},{-62.861,-46.037},{-52.278, -28.046},{-44.869,-15.346},{-38.784,-2.117},{-35.344,8.731},{-36.403,19.844},{-42.488,23.813},{-52.013, 22.49},{-60.744,16.933},{-68.947,10.054},{-76.884,2.646},{-93.0112,-12.1707},{-93.0112,-12.1707}}, smooth=Smooth.Bezier, pattern=LinePattern.None, fillPattern=FillPattern.Solid, origin={-6.9888,20.048}), Ellipse( pattern=LinePattern.None, fillColor={161,0,4}, fillPattern=FillPattern.Solid, extent={{-17.8562,-17.8563},{17.8563,17.8562}}, origin={40.8208,-37.7602})}), Documentation(info="Package Modelica® is a standardized and free package that is developed together with the Modelica® language from the Modelica Association, see https://www.Modelica.org. It is also called Modelica Standard Library. It provides model components in many domains that are based on standardized interface definitions. Some typical examples are shown in the next figure:
For an introduction, have especially a look at:
This version of the Modelica Standard Library consists of
that are directly usable (= number of public, non-partial classes). It is fully compliant to Modelica Specification Version 3.2 Revision 2 and it has been tested with Modelica tools from different vendors.
Licensed by the Modelica Association under the Modelica License 2
Copyright © 1998-2015, ABB, AIT, T. Bödrich, DLR, Dassault Systèmes AB, Fraunhofer, A. Haumer, ITI, C. Kral, Modelon,
TU Hamburg-Harburg, Politecnico di Milano, XRG Simulation.
This Modelica package is free software and the use is completely at your own risk; it can be redistributed and/or modified under the terms of the Modelica License 2. For license conditions (including the disclaimer of warranty) see Modelica.UsersGuide.ModelicaLicense2 or visit https://www.modelica.org/licenses/ModelicaLicense2.
Modelica® is a registered trademark of the Modelica Association.
"), preferredView="info"); end Modelica; operator record Complex "Complex number with overloaded operators" replaceable Real re "Real part of complex number" annotation(Dialog); replaceable Real im "Imaginary part of complex number" annotation(Dialog); encapsulated operator 'constructor' "Constructor" function fromReal "Construct Complex from Real" import ImportedTypes.Complex; input Real re "Real part of complex number"; input Real im=0 "Imaginary part of complex number"; output Complex result( re=re, im=im) "Complex number"; algorithm annotation( Inline=true, Documentation(info="This function returns a Complex number defined by real part re and optional imaginary part im (default=0).
")); end fromReal; annotation( Documentation(info="Here the constructor operator(s) is/are defined.
"), Icon(graphics={Rectangle( lineColor={200,200,200}, fillColor={248,248,248}, fillPattern=FillPattern.HorizontalCylinder, extent={{-100,-100},{100,100}}, radius=25.0), Rectangle( lineColor={128,128,128}, fillPattern=FillPattern.None, extent={{-100,-100},{100,100}}, radius=25.0)})); end 'constructor'; encapsulated operator function '0' "Zero-element of addition (= Complex(0))" import ImportedTypes.Complex; output Complex result "Complex(0)"; algorithm result := Complex(0); annotation( Inline=true, Documentation(info="This function returns the zero-element of Complex, that is, Complex(0) = 0 + j*0.
")); end '0'; encapsulated operator '-' "Unary and binary minus" function negate "Unary minus (multiply complex number by -1)" import ImportedTypes.Complex; input Complex c1 "Complex number"; output Complex c2 "= -c1"; algorithm c2 := Complex(-c1.re, -c1.im); annotation( Inline=true, Documentation(info="This function returns the binary minus of the given Complex number.
")); end negate; function subtract "Subtract two complex numbers" import ImportedTypes.Complex; input Complex c1 "Complex number 1"; input Complex c2 "Complex number 2"; output Complex c3 "= c1 - c2"; algorithm c3 := Complex(c1.re - c2.re, c1.im - c2.im); annotation( Inline=true, Documentation(info="This function returns the difference of two given Complex numbers.
")); end subtract; annotation( Documentation(info="Here the unary and binary minus operator(s) is/are defined.
"), Icon( coordinateSystem( preserveAspectRatio=false, extent={{-100,-100}, {100,100}}), graphics={ Rectangle( lineColor={200,200,200}, fillColor={248,248,248}, fillPattern=FillPattern.HorizontalCylinder, extent={{-100,-100},{100,100}}, radius=25.0), Rectangle( lineColor={128,128,128}, fillPattern=FillPattern.None, extent={{-100,-100},{100,100}}, radius=25.0), Line( points={{-50,0},{50,0}}, color={0,0,0}, smooth=Smooth.None)})); end '-'; encapsulated operator '*' "Multiplication" function multiply "Multiply two complex numbers" import ImportedTypes.Complex; input Complex c1 "Complex number 1"; input Complex c2 "Complex number 2"; output Complex c3 "= c1*c2"; algorithm c3 := Complex(c1.re*c2.re - c1.im*c2.im, c1.re*c2.im + c1.im*c2.re); annotation( Inline=true, Documentation(info="This function returns the product of two given Complex numbers.
")); end multiply; function scalarProduct "Scalar product c1*c2 of two complex vectors" import ImportedTypes.Complex; input Complex c1[:] "Vector of Complex numbers 1"; input Complex c2[size(c1,1)] "Vector of Complex numbers 2"; output Complex c3 "= c1*c2"; algorithm c3 :=Complex(0); for i in 1:size(c1,1) loop c3 :=c3 + c1[i]*c2[i]; /* c3 :=Complex(c3.re + c1[i].re*c2[i].re - c1[i].im*c2[i].im, c3.im + c1[i].re*c2[i].im + c1[i].im*c2[i].re); */ end for; annotation( Inline=true, Documentation(info="This function returns the scalar product of two given arrays of Complex numbers.
")); end scalarProduct; annotation( Documentation(info="Here the multiplication operator(s) is/are defined.
"), Icon( coordinateSystem( preserveAspectRatio=false, extent={{-100,-100},{100,100}}), graphics={ Rectangle( lineColor={200,200,200}, fillColor={248,248,248}, fillPattern=FillPattern.HorizontalCylinder, extent={{-100,-100},{100,100}}, radius=25.0), Rectangle( lineColor={128,128,128}, fillPattern=FillPattern.None, extent={{-100,-100},{100,100}}, radius=25.0), Line( points={{-42,36},{39,-34}}, color={0,0,0}, smooth=Smooth.None), Line( points={{-42,-35},{39,37}}, color={0,0,0}, smooth=Smooth.None), Line( points={{-55,1},{52,1}}, color={0,0,0}, smooth=Smooth.None), Line( points={{-1.5,55},{-2,-53}}, color={0,0,0}, smooth=Smooth.None)})); end '*'; encapsulated operator function '+' "Add two complex numbers" import ImportedTypes.Complex; input Complex c1 "Complex number 1"; input Complex c2 "Complex number 2"; output Complex c3 "= c1 + c2"; algorithm c3 := Complex(c1.re + c2.re, c1.im + c2.im); annotation( Inline=true, Documentation(info="This function returns the sum of two given Complex numbers.
")); end '+'; encapsulated operator function '/' "Divide two complex numbers" import ImportedTypes.Complex; input Complex c1 "Complex number 1"; input Complex c2 "Complex number 2"; output Complex c3 "= c1/c2"; algorithm c3 := Complex((+c1.re*c2.re + c1.im*c2.im)/(c2.re*c2.re + c2.im*c2.im), (-c1.re*c2.im + c1.im*c2.re)/(c2.re*c2.re + c2.im*c2.im)); annotation( Inline=true, Documentation(info="This function returns the quotient of two given Complex numbers.
")); end '/'; encapsulated operator function '^' "Complex power of complex number" import ImportedTypes.Complex; input Complex c1 "Complex number"; input Complex c2 "Complex exponent"; output Complex c3 "= c1^c2"; protected Real lnz=0.5*log(c1.re*c1.re + c1.im*c1.im); Real phi=atan2(c1.im, c1.re); Real re=lnz*c2.re - phi*c2.im; Real im=lnz*c2.im + phi*c2.re; algorithm c3 := Complex(exp(re)*cos(im), exp(re)*sin(im)); annotation( Inline=true, Documentation(info="This function returns the given Complex numbers c1 to the power of the Complex number c2.
")); end '^'; encapsulated operator function '==' "Test whether two complex numbers are identical" import ImportedTypes.Complex; input Complex c1 "Complex number 1"; input Complex c2 "Complex number 2"; output Boolean result "c1 == c2"; algorithm result := c1.re == c2.re and c1.im == c2.im; annotation( Inline=true, Documentation(info="This function tests whether two given Complex numbers are equal.
")); end '=='; encapsulated operator function 'String' "Transform Complex number into a String representation" import ImportedTypes.Complex; input Complex c "Complex number to be transformed in a String representation"; input String name="j" "Name of variable representing sqrt(-1) in the string"; input Integer significantDigits=6 "Number of significant digits that are shown"; output String s=""; algorithm s := String(c.re, significantDigits=significantDigits); if c.im <> 0 then if c.im > 0 then s := s + " + "; else s := s + " - "; end if; s := s + String(abs(c.im), significantDigits=significantDigits) + "*" + name; end if; annotation( Inline=true, Documentation(info="This function converts a given Complex number to String representation.
")); end 'String'; annotation( __iti_Protection(hideFromBrowser=true), Protection(access=Access.hide), version="3.2.1", versionBuild=2, versionDate="2013-08-14", dateModified="2013-08-14 08:44:41Z", revisionId="$Id:: Complex.mo 6931 2013-08-14 11:38:51Z #$", conversion( noneFromVersion="1.0", noneFromVersion="1.1"), Documentation(info="Complex number defined as a record containing real and imaginary part, utilizing operator overloading.
"), Icon(graphics={Rectangle( lineColor={160,160,164}, fillColor={160,160,164}, fillPattern=FillPattern.Solid, extent={{-100,-100},{100,100}}, radius=25.0), Text( lineColor={255,255,255}, extent={{-90,-50},{90,50}}, textString="C")})); end Complex; annotation(dateModified="2017-09-12 08:29:24Z"); end ImportedTypes; equation connect(Position_Command[:],limIntegrator1.u) annotation(Line( points={{-130,10},{-125,10},{-52,10},{-47,10}}, color={0,0,127}, thickness=0.0625)); connect(limIntegrator1.y,Drone_coordinates[:]) annotation(Line( points={{-24,10},{-19,10},{60,10},{65,10}}, color={0,0,127}, thickness=0.0625)); annotation( viewinfo[0]( simViewInfos[0]( runtimeClass="CSimView", tabGroup=0, tabFrame=0, tabAlignment=0, typename="ModelViewInfo"), typename="ModelInfo"), Icon(graphics={ Rectangle( fillColor={255,255,255}, fillPattern=FillPattern.Solid, extent={{-100,100},{100,-103.3}}), Bitmap( imageSource="iVBORw0KGgoAAAANSUhEUgAAAM8AAAFFCAYAAABL3blVAAAABGdBTUEAALGPC/xhBQAAAAlwSFlz AAAScQAAEnEB89x6jgAA/7JJREFUeF7M/X2sX1eZ7wn6/5m6l6p7+0pX91YV7wWpkArBOI7jOI7j 2MfnHL+/xHYcx3GM4ziO8Vscx2VSKWNSqdx0KjeTm0mn03SaTtO5TIbJZCKGZhBCiKlBCCGEEIMQ YmiEUAkhhBiEELrSmu/n+13P3vscH+qWNK1W//Fo7732ennWWt/v8zxr7f3bv2Vnzpxpp06daufO nWuXLl1qzzzzTHv99c+0r3/96+3HP/5x+9WvftV+85vf6Pjr9pOf/Lh96Utfas8++2y7ePFiO3/+ gsqdbxcuXPQ1dSHUxb3zFyTnz/uaNk4iJ08pz7n22GOPtzfffFP1/qL94Affb0899ZTL1v1pXciZ U7pGXNeZduLECeezDr2NkgsXLvne0CblXGcEnc+fVz7JedetNpWHuqj7+PGT7dTJ5EOf42rrxEl0 U96zlE2/uXfuzHnVGTl/jjG56PGIXLCMuqFnyp6ib67ngsue62W5Pn/+kso95mPOL2l8q0/p/0np c+ZU+n1GaekT12njTG+ndMlcVFvSS/VOx9vllYdyg3i8MnapP3U88cST7Wtf+/v2y1/+XNgAH7/2 8Re//Fn77Buva24fS36XmY5HMJN+nteYHm2nHjnejp3b13bff1PbsO/9be2Od7b1e9/d1u15t8/X 7pLouGabjojO15EmWber5+H+lrePZZCeZ7iWUG5BHsmabW/v98b2SFut+jj6fq9r2h7XyxjwK088 0V555ZX25S9/WUD+QfvFL37efi3CQJpf/uqX7Qc//GH74he/2F5++eV2+fJlD4AnphMIQGciBDoN NINz8eJj7crlK+3JJ59oTz51pT319FPthReedx2vfvpT7TOfea199atfaf/ws5+6va985csedABf xDlx4mTqHNI6WdQ2kw6IAAKAAkwcA2SuT+o41oWOBloHAqD2ROqca/Kcog6Vr7rIb6C6nYBuBEP0 oD3AHaCHANRLnovKc+lSgDTKSJhTBr+uz9AH6ko6R8BtQvX7JqaEOqzTia6j7kWP9Iuy3EeSxpj1 /ros40Z6yjFOJpDHTlJ1cD6VPrbpw/n2ZBHoVz9vv/3tryW/ab/7HXj5uQl0SXNJe7R7ScS/2Mes xj26ylCdPNI+ev4j7aGH72n3HJ9rm+6+dgQqR8Dej6QtBjDHNf18w37u9/QuJoxkgwhpUpKu/K5r StCe7vogzzzECSktRdwJ+ZZ9/RvfaD/80Y/az37+8/arX2NBftt+reNP/+GnGpyvtdcEcjzN448/ LkKo4xc0eFg4Cd6mBgFLGjDHQl2UF/vkJz/pOr7z3W+370q+973vtR/+8Pvtf/7xD3X+nfbNb37D BPrSl75oL3RFE8LEevJVH14DD1MkyjXeS/flBQKCgLCuA76uE17jeDyU9bR+nUySApZJ1Ce0wD1e q27yus8F0JATfWL1yQ84ALzKkfequlMf4IyHkkc5/5jK4GE0jtJ52i+OI1hLp5CzdKAuQA747YlI o+8mIufTPkaXlI0e54a6imghPfmqfIjIeYT6kv+8o4Wvf/3vHT2EQBE80Ouf/YwNB+VNIrddZVMX OltOnZAhfridffSBdu9Dm9vGfdcEuBLAbuB2gIdAAW+Ro8C8lBTZyptxdLl+zv0Fng7pdVL3lKzx RCnL9bLfyGL85re/FXF+1X78k58I0N9qb771VnvhxRfblStXHMqVlaXzHoB+jCXLAOPyIROCB6EM hMOjvfrqq/Y4zz33nIlIaPiEvB1110RhZRMuBESESrGSDHDAcULWdiAPAAO4msQC1RRcnnCBiDJM dNphoiAihIRUZ6xnLHMsYwGdYyTgKg9Y44A3SmhXYxMPFPAlT+otaxtQVt5Y4kh0U53S1aFh75v7 p7zct3c7J3KeGfNzz+MlXU7giUmzJ4KM0R1hTminSIgUgNPH0it6Xqgx1H3Gn/Gjr4y729R4kI6R eOaZp9s3vvF1hXC/SPj2W8I4hXC/+Fl7443PdgJhZIgCEglgdAo3rlO6npFRe/Qvz7ezF461u4/f 0TYdkAfqoF0lL0AYVeL0RaQxoJVWhKvr6f2QQdfk6/U4vd/zdSdnXQ/Syw3k1VGe5+u2+i+99JIs yZMGfAFqOvkZXHWOQR0m9qIH4EQHFgMDaOKRGBzCONI1SdSh+rDeBoMmiHTKs8YIKSQe0ExUtZNB zoADEto7AQF0DDEAR9YFly6h/xSo9CUhlUFDHfZmJ1Qn5Vnr9L72MgXMqZSu57TmSf0IgE5bqSNA HAnT08kP+BGXi6GpceXa3sAeY2yT9pDoQ12Eghgm6lGe7gkJNT1O1OF843zVnNC3SidvxhcC9HS1 QV7acoime2W0uE/bCS1DuuiVMXv66SLQL00gvA8kYk30uc+91R5XqJ960QW9xraqHtcvrJy/cLad unCk7X/gtnbH3qyBijCA1h5J5+UF1kOSAeA5dx5JpZsMnSS+r/qcx8dOSAihe5yTRt7BI/Xyw30J JFoW75K4PIPFIjgDFMvIwKnDui6LlUnlmDLHTxwfAImUxzjR0wNS6hOoBitYg0ibCcsIz44jxzNp 42TVRIakkNLew/Vm4AOUEfSUCaEpf0H58RZI+lj1YvEC/K5P1506piQc2wjYRwIVcbkfb8MRQ2HQ ddDHK0VIh+hItV2GAl0ZZ8Qgx6hI0CntsoZ4zHNm3dxehLboF3lrTBH6aZ083rkfY6Vr2qIelSc9 oB6FsXLbzF3HA0Iagge9InI8//xzDsN/pTXybxXJsAZCuH5Lkczjj4tA6k88Ys1/2ky/M7YnFMKd e0QG8tzhds/JTdlE6MCeHqfkqHTSDHIdQ4KRKPEmIkQRqJcPCcdNgaENyUC2fp38oyzLoKojUpzY PqCKFwEQNcGeHA9yrKSJw+QyILoPCIs00wk0wDnXPQNKA+8drhLnDTHIe0xeiEn1Oob6++Sl3tIv 16dOnR304hpAoFt0rDwIZUifeACA0IkcYEQYjyJd+qu+0UdAhnjykzfADxEIQdkgSHrKkd/31R5g v6B8I4kgHnmm5I0wLlmwB1yQp/rOfdqgzYCZetSehBCuynguNHZeL0oyxmU06GONCWWodxzXXNc8 F9Ei1FNeE0/B/dKJcPyb3/qWlgAizu9+JxGJJL/81a9EoM95h5U6Y1BSv71c16nk5JmT7eFHz7bj Z+9pe+67TYB/r4FcYLZMgO57EKOvYUwM3UuINZJlzZbk37D3vQs9VsmkPt8vItWxn1dIt8zKMrAM tiQDGDBznjCLQcw9Bqp2pI4zqBo8JpDdFRORCekAc92qJwTN5EAyA5SBcnomiIU9E+2JYifJoRte LR4JOXrkmNNS1yi0hTUzGJAO9NxPfwAW4AXEj8kKoi8THrAz+ec1ubovYNQOnGPxPrkmAmuJDirf 7/1iE8V1SY+ER8kXCcG4zzll2YmEuFwXKBPSpGzGrgyFxgcPMQmZpv0P8Sg3tpd2VF66M7bVRkhU 9Y6RRY1RhPsAHD0ypsy1pZclT8a0l9E916fxffbZ59u3vv3t9muHb3igCCHdG2+8MUQ5pTPlqLvG snTAAz184XT7yKm9bcd9N7WNd70/5JmAlx2x8jDc27BfpIAYIlERqUDv815uSioE70RduZe6BlG+ Ct/GexPyJPzRgHgQa8AXun0kk1B5phNDvuyExaKN98eJgWyEZSIJaxzlhzxMvnXoBKGegIV6AhxP nOo+dOhIO3zoqNsZJlVEAzQVNhUhA7BqP0d7Giy2jrHcKWevcREPwTUkwSJSRwBJWxwBG+UCzrRz Vvc4LzAExBAw4CtdXBf96f2qemucKt1WmbwqZ73Ro4dy1G2Sdr3t8c8qD14ffVw+xCVPvFnGIXOb KAB9S3+ed03HiPTyetbZepSO3If8Gjv3NfWTXnOPl2Vj6NsQ6Ne/cuiWjYRfew0EgfBA6Mm61wRS OYeQbnOs8/jJo+30Iw+1+8/c1XYcubFt3P++AfD1zGexVHgWIo0EGe4L/JWv0kweCWl4nCmxKu9A pi4QcRlgPXr02PBgMCQoN8/647i9QhGAAYoFirWoEAMg44mmLt4EYUAYIOWhntRFHZ08fevbGwV9 AjKAAaUns6wR5LOHUh2q2/rYagksBmryh0Ccj0AJUZlwQCdQSAifAELC01jhCwCigwlJ+zmiU4VL VW8AHVIN99RWdKb/qqeHN/QtHiREin5pp4wS41Vtl6TtjGEJuhh4Os+cZexCWBb3nGdsU4Y2WH+i 08J6mD8bLOuSuat70SfH8orpbx8vj8WoM8RnHfTsM8+2b33rm97GhkQIu3A///nP2mc/+1mPVfW3 2iqpNOTYycPtxNn72v2nd7e9x29pmw5eswDUozfpANcxaxQRqHuhynOVVNlOhuFcxyIUHqm8T619 TC7lj+cxKPEwURzQ26rrSPqxY/EW3GO9wLHCqQxaJhBgHz16PPl1jzTqKSuetnKvQBGgZwKpdxxA 6iRfxGRTmvOqbO4BUpXrk1vXECdCXTqqXC2m83yjW/IOgil5TDr3KcAvcFfbKRv9SCd/rHwvSzpl XI72aBfjUKBVHQ5rQ3baYdzsvXWeuvGqMUhpO2PCeGZckxbrnWdL0a8MAg8oK436Uk/GLP2iroHc 3KMvgycJgaqfmcdx/COc9/5KV3tHnTuPdcsaCAL9UgTKWwhIduHefJMQrq+B1C7jd/nyFXslxhNc oBttnTh1rJ0+f79CuJ1t7wO3tk13X2OQVzhl4EsMcgjUhfOEce9dmE/ntejnHC+FVPnKh3fLhkOk dtqqrMnD4GWS0nlPEpPJJGkQOEIerH2ABQlqIjMhLqM0yHP0KAQZ09g9C6gz8JlI1aPBYeA8WL1d 69AnsIjm7Wlb1gxm3PzocQxSTQL1pY1ODk1IWWfyUIYNjrSRfLQf8mRjJGCK7mPfAHbqrvqqf65L ZQax7pEKPa0z9coDjf1nLNFDdal+jFHapM6ANjqP7dQ8uR9+fhUSpp8JEznHG+RRALqOxiaSdqMT +lFv2mD8qh8QI6BO/zwWXY+xHHmpK+0kZIwRowzzynO9b3/7W+3X3oX7dfvd77QWkuCRPv/5z/nR SNpizXTRBKqdRNfZ+3RSBHr4wkfbuYsn2qETm9umu64NSaYhFoDvnqE8kcnSz0OmTripF+nHIl6u QxDvxHG94F7qX8YAoBwAohMMYkKjAjzp2c1KvJz4ljzH5WFiNRn8TGqRZXygmXoKEDXQrk/tIVlz 5JnRODkhF57v+DEmPcAJoEhn1+ex9tSTT9la5d5kMg2OIpKOEKMDxuuDDg7uAbZ4AggYEI31jTpV /dRLv8qDBoj0P+DyNd5QR9o3qOj/UD6ALXFffZ4xvLqv3Yh4TipPjfnYZojT++txjuS892cSgkWP 9MsbRsrD7l88SvrOeUnpmHspV/pnnCUem66X7jPGEOg7EOjXIdBvf8c2NmugX7TPvfWW5q9vNnUJ adOfIk886an2yKMPtzMXjrd7HpwTgT4wEAbBK5gMkzQTol8XAUygThqnLzqfkgYpTzOcqx3O7XlQ FPDCfgYDS4jVr3tMRiYpg8mgMZme1J7Xg6/0Ip63sT2ICy1WTZYnQXVVndUOk5s8StN6KAQqMjNp HRi6zzl6s0tGHZlU6kseXj8JUDT4Dq0yKeShn+k3HqcAR7sQNWs8+pw20ZVjXaetum+9lTbkt270 iXp1znVPQ0hLezEiHj+NU+nFeFEX42cCqe8jcXqbBhZRAfniUUJm1T20rTZMIPqVXcqpuF9uE/Lo 6H5GN4+Z56Sua+xUzmVTnrLUXeU8LrpOtBC9SH/u2efbd77znb72qRAumwif+9zn/DZLtYEBYF7x QF5H2rBFZ8/bo4+0M4+caPec2NRm5IFYiwwE6V4BkHsToMjSScR5XVcoZpLoXpHL1yXUq7qmBEOo 3+TxILvjNaALBzuD1IGhc9IANBsNtogQqATiMKHk90CGZN4M6HF8QJF2TC7lrbUIYEdWPfrftWV/ 9Y22+xHetk65TEbKRU+JdKlBZ1u9dEXHAgAkLPK4DfrU++u03v+894Y+Is8ZCIQBgfjpi8ElGcaE cVKfsthWfb1PpUPpl2v6HYLUuFY9lYbxGonQycBYebyUV3kYV7xxjSH52dTh6LF3ONfHw/0ZdSpQ Vrsco2eNVQnls5UNgKcSL62+9jpCnrQx7U9J9Qfv+/zzL7Tvfve7IlCIYy/UPRAvHj/15JPWDz2J RvBIvIicZ2hpF/2IDngX7vSF+9uBE7e3jXe9z2Au4BeREIgyc2Bc01Q6UhsCnC/wLF24pi7Xq6M3 DHSkTu4pbCvLBWh6p/sgJC0gKHKZGF0gxbHjxxSva/KoRxICRbLQ5zxhx8kTIQGTG+9SRALcGiBP zqV288X/3sQp2f1wCFRlKB+wS0/JOZ6zeNALGNGfgU4YU2ClHU2CJyKWmfrqmH6qjU4YfrKAnOoA KJBFlzImagtr77CFMaI/AD/exOOnfNRBWo1njtHT3sL90Xh47MYxRo4d400NxlIGROX8DlwPizPO qTPzmHf2Qp7oSTqek2dZtYZJnqyPONa537njWmWLbGzfA+THH3/MIXKtDzPWNW4BNmVrvKnjPPfV B7wpZV544cX2ve9BoPGnDHmV52ftC1oDPXHlsh8ZFHnSfnTwQ+jexskzx9upRx5oR8/safsevFXk +DOTo8BeRElav5ZMw7gSk2gJItnrUJ/L9rcWlE79EGgZE4PlmoYOIwEA/WTCDRqEicrEHTvGNneR pyY0k14TV3XYehowDHzWUQ4XdJ6n7hfaH3/scwuIU3LnI/8u7WPhexxvS6QyJWUVA2K10ydxEKUx wbkO0InRKReS6Vrg4v4ZHWN9A2r0d7kOmoEYgEP1Bvxpdxgfe4iQLAQMsCmf8ajyAZ/zka5rjn6J 1WFkxpNxxlhhcJI/xiztp86qn75WGwh9OXeOPpRXDtghC+AE6KR7LDxGjMv59lh/BjZ6g8ctnJNG PWzvOw91Uo5r1XOJulWXn5tJH3SjzIsvvtC+//0i0BjGEcJ9/nNviqSE4cn7mAxqCB1Dhp6uV7qd PHVU3kdjcvbOtuf+m9uGfdnGBuz2NN1jGPydFAs8SifF9J24usexpK7JH0naMnbHaqeHyaODnrgO eiYMq0EaIQ/egUUc+U0UFvQcNaGQLlvOmTjKQ66Qh0nFksW7MDlpk8nMRP7xpaWJU7L7YRFIgOGF zLL0VdZbyCbWmDYCM8Covo1tJq/jak3ImTNnU0YT5zchOuASyvGmROqiPF434VLGjXpou8jjcVAa elIn4xnCLaVP0tDHIKONia5pQ2ke84wl/Yv+lAu4p/VW3XXOs6tz8qb0oYjjY42D5015dE5dJaMX KMH7IDq/BPEYv/PKwzt3ZYTSF9fR21hcJy8i/+AH3zN52H3jt0DIr34VAl2Rl4Msl0TKx103JIRA ak9yiWjjPJ74sD3QqfNH2r0ntrbZu681wA18E0NA7ySq3TRfT4khwaNAnloTudxU9nDk2VFfMylt 2RAi9ImKhajwbLR6TBoD/8QTVxS7Pq+OyHOIMAm7UoZJZeIBIgNIfceOHRWpjjvdVpvB5NjvI6T9 8aX/+5KEmQrhnL2OBaDR9iie/GGiRh3Qbdpu8gVoJXguvI3XNTrWBkERJ6FcATH1Tr1PERagUV+1 S7+5n5B2DOXS7ki2oW506cQ/2Y2aQzYdXR/pQx1jn6ZSug36qf48+K05llXHigt88Ti0C6mYO42d PU28CaAlzQTqJLok0oQsAFkAd7lzJpPvyxgh8Ua8dUBevIXK+V6uP/nJl9sPf/gDrXt4E4H1T+3C /bx94QtsIhDCqQ17wIvtsjwSRHpM7VrU5gXpzfqUNdC5iw+2+05ubRvvHH8PhAD0qVcpGchV551Q S0kR0sQR+Ry2MSl54Jlt58TQTFImiskAADUZCKBaMDkCcgAcUCQMihVCmODUV+UUvvRJZNJuvvjK kmSZyqpHXzGosqXMUQTqhCiAWgCCgZE0A7/r6JdBJRClgJY8ApV1qbSQyLtunTTDUXlPAmZLwlqf d3AT8mAZs2NG25TtbXRxOwZc9Ki2F5ObOjin3qF+ACjvn/GcEK3PBSRxGbeV9wqtk9cNhD8B/OMC 49NPXhGI1ab6hndIeMYxAsjH8wD2caU9hkAg1Yf4GiCLjBCrvJJDPtV3Xt4bqXDucdKlF/deEYF+ 8MPvD6EbQjjHr4u/+IXPt6f43ZfJJw+ketG7yEM6envMVP/FS4+0hy+eaAcfnGmzBz8QUnTw13tw JZVepKnNgMFrSRZ7KQTvVYRbVot8iFML07KE01BlmCBNIpOUdVLlBXRlAbH8WYQuII/uBchYX0JB PFkAQ56bL2Z3bSn510//D23X3/yl60w7JSqvCXB4BfB6O6VHgIcIeDII9TpOgTZ5OlkAG/nUXwS9 AJMBLbFHIp+EcaDvSMZpNCa28hCmX9uje+w66ZRGfsqNZCmdI9wr/RCDXmNqoyF57DFZZKVVPhuU XofXfxqn8fkI4M0YB/AAOMADiFyfPw+h8/MCAFr5Ll0iL+MmUuh4UXmw9BgHyl5GHos8Tr2aB9cN qXSPerimbnRNGNbTVQdko71PvfKKPRA/+x9JlDcRvvjFL/in/JSjD3gxl0c/65i2OCfEPv+oQm9+ UHdio3/OUB7Hi/3+7GZ8ayCkWRjGjeejt+ppIkw2HHKtsK1CiW4d1Uk6Ok5ggEWe416sxpoVadiC dAinPJnITBTHIhDnqRPQhHwGUJ/sAON8u+nCf3sVcd773HPtQ//VX1nufzwEIn9e78+ABoQsMGkz gCyJHvGMWXOFPANge37rpzogIkfA+eSTT7YnZfmod9o/766pfI0TUuOXNcnE6/R0k2ciro/1GfV4 LNEvY151ui+WsT9TGfP1MZmK1oX01UBWfzEEABngAWLGwGsXewdIxkJchFJ+QiPI8fjjeBFZfUIy gdMhk+qgHoMYb6B8j4lkEMHepd93GyZLvAb57XkMesqiB9eqQ+ubT33qlfajH/3QxKktbMI4vNCX v8Q29hMhjeo2AUVYQkXIjTdEIO/JU8fb2Qun24lzh9o9J+WB+jcRCvxTItQ6B6l0E6znM+G2KG1C PId83SMtCyHqeUYRJmBnUrhmom3R1dkK6SrfEEL5PIQxwDq4yEe8DBiZINIAFAAilIIEtWBnQm+5 lG3qP/jE/7SAOCOB0laBJHoEeLSbnSK1o+tqn3ylVz3zId3XEs5DrpA59wJIJoq68ZqMke9N+sn1 OG7Vv5BoJEt5G+6HiCGPykjKm5dxqfpKv3GnLAbCAIIEgBRQDjqHFOjNeDvcUR5ADmAZf+rjXm09 X0bYPSuiAUJAeZF5g2whDQS6JA+UcKlIQRsAmvspB4nQgTkl3fdcJ3OjvjB26CGpPPQDMnzqU58U gfBAv218HsBvIvwunwgghHvisvRUXtpBhytaAz37tAzc5cey7gIHPbI5L/0/ev7+tu/o7e2OO/OD umkYV0Qoopg8HLtnsTda5HnKE0Eoh21Msid6eCAoBfqkMtAMRAGFhSTrhtqmDGACIAQAkI+4uwCT ewHDCDLlYSA9cAw04A5ILmhyZv76matIU7L+33/MdZA3EqK7XnSe6BMCFejSRsrS1lTSxzIA0/6j W+lX/XAdype0OlIm99ELnVgTEb5xHtH4akxqLeX6GQO3m7AG600+6ihvgbU2abrVdhr31RYkAvwB oYCq6zJWlc8ewAv8cbwfF3kgDsRwPqWTZs8ECQAonkZtxhNBkO6BJI/5HnXShkS6WCdLr+/xx9UG W9voRB+iy0AezQkkRl/IS/uvygP9+Mc/Eml+J8+TH9OZQL/6pZ8DXVEe90ljhD5PiDjPaO0WzxNd ICmbCOcvnjWBdt93a1t/558NO2kmRidNeZ7yPoRlwza3iDKEaZ1opJUMD0n9NN0gY3BFDi/MM2kD OOi07gPEIk95IfIw4ZWPUCTgDmjKskIaypZQzqTsbRhQul6KOCUQqMoH2EXkTEqOo87ZQEi7HL2Y Hqz9hBC6N+YjLX1An1j6tAmxKDd4IK5dZ0La8yaC6qW/EpNGcoF7Plc+7vX6AVQW7awt1Ea/Rji3 1TbwQjAsLMIDSAOx653xjr4s2jlSJ3lCCOpJPkBfpLioeiEWZKr1BPnsXXSEJOx0hTBcU1bApz6R HRAHuLQfHdGZMbN3Y6EvAlUIaM8moX7v4HXy8Eznsgn0KXkgEci/BWIHLrtwvEwKgdDTXsxjVpJ+ Qlo8Ikcwze+Bjp7a1/Y9cNvwgzpvDnSBNLWJMBCok2x9f9t6us4JiXK9jEmfgqcAUoCsiSFsCckk AE+KjxYVoHQQGkgKXZTHadx3SNTz0UE6Z9AXwDXwmphqi4m747nHriLNVPb8bbeukuibuoqo8UJj yFl1O4/S6MvoGTroq30JE2CiKB19DMS673T6c9IAPteJU+Rh4mpSbcENllhFFt2XAKtCIBbiaTtE OaOxDfGUXwIwOa9QpchB24yrN3R0jKWnb6R3okoHdLbuOueac/rGOV7lCVntJ69gyQFeNgzKO9nr CPRuW/fYTXtModDF86ecH/KZTBJ7H/UlhktHdHc7IYh3yex9qL+TFuJMBN0YW7zQZYVnn/70q/FA Is24ifBr78J9/nO8TJqPNpo00ocNKB4oe76E3eova6DTj5xoh09ub9vvW+FXeRZ7EKRCuMXp/CYI WXBPJON6mQfcnc6gIgFGSFXWmY95ZIdNSnqXLelFloEoEu5VuOKwpnsBrpOWgaatKUk9abJADOD6 Zy8tSZqpfOSvUnYgjM4hhR/sSqda61Q/uEc7g45d0lfyx5MZZABek4ouBlG3yLbqBgEWW3pTtpe3 J6JfaoOjvQB1AiIJZDivCb6oIwQqctizGHDk6aL7rr8TK17nfLsiYD31JM8/GG/Ie9IhDPdNLpWl vwAoFj26Wl+IAEClE6Cn/vIEtB3jEL1rPlJGuqDrubSH53laOlx+nPAvdTFeaT9z7fK6ZiyrfYSw HM/xhIgbzxVjkbZTlmvyvvKK1kA//IE3DSx+GyHb2HyVh7nCgJS3C+YYi647fVZ7x08dbicfPtJO nDvQ7jpxa9t0T34PBBG8AdCJYc+j9CG062nxRPFAfhuh519G50brLSBqkOJl8ioJxAB0Jzpx6FyB 0YChwyKQFSetAzOvlcRLZTDzPKKAi8Wlw1glJjShDFZZk33hUvvIxxaGbrf/3dJkOnzpYddp3XSs 9hHarBAz7cYyoTO6khZDEetfY0EcXgQib8KPWE+spmN93QNEAThSYCNkUDrlVZbyZYWxkgAea85i 95LSvW7RPRa8bBkDBHQyISVlxGiDcUKHp5+44jIsjs8BHoGaes/xsFD1DCSRPIZOnNMvz3P0tE6q c7G3g9znNG+0XUQiHe/DvfKmyOB1LIx1r9ug7W2pnRiQ4Iu8V+Ttnnn6ifaEx0B1UTf3lCdGCs8d Y8E2dnbh8hpP7cTxA7vPf/4t5/cYqy3KMK/Ru7et9hjTE3yZ9NzRdv+pPe2u47e3TXf/uUlTRAkx 4lEQ0iq9flBXa6FaAy1LA3SWzgOyhRa5gFlW2x2TckwwA+SQAGJoYHGdRSAmnPImUAdq6uUasJIn IQCDB4B9z+FeLNBiohz52CNXpbH+KT1NBNz3yeMuj67lMZjser5UXsHWXeke9A4WQMaT7cvs4Nii pizxup9nABjAQ/97eRNF19Tj7V4sPqTF6/XwkXqKqNWuASm9bWldD3oFSAGexhm9lI9zSz93uAhh NKZ1n7E/pQjBIKec8pjU0sOLc+mV+er9B3A6VhuuR2XO2OjFeJbxYAxpL2mjftZX5TLWXYylANf5 nDeGhPZ59eb5Z9glk1enz56/jD/5ykuhP+/GvfrqpxTC/VCk6W8i+HWevgaqNxE0b5RHv7TVx0vC uLP+4dvY5x893c5fPNnuUxjH74GKJOV9LP280gfv1I/2RLq3rBSGOBmki17UG/yIlIkHEeg0KbZ4 DKDu5R2n+s3FyHyUrUFjwBDS6jgA3YOGx8pOH+Vtccmr+iHGlCjHFCbs/puLC9KQ2//uL10OENvz YDlVB6BnAv3gT5OBRT0pDzqQG5C5LfIKXI9f9hG9CdW8+4QFFUBYn2D18RhXpIfBrrEz4FVf9cOk knibGAD0sbQlBmjSc0raSEBY/WYs8RYGp9JqvJkrzmv8rDdvTvR7HIkUPK54JY8p9SmvJUCi3xy5 H4Dp3IYLw5J6Mzfd4MmguT99TiPURTvUxQ8TY4ARsDT0oxsut9v7wdhdEdauTDYQbECtA+1FPzZi EMaONRB/NFCeJz+o49vYv/A2NgQyaVUugvEQlrpxsa66PqV5euTRc+3shQf7p337l0khRyfPUj+q 80aCCOM0CAR5MgmwXotCdYYHY35q7waRPmEAnMFlUNVJg52B90DG0hRQkk6nlc7g9QEsy1RlXLel Ew4AULavHdY/u5A86/89JD3Xdnziag+0W2lYzQIE4HP4orYJL/AY6I4h8CR6YkMU+sebwi+9+LLW E09Lx6xx6mm7vaPERDR5tKjVWAWUeM8OXnRXvQG89PD40Td0In90QNAtQNU9jY3JY92ps49FL0+9 pWvqZj7w4tSlsTyH51c7Snc5HQm7WacyT9bDXoO5S3303/OFPm5zIcCpx+LxAQPjvNh7Seeqk3pq /tGztp85L0K5rWE9xIYDxiW4qP6bPLyFwZpaJKIt+kQZIoLXXnu1/fSnPx42D7Ibl98DfUEEYqPB /YfQwuspGcozhPOQ0ePTCaT7j1x4RAT6aDskAvGTbtY2ftugEway1Hm9zlMhXjwRu22qLCTJJAJu QOLBVIe45wmDMLhyEwfLEK/k+30iMkCawE4MBhRCPsbCEjF5GGDAEGB7cOmw6pwuoBnYY5cXepny MNS9mFjIkUsMdgYpYQcTEGAkXGFtxX1d65zwiucQtAeo0Pdxb5leaE9qXfHUU09If0BL+dRRZOTh IVYzpGJy2VWCcON2L2KrbgJkHAE2YCbWj/fSPUDIgz3GgLFQ/wLwLpRTWgHP9emcMMzf/IZYykO4 dR6QqO/0HwueRXRCxRB3rCtGj7kCVDWXadN6uO3MI/krBAXQ3CN/xpj8IwYQiFNGyB5B+ckbiWeh 7SIYa20elVSIn74i6Jt28HyvdQ80JVDWQHmZlM0IG7uzmk+V8brQ7aVei9rAuJzvP+m+9+TmvIkg ghRxfN7J4zSRhjXPzIH3hUS6J89TT7xVmZT1Ay3EAGBwQ4hap9AJP+SD2SZSXHbtSpEfMSkEDj8T wKMBOJ17gciASABtdq6Unw6rgwDK25qUlywmCMRgoo49vvSzoPtFUgYe3bzpASnUpr1QB0rCAgxF +undIk9UgGIiINajW8deR/QCuJBHfehbt0gRItuwI7kCNMgZINjbkF/3I0woP2/AU0B68giE0jHj knLlcWpTh3qffvrJ9kTfbgaU9DlrO3YcR2PnNqmX8VO9rocdSdVhq6/0GJCMgUkAgCX2OpN+UF8I QH7ycp9xiodho4Y0zr3e0nhQbwgTfNggKT27gcFaEQ8xWSWuV3V5faj2INBnRKB4oNpEKA8kAn2R j4r03wOpPONiD9nxa3FfNVYa83Na/xw9szs/qNuX78LFu5SXCZE4z65bT5f4c7s8s0E4pxO4PxiM F4rlDYGqQ0hZEJMA8Ctv5ecakAG8YUeGSVEdeRKdwaPeWPMMti2O6mWAIBVe4Y7F6x55I0+G6vjI X10dvpE/A87kZyISZqQdQjGAAJBqzeL2dM+7aP1Y4GfwmbT0Px4E3S9BIPpF/yGRvY/yKx9hQ0CP l5uU7eUDLPrf21R9hMUnT/DDQn7CEQIxzvYU1NHH2tGAywdg5DO4pEvGMMYhBm4RYEhTGGNC2WAy hxLpZTEpoqPnyzoGvJAoHpex72STULfzMK8cPdbRpciXTQt0lsFQecAdjEiIRCq/ZMRCkUci3S5I t3gSjYPOP/3qpwYC1Y/q2MrOzxne8jwm9ItRS+gao1NjwzgcP3GknTr/QDtx/p62/8RtWgPl4/KE cRxZ20AUzksc4klMHiYiv+HoABNxrniRDajSuYA91qHyFQES30IetkMDKJSl40Uok8r1QAy5c0IN 16X8Kpv6AnYGnHtPXL7cNv4fliCHwAroeOq976m/XHAfWT9sIFBvyGbrxjU6SLczWg+YzNJ31GMk jENJ3TdxOkhqrCAb9yl/Xp6CLWJbdpcL2GPhAzITDnE6xArQfOxSC/aAWZ5eR9oL6eI5Qt7owLqU tST1FDkYb5cRoUK+DmylQ5oTx455wwTi4E3y8FpH+kGdjIMl7Va/TQCl0RbkQd8ij8toXGnH18rr NjWOGTP6Hj1jPE7Zo/t1Gl0zXufUv/KS1Q7lCuAhPd5UxoB2RQrqfP0zr7V/+Ief2OvEA9UuXEI4 IqGMBXXIy6h8diIZL+Ypj1iOHT/kP9g6emZnu/v4xjazL9vY9jadPFNPNKx5AFQNDkLHbRE46tpg kkW1tdXADaGOF4UAMp21xdagkMdAUedQkHO/XFj3lJd8WB8TSvdoN4NcAw+Q4yWOL1r33PEsz4XO eMHO71Eg664lNhC2/TUfgZcXQy/0npDCHoEwtQOZPICANRCkJB9629IDnl7OY2Lh9zCpkzqqrgC8 r93oj4GMtaudr7E+97VLJrOvTwC28/Q5oQ5dex2ltn2PetBP7Ruk6ECMz5grfz0emNbDOQbjJJsI BpGu2dkSmAxIvJDSqDs6JY3dqSIK+eodturLVGJsNFaMNWOj8wrv0KF0tQdijkWkC6z5JOTz0kFl bJTRuadBHOuNjtIZA4D3IO9nPvNpEeinfe2TX6NCoFoDJdIIcVkLMgbZgVMbEvpJG/ykm3fhvI39 0W1ty6EPLfAyi3/vQ/i2DJC4g5pAiASQMqkBkMGiNMemAowttTpnAkCIfm2g6v70HSgDVfccvimv yeW6AmhbI0DAoPe8flDIJPUy1LmYGKwLaM+kpQ7pv+6Zq7ewj3zs4fSFCSG/+8M1gwc4VI8k9wUA 1cORRTc6MSbnzkY32jL5VB6hnqEujx+gAARY0BPJK2EMbf26lXdd6htHC5OoyWXsASceASDW+BvI FumucRvKSQIy9JMOOsaLZr3HszkTiD5YR84hKCCM9TUxSdc1xM0mA96vG4BBB4l0Ki/g41B39D3X dUg5jEfKj/PLMTp4nHWd8VE+9cOGgH5RblJH8jOGOtc1pGEXsUhP/iJQeZ/yRH6V5/Of07hpHUw9 fb4xHuhvolKHMaC5k+F75C/Vn4sn2pFTO9vc3R8cQ7V+9HnfffMbBt5P9yRmAm1lUFxChyAJv2sx MdRJg6difq49qQEEE2gBbAyIxJMnRRM6Ea6FOLEIGTRbMw827cbacY96F697jmitw6R50Mmj+j9y 6eqHqgg/YSjLmbyRCkFrYsqyGgg+RucAmf7iCSF++hmdIWMAc47FJ5OjyYVMpA1eiXPltWXv/aR+ QBgAKh0dBhB3j0A6bTGOlOPaOgG46ME5ElLTH5VHD+XzmgaQ0B/06oCDAL5WHvoNYU5ovXWCLyFJ uI5RYQxqLPrRc1RrK6VJf+tiXRkLHekzIl0YL+NA6TZQqiNjnXWhhfsaR+Z9SHNd6I2n1NhSljbV hwB/HBMM6Buf/Uz7GQSCPDwH6iQqAmGsCbFPuZ9aV9JPG4A+7t27ndI8PvqX/KT7eDt8cnPbeu8N WfP0nTe8UP1T3bI8dQbQTERcfhZUGSzcNO8gQZQKWegUA5EHeXgeeSsIRIcYJOXDknLPA6V0BrzS AoJ+zcBroLB+Fs5Vf8ATq7Z4W/p2hW4BBiSLt8CCHBGhp/mQrJGqnRAnukSPACITYVF6hRC2xB2I WTeNIZ29aTcSTPwADukU8giYtvIpj2V1v1Qn9QOAIkjWZdRD2JUxo2/2Dujc9WUzIu+YnTIYMGps VtBWhdiAHO/i/inNY0Q/BJqTAo31Uf32rsyxRfp2/dipY/4JjyBdEQixt6ANHU08laMPJk1vz2Oq NMjpMElikNOmxGBFGF8B1WEb9WtM4hVihJhPjzVlel3002TpWKxy5KH/n32dNdA/iDR5G7s8UL4L 9wWHcOhAHzEWeeaHPswHRoudyuj1iPp59tFj7Z6HNskD/cUC71NvYC/jNxfDaxtdqLCsSsX6sQRc 54gSnmCd18BRLo3L4jhGzw/JuOcBpKzEAyxvB5Fct6SUN5h1vyaG8ot31db93UXvDnHPOqhdykCM ff9uIXmQPX97sV2+rD7KO8VCS9yPAIfBS3hAf5iQAJCtTOvAOEhH1kPxAiN5vDPXQ1CEOhxWUh8A 8XioTjwqAnjdZsaX+jnPmNCnkOoY1lETbN3QiTGkj+RVGvqz7qIPxPEJPVQXwDh21PrbUKkN69HJ 47UDddIWbXeLG30CrHirlLMBIBRVGW9c6Jydr4wV+gdskCF5KKu6BEzE/Wdee/1FAM6DM5VTWW+6 UN75pBdp0i9zxHkX5ceAOAICSy4TY8VcvPnGZ9vPfhYC+U2EvhbyL1K//EW/WEsbxil6qY20GTy7 z5KTJ4+1czJMJ87d63+o236kh3DdA3Fc5jWIJt2LJyZISg3xq9I9GHSWTkgKNKSVAgyCB19plGfy uY81JX8sTyeO6raSBiRg7IMp4Uh7eeeLfDW4J68iRKxfgFYAjzs/0/Y8efX6BwLVw1l0ov6yWjV4 I5HSLsBgUuyRdGSyypjEE5PO1npC2LL8gC2giu4ZnwCCSQHIAQZ9SOjo+13oD2PrNwTUpxpb5seE QzfdG/62EgHkkpMKRyBd9E/bBqPuxROwa6Vzp6ncQKjoyDk6FijJGystnSE/RFIaz6VqlxHA0Sd0 KuOHHlxnfdHr5X6foxpfjw/n6MW4KH92xGgrupPf84CObjv3wVPNG/PA3GBQINA//Oxn/jVqfpHK D+p4ledX/uf1K5cfi869ferA8DK2tGfCqm9+F06YOXPhRLvrgTvazL68C2cCQR6HHhAFZVAQQAjQ rG8QQGqAqlMMIADhx00BSZ8cBmNy7glnkKhXA04nC3wFLisJKAGcjh4g50+esgDV9rq/W7glfe/F 072uSIhP2EP5M34bYZofuV8eDGuMhwhw0S1tM+nUA2gTugScTFI9uxnWCsNkdUKpD0UgrkMSAKmJ oSweQO0YnK4XMAK+ACmGKWPPuUEvMYl9rrFQWRsM1UNaEccbAwZoB6D153wEhgGq+xnTgBjCAToi jCzA+1g6rYAFiNCN8eVc99xO6rHQT8lJebt6bxCjSEjIuoLXYzx26KtrE7W3kV3B9NXGwISLXuga sqd//Myk+mHye8wiHh8J84mBJJx9660328+13snfO45/8fgrE+gL3oxyeRsujhp7f5uiY6G3cwJD 8qjwff5o23//xuEn3cNuG41GOE/h2sFxxzyIVKw0NySQUTlK63wUFMl/8FQ8aQunfJSBSGVJskiU dNCHRB1IvVyO1HnmqvfZbnvmUbfPfQAAYExCCUD8yF89vCB/Cb8BgkCpO+TxmkVtQwiTVfWaROpH rHhNOJPcj7pPefrizQRZPHsepdFfAxgQqE7aqLDOBFGeAF46qPyCMewgrvvUYTJLD3sD1ed03a8t abcjAcQGbK+LdK/xJAFYBzrkoX6JPQFjrDGkDLoZsIC85sB9CLkHY+N7Hdzk5cgWssas6gkJohd5 TEp0tu6VL8bZpCIf6dKVvpYBRaq8d3DVvjc/yIduusbA+UGqrjlnfcNvfkygHrqV8DY2ayBeBGBs vEGDnEIX+tYJ1PuP0zj7yEf9i9TdH7k1n7WSB1rmxlGIQZF48FAMZQSyetLtSWYg+sDYe6gs6bnW Pa5VBwTKpKphiETHVbYsZwBLe5SP+B5tMCGqa0ow2rj34pkFJLj92b90p9heLB2sMyB1CHW+HV/i FZ51z/xl+td15miPKF0zeZmk0bJzzFdPAVxZS5NLwkD7zV+IwfhZF8YgpAiAGUvyZXIdFii9CDKO MeW4jkQPAUd5PfYWwJTx9Fz0uXH/VX95FderPLRTBq/KA0Ty2TDo2vfUlq0+eZUvecZ6CsQ2foyb zgnNPLd9zHzkmjZcJnWZ1CcSHlof+k+b1KNzGwPaI4SUUE8iA8alsBEdiZAghz29hLmrKIA0xjlj oWutuz/3+bfaL37xM5MmGwh5pYdduC9BIK2B6N/xY+iNTinLS7A2GH1O/RePF5Tv3KG2+/6b/Qdb ywq0sVAQhAp0bYATbkSYpMGyqwEmJMomrSYzecifciZQB0k8jNJVF+UgRwgVJd0+A0o9OjfgTDAA e+IqIhx8JOFLwIp1TTn0MiFU154nribQ9o+zQUG99LsPUCc89RmAnvAQCJLkO22AIsCoPAFwBp1+ QCL6N5IBa5b7KZuQw333/T5hHpOEnZHk9+s6gByjQnlA2o/DPDFH1KN0AxuDonsDqaRvwNoJLb2p l6+5sjWdfoWsiHfhMBKdPKkHDx9DCIjL0DjUohw6MVb2PswJ+tAuuKBetXPssPXz2+XorPHiPvWg Y4xKSHRK9ZrE1KF0sAA2Eu5SB2vXeHvPtfIwBswn+d1v6QyB+Bc6NhGGX6R2gVSsgXijBp3TF/Sl DmFVc1I/WKT+YycPtgfPHW6HT25rd95/C2Ebg08naDwgZ7CKdVMC1eLWE6fBihUNAJnEgCDX8UBs KjBpkCQ7efUaDuW8yB4k5An4Ul8GN6BggBc/CD34SCZt3Hkjf69DpIv1O+nXdablkF1/82jqpw+0 pfIGkCWeJeSBJExivGgIwADTr5B6eqR994+xc72xXLTDfcaX8WCbn9/I0E9PtvI4P0BArE/AUiGO jQl1DOOs/GovllxtS4eAFcAhtFtjmPR4kZH80btIFXIY/Dq3d9E56Qaj2sncqz4dDXq3qzq5pn3X n7KEVuSJIcJLKfRUHQlfmaOuu/KR32+Y+zxECh4ltCHhGhIeZ31lndL/lOde9DR23O+MEQR6662R QL/5zf+3e6FsY3/5y1/y74EgHx4wb1pgUNEBr9Y5ojaOnzzUzl440R56+J62zL9npyMMDh2WguUG x5c4y1LEOlfowmCaNGrMA0oaCtOYSFKW11vgJo3aUiyKtfCW5/n8Hj4uV+1xtKIBnCeUQbGcats+ vmjd818+Kut5pA9ahSddL9VnUGqAGYSlNhAOi7CxNAAj7flcOtNefnqO4H26HuTXschBGvkcrggk Bc6aUHuXPg5VP3WhE+MbsEt/j2WMFhOffCEqR8qQjtHB6gfMIYZBSvsmd/rjflSdGm/y+d6QN2A2 GchPus6xvglT0x/rR9vUV/Uqr4k6wYtJ7PvR0/Og+yc0PzyULFJSPgZC48dOK4RxmTxQZe3ImGV8 1VfVkf6OY4pux48l5KSsiY6OzI3O8Zx4JntyzT/YhLA8LOUPhYs4tZX9q1//ov3933+lPf3Uk8Jh DJ+NvI60a8Jz3ft1/MThdvLcR/JuWynqEKlnjlUAxFhDjkyoJlLKI1jP/LiJDjIxGdgiWZVBfK66 mcT6CYIHHqW4p/qYWFsStRemK131eUKZSN2/9+LCTQB24IZJYQBVp0Eh6+R+1CRJ2Gmbli05cunh gMoTT1/qPKAt8gT8DF7lYZziiQvcjAN9CXmw0J1Qyss4eIz6OAFI7hm8fSwMBAMiwK++R4+AxWOF TgYkfc36wKAS8E8qvIzB6OOvukJKQNT7Zh3TLm1YV9VDuEQ4hzCGaZNxDJioh/5aSJe+lAtYmTvq jgcyIbiPjiLQdD1DvmAOHUNK6iYMq1eyjKFOIubSmx0yMoxNxoW+Uhc4jRg37p/6pDKUhTSeI83h Yxcv+UdzEKiIU//O8GsR6Ktf/bI/7ctzT+NUevhzWcKr+2cyhheE0Xk9BwVRFAvFAGAJ1TidSmZA OJIEcedIU75YNKVBNIknTfdJZ+JDqtRRQjna5mfO9ZwJL+c2VVfFmTUZ1MG9KfD5hvXK8y/39tGD MINBBVTHMoiyaAavyn7kY1fvwPGVnuhIPvqGzgk1qJN78TYdNOpb9SsGQ9e6n5BuHDProjoKgKS7 DcpISENKb48ReahXoCA/6QYydfS6yG8joXS2fwGvfy05qSf9iLhvOtqISTxfKmfSWp8IYx1CkFdl VS/rM+p0nwzyYIBvcVNXdFR9qov6qQ9SHz8qsqg8P/uoZzO06X7QB+WnHWMBvNhoxlOACW/4sHtJ VGJ80i5jKF0n2LQuagNQ1xsgxrIMNQ/EH798qT37zNPtxRef938C8a8Mb775pr+Lnf9HXbQLRwin NRCbCH6XU/X5s8PUrXrtCXu7zLu/YRCWxzqRwYNGhxlgBsaDT4FMEANTg+FzJo2BV3k6TuUOL3QM +DKpDuMY7C5YVdJZPBOyAQpcMG0zkclL3ZlodATsfIaXz/HW96whUDpF/q4PpNGRc6dJV+rc/TdX byBs+3i+S4egb0DPETKiT4BYBApgepqvJ/1Ue9UHe0WnMcmEbhzHcTQZAIKNBMAIeEP6GCj3RXWw LUy8j24GM6IyHG3cpEdNKnXhhfIp5eiAzrRvAum81g3o7Dm0ntTXiS/d7XUxQtLLY6s+D15NY5Hx ov6MObpwDnl4y4EyBrPSPYdI7zv53He1B/Ew3LX4J5wDEw7j5IkI9anH+CSPoiXetXxGxHheWPjk y59sr7/+Gf+3KeuXr3/9a+273/22SPL99pOf/ESe5ufeXfvlr37Z+PJo/tZxfH1nKlkDfbE9cYVf GNMWmOaYpQ2Ch2Mcl3lgusTVahDoJJ1j8hVbJsQIsOwuGTDdO3r0cDty5FCfpAwM5IM43voFgAZQ JnAQpWUykG6F1G6FOaQZfDo6ZNORCcA7rX70kwNppnLzo/+tAZe25M77QA/hEPVCILW51Ppn+5X8 OS46QZyESwFcABkrG+ucI6A2MRy+8l5g9Y1jwhTOi5QBcAS3X6FRADSSi8nhnTV0rzLxoBnjjF0I 5nu23OkrwKTuAJk2aqyZU/RFd+WTntlpk5iUEsaavLrPTtyof9fdggEJgeKR0Ysy6JFwjLE5fuSI CUpZRxDkVftlHDC8jDF9x8rzzOVJLdqfVtj03LNPt5dfeqG98smX2mde+3T73Ftvtq985cvta1/7 mv+W/vvf/1778Y9/7PfYfvGLXwjwkGL8Vak/0zvIEte/mxJmQiKHcr/yzxm+/BV5oCuP9Z99ZNcO T4R3rGWFv2HAYGfQxoHiaM/RLS8A4XjsaAaZh6THNQAeZIBJPcp/FjAxsaqDfFmAFiEinkSJyykf g1uELZccEpBnLHPzhf9mSeKUrL74SYPOsTHWTDIYAuqTvtQFeJbagTv46GnnoU1bXSZXdfArWcAd svPWAQCUXu5XwMv9hCDxuvTD/aNNjydl0xf3CYB3QlCmPBrtU573tLDE9vq6bwtOvRorew/XFaJO wc0cuL5OJMKokC+grcV/IoPMc3lrz4OJoHwcNfcGvfPovKfboPR2bCipq6cl/Kb/EFSGQXX6pyp8 nfSJKwqjnmovvfC8icH3CHgT4Ktf/Ur71re+6f8qJaTiGwXsjPGrUB5oZocsJPjd734n4VjEYM0y JUfSF7/b5ld1BsIg45Y13giPg7B9zc8b0OONNz7bePeTsDEejzBSBOqyjMkEJOxeIJwXqGN1Y8Hy P/j5hhu7Sx7EBYMPkEjPwHmSNeFMpj0T9UooC0BMHh0d0+t+wJjYfpyg0WKvfOTlJQmzWEwWT3II 7HjbbRx1KOG9fN3/fT9hCFFpNx4IPQJagVvGA2PiH5F53GK5ByOARQLwzpv7MQL0X31Gn8nYQDif q7/esPF5QI7ufFCdb8UBzqwP+pGyyucXQE1gxjJk9/i7/SIWukHQeE908PxIqh7GDNI4apBQljKJ CLiP3sx3xjZEhJBZ5LPN+8zTz7T/8Pzz8hgihbwFpOAZyt///VcnxPhhD6N+ljBKYC0AhyABdhFi IUkmROh5huvJOfn4g+Df/IbwbCExaBdi8Bnf7333u+2b3/hG+6o8Gm8ivP6Zz2hN9EmvkXg7oeYq a3h4QL/BNl4HDyTy2AsoIwCPV9GAK82WRgOWgn3SNQG2yvYmAXoGmolTmgCaiaIMk8NExosYSM4T gtY1uzH+RJDKAQCTSfWxZqFe8nD8t3/51pJkmcr205fdVulsANEX2hXQjh05bKEd+nhk0VsLCCEd xGEc2LkCcGVZSbP+CH8EpqPJQV7GsfeZ8bQe6pPHp/chY0oenmuNb52XlIXLmOV1HLbyizgOibpx on/uRzdkpFF/6cE9A91zl7k08ZVGXbRhAtGujhCEcAQyJM4XKbRwZvv2WYVRL774nP8C5PXXX/OW 71e+8pX29a99XWHUt9sPfoC3+Im8BaRIGDUlxAKgO0xa6AV+u/i674AhAyEm96tuiMEi/xciBZ7q pz/9ib8uClG/8Y2vi7xfkvd4Q17uk+255571Thr9srPwvyAyx8wRWMH4sWmhKEOhKbhhfJgj1vEe R6UVLnhuuSxWPxMRUBFGMZEa0D7AGfjuJQCDKjEwmTTlYdIgAzEuR0BD+SIEDVtoR5Pt5yIG6ISA TLqknnoDAutj4KW9G8//10uSBtkh4mD9DVAdaePY8SMGxrjjc8whBSCx5ZTsunL+KgLt+MR5DzDk GPqpOtBneJ6hQeS+F96egOgb3elzgGnA9zEa00qy9clYeF2JTh77vlFga6eyOtJG3Qv4Y9DcDx3J h55FXMaPur3eULrb0zk7myMpnmkvOIR62b/GrLUFwPv2t+MtfiRvASjLU7C28IIbUC8IlxaHTyNh kOENZ3uQhWSYCrtgbBvz7IVvEfz8F/9gb/ETeYvvS59vfvMb1hHPhod76aUX/QUh/1bHYXMEcLPU wBMHS5ojjc0gjDfjjjdmHCW5jiHLNfN1vuXDnixbVI9wBXmIGhS2EU4oUTeywwRYsI6ZoCKPvYDy DmAXSAA7EwIIiwAGSRcWzYcPHhDAjug8Ze2hukWvCadMJjz3AaDTBMaypACGtJvOXx2+vf/yf2dd HGbQ8T44YwgavegDwAE0gJB7gGupj8pv+/g5GwtbbZWtPqKPn2V5okIo+h1Aa8B1DbG8FtB9LzAF WE9G92JeW5BXdXpi0VESchEWUL/K6F48RwhBH9Db4yFQeG1FfUpji5dFLSEUYKKPAIsvbb7xxuve gv0aIZTA9/3vfcc7UT/96Y9ssccQ6pcGsAE/sf4OnzoJFoZSUylSxLMMaRCiry8qhKK9n/3spyYl IdQPfvD99h15sK997e/9wuZnP/t6e/WVl9tzzz7VnuK/d0QM+kdfy1NkUycgtrHRWHm+lcYfTUMC bwBpzDPOwQLjn2ebmZO8AcOcYJQwZhi7XqfKOvowGYkAci/enw0DJqhXXmBjQg02AA84rBTpgLoT AC8kcjDpZyCg7hfAhgW6hDcA2JXjxUDaovN0OjtZUYL2IIyttuo5Lo9BGwEmoIHE5GUgTrSVD8cD Tf897sjHBCANTBbCATzl7EGoi7YlXDNotO2BVRoDutSH5A+cVx1YbYUxCKEWA0m5rC0ykDEEAb29 iSeIBSZpnCf0gtS0HcuGAZE+9FnC2JHO8zGA4rp0jWD1eP+KfyJne5YQ5KUXX3ScnhDqy96eJYRi J4rQBWs9eoseRvFS5MTq17efx+sQZ+E6o8uQp4ixMNQKOeQp+rpiGkJ9R2uev//qV9oXPvd5ebjX TOpnnnmmXb7MJ3LxGAFyAByxIWGeGDPGt+arCzjiP3QJv3wtEoCrbKdjUMBLlUkd4BHi+ZmSCAQh 7Jl0j/njF70jgYgIVLdxCnkIZ1PG8y5Zllc6RusHYAEYBUlzKIYn4FrpBUCsMhKQQzI8UeqIJ0se SOYdH5HOFhfwSKqeqhfixOtAStXJGkWk4zyeJOEYuuLVVvztwn+Pu//xRwxSwAoQTaDu1dD/hAY5 E0F7aYuBRQcmgld1pvWV4CEQCDZYPw2oJ8iTECmrVDsxSQthTH6VG4mm+kwS3rtiwS1v+PRTeaD3 wgvyFp/2y4x8g9ne4lvfyIJbYBzXFhBj+swCQOMV+Ee1EeCRkKHeKB5l/At3rn3+uy46J22Bt/g5 IdQ/eDfsBz/4nreN2RBgY+CtN9/0X4LQB0iOFwxAMSDZqQopEkZ5c0pzUp6iQB7jM/6spd5ioQ7u UcfoeUQgrdOPsdnFckDXlGWuaCNGN0RAipSk2ThJJ5NH9Q1zRB4Ez3U8pOMVNtpMHnn+nkdhG5a4 hwU0KAmgOrANPCx33VeFPeQIibgny6n7gLpAS7gT0B51ukFNuuoY8qgOk0HndBjrA3nQyd5Q3uro 0UOuo8K+Krv7yUcXgJyXRgElg5y3gvEoAakJoLqHwVMdJ+TdvF6Rjm5P6Xyud1onwvcT/Ctb1Ynu kI68DGgsUcIok8iTm82AWlc88/TTCqOebs8/z4L7lf4w7y3v8nzzm1/3wzzClp/8RCHUxFtgyQPo CQkIof7TGDb9blhfdFkcMnUC1AcxfmvyVAg1DaNYcMtb/MOP/W8EeC/WPGwhsw56TWR++eWX1Idn 1ZenTHbGmXWl3zHrawNCpSNHDrdDhw4Na1fAb2NiUjDHEQwW4t8RqZx3MoUth0mcdy+C1c+rYNnE oC7K42XwPCaS9Dh6lPmMLiFuX9eafCFkCeUTekcgk/XSHFsn6ZMXmfn/H7bf8+iAeY+jQbeTbRmk sIWGKEgnDYCyx9A5zxpQBCVhdz7IF3bbgrOwlWTLFQVRBOZTd8Ce/fFYDhPFdcYiWKR8OsaAYTF4 WMigqk1e/lQ7eC9IgV73PPrRBSBf98yjJjGE8UMs6pHODgewMqTp6He03CYDIf16X+kLOuz6xNVv IOx58i/j1brwPeqnnpKnePZZewqAxdoCb4EVTgj1LT8rIHTBUueBnoih0CaL4oC4vIHJsMR6YvAI /do7UMiiPFVP1fvrX/UFt73FT6wD+nznu9/qO1Ff1NrisyY0r68888xTfhbjnaUyNh5D5oNrvAO7 sjFuAS2WP5GJx0/jyvmRwyKPX9FhjcaYdS+k+aWOkgGow7wXLjT/BnA8AwI2jB1hAoPFhzZJA9zJ w3yiJ14unzmz59c9LxMgaK8H4f1MdPA15DFR00+TWTKE6GfPtdOnT0seamfPnm7nLzzcTj98Iv+G DZtQ2oPj3aNYeMAVApSnOWaGZ1BogMHTekbgzsIasKIUpIJ8WB6UGj0bg5IHgFiqDGBZb+qNJ4PM 8UZ4rGHRTudUptZhi0HOy5/2NhoAb7vShtpmAD3wfTAQx65KRyf0JB/EwGNseuHyVXWf/48ve3v2 G9/4hrzFd+UtfuCn3NPt2WEnqjyAj7H8lRagT6T+c2ZChkjSpnnjMWhnXHRDDPTAW7AT9dWvftUf +/vsZz/TPv0qxHjOi25/Plke0WEM4yHLOoyBxnYMwfs8YcCUjgXPl3+SDxwwLxALr330sOYfDGm+ XC9gBHBggXHGuqud/Eozlp18gJY5D/4C4pDiYv+wCfmFOeYHg63y5SnIgwfkny3sVdwHMEM4SD+O ey5Jr+jIP+PubaA/+hLuIWfOChNnVf7sg+2h0/e3j567vz145t526sJ97aOPyKOdOdiOnt7XDp/c 0e78yK1t90dWt+333ijyYNUBNgPTgZTBCEEAPYK1Jy9k4R5AZzPg8OEDGkSFZucyqAm3Am4mxGsY eQSE8gaqBjEdPi4Xf8BfimFhDugZXDpKHRAv1o/28HoQWZOCxdL1+r9b+Puej3zskT6BEV409df6 JY9roPlHAcIotmcTQr3eH+Z9wTs9PMxjJwpvcej1/2pB3cj/60ffE6Czrvjdb7t4jTENnwr8/XoB YXLO4nsgRj3Q80M9wqgsuqc7Ud/97nfaN7u34Kn3q5BCfXj+uWfVH3kMPwU/rzHCSHXAAhTGQJ7E GxeAVQDkaA/K2PCcyWPO/Cd0zXWwEFBTB3+Oy/ow8w7omQfPTx9r58PDQEoAjeWWZD7S9skT8Qwm WNfDW8AAX/UjkIHnMfwBFgA/wms+jnhoL0QsEuEZvJYd2oCwiZ7qcQhYO3nyoXb8wQfa6TMP+acq Dz8CWWTYHxVZHr63nTh3UMTYakJsO/ThtvnQB9vG/e9vt+95T1u/j79TfO/wnz18apfPTvEFnWWQ IWuRhDDxOBk8BojzsiJeaEOA7p14AfDA/j0mkV09woCrjN9VU522aBBIpKk1EYNFeSYCUpT3YwCI WW1pAEF30RnceD6InjZ4yXPhzwzm/o8f99uz2Z79rF8/Z5cHi5wn3PIWfvWDtcXPbMEBbdYE4y4T odHXfvz9BXWXLCCJyBCiIOU9IElCKMgyXVvUThQhVIjxPRP2K1/5Unvrc2+IzJ9un3xFa4sXnmvP PfucX2ep1/MNEB09ZgZHLLZ3iHq6jY7GpzwEIDdRBNBsYvBjRB76sfWbMApwUxfzBHnID9CpywZU pCAtOiQC4RivxXWiBVtwgxgyYPBCBuSkgA/IF6xhTKKQIMaYeklPWHxFfc/cpw6TpntLlgBIiHGi PSjD/NDpB9uDH32gnTz7QDtxRsb4vHQ6faB95OTeduSju9rBhzbKY9zctt27os3edV3buO+atv7O 97Z1u0UMkQFi8FEPf1ZKsmbb29vq+Xyfjb9UTFry1Sd3l3k9wYBLCQtWXYPCoIa5rFdqoOKBjiqm NYE0aJQ/pkU9pMjgyi0z6FgmXddkU7cnRwPCwFG3iekyJbEgTBCDyQQ/+eST3prFW/BKOTtReIsv f+lL7b//f7y1ANiH/s8vGqC16K4t2lj4WPyAOpK/5wtZvJYo8Nsb/Lr9h699YUH9yJH/63+je/kO 2HQnaiTGj/wM5Xvf+7aJwVu+b/Dc4lOf8vqI3SgsK1vP/GYEz+oHul5gE/7Sd8aFkLVbcY2XwdeB S76MKWOsMFjxP28GxIDhBTSWGETJaOUhTj5wWaShfm96qEy1aXIpzWGV50Pt6xwgFwFNHtJULuQ5 4o2C6BOiJ9SKPmDIb1qrD6kPL9nnXMf0Be8iPOmcer02Pf+I+3z29FmtN9TmhbPt3PmPtgdP3dvu P31n+8ipne3Ima3+e5Ath25o2+9b3rbeG68B4AH57fIaeIv6exCkwG/xZ6RyTb4hrd8vL1Nl/EdX OufaGwZen1iIGRO25fWTrHfoCANKBx16SY7LY1UIZ8IoH8Tg2p7GXgLiJBTkPpMKEXnoxcO8Z595 pj3//PPtpZdeUijyab9KwSsVvD2Lt/jOd37/qx8AGA+wGNyEViNBygPwoA5S4B1KOmn+02/af/pP 8Sbc51kIHglSEEL93Vf+b1e1cfmt/7H9/d//vT0boR/vRD33LK9/sOi+rAkOgPMWLuMW6wxAGSP+ Z/PMKYwEoUwMxVEtvLlfwMaqUhYBvMwNc0QeAJU3oQltz9nA8AoKf8ZFOFbGyNZceV1fF9YLeZ7B whoyXDRJADHAr8U99fL3mn6+wbMYpdUOVOWhnnil9LeIVu1bB4VqFU3wkY3yQGfPnhXBFU6dvL89 8NBHtAB/UF7jaDt26h7/3ceDD9/djp896G9G33tyW9tz5Na2876b2tyB69vMXdf6j6YIqfAQAXz+ 0cBA598MJPYeDrdCHqdPiFHX07TpPUgESUqmbfhvFZkQ75V7vzw7J5CBv6Pw5gEEsGSnBWFCWJj7 QaiuAQeTzGsM/tvBK/zd+RVvbb7yyit59UNhyVe+/MVsz4oULHD/Z4UuS79WHjDnDdpRfjtdY/wm efAEU2CHPIsX5tTbd6G0ruDVD3a94jH+of3kpz/SOucH9hZ5yq0F9xuv+7kF64pN/+GvF7SBbPvr WFjEHkHih8kOnWLFDTgBCiJgVRlfLDEAB7AAKR4lHpqj0wW0CmMqVKE+0tKW8mn8TzD+SjsnABPm +G8FFdOTBynvUI8CaAMSG+g9JB6JRegnwp4TKdym0lSGvzJBB+6zeCecM8kgUhcMLBKvB9GPt4ce Isx+0LtUHz31UDundcbZh9FVBvnCA+3Bc5DjLq81dhy+UR5judcaG/a/z2uNDfwDtcKqca0BGQLs wRt0gBfg41V6nv5JXKQ+j2uvQTnlgVj1wXaIMHilTo46ui6VtQ7kk8wcUBinOpblISgeBQL1cIDB 10Ax4Xa7fWDwQOzaEEblfajX2ls8zPtivT3LThSvfuS1coDJ2gKQYs0BcCx+tmQTKtX2LJLQaeF2 bd2HEJUm6ef/z//P/3sBqO/7v/zXbq+ecueB3vftxdhC5vUPXld55ZWX/eyF11ieuHIl4FDfSwhF sksT4XsJ03aQey9lHZDnC3mx8oKADYm8YNU9gO9nHAIo9UAMW3WPK2s/PH3WfYw9wpxgpU/64SHE yXYvdTE3IWc8FlY8Fj/ArXDNEYPKVEiHx6vQK+9qZa0U8sebOUzXOFy6VH/U3F+KVN3ct6El6pDO DxGxfJS1hsjw8EPtwTMfUTh1Xzv58Ef8fbPDJ3a3+z66o+05ekvbeeSmtlULcf59euauPzcpbtda w5ZdYJySoNYaAH1caxAqBcBrd7w7a5EtSjcpOiEA9gT8JkwnB8f6OHu1We1U3UNZ9HBbIc2q2a6P hLrIh9dDlrETxQADINz+CzzMk8XlYR5Pjb/8JV79yNuzS7/6kXeiEkqNYdIooxcA7Px3CqFSSJAQ KvdyfxDSernp+mLx6x9vfP0rV4Eaj8EaiSfdfgVE/cOiA2AAFkuON4AoAiKAFwjL+wKoAdD2CHw/ 4eo3sNeKUFj/AC9hChYbEmHtKUubXiuoTbenek/6uUPCJIAPaLMrqXqkD4aL13SG+z3Es8dxiJVQ LNu0yQfo40Gy5R5y0lfCqxJecrzUXlSYzHOqEIfQijYzBmfO8L9GD3uMzj/ySHvkUR3lzc6KICfP 36d1xq5236nt7b4zm9udx24RKVhrfKhtvvd6rzUM8J3v0kJcYJyAcgCmABhwBuRTKeAvvleegnQs v71IB7MJhNg7pI4N+9MWaVWHSTK5XqxTnVcZ8rtMz5+0nre3s+y73/lu+/73vtd++IM8zPuZF9x9 sf2rgD9eYZTRUyABe55lTMlTpMm9cZ2Rf+/y+mIRKXhJsXaifsgWLd6ivyzI7hmkfumlF7S+eEZh YbYzieEXg/p+fxU06y/WaRAlT7LzwmYWyefaUVnRI/K2gCjhBtvv8Q5e+wnsrNXsUQTIpf6Fe+3T F0IyQl2TUe2ZRAXg0RNApmwMQKAQwb+T0jFeifZCDnss9NQxAO9ktIdJ2Hf+PIt73g3j6TcSw1Br GvrBFm9IlHuPPkqdZ9vDj55uD56+32uNB88cbg+eP6i1xt2SQ+3+M/vsNfYdXd923be67dBaY1Zr DUKqDQcUVu19T4DUQQSYOIcoU+Ct29OB1u9PgVoAHO71cskXIPu+88SrBLghz1BeQjqCZylSeU1E mV63pcroWG2NbYx53Lfev6Fcl6EuybKET0UKvum7mCxK6yFSiLTIQ5QMpFn4MG/wFv69Rb3+8X2F eN/ycwu822dZdL/88vCbi/pjYC9oDUJZV8gAiEyILLx52AqwF/8qFC+BNyC291sJWGOd810wAOav Qdo6950rg5KYXwv3I7xTl1A2awzayis3AHDHEm8gzH2s1iwANdYc8Gbhna3gegCJp7JAUK13jh5h bTmGzJDHnk/3OdJmPNYxP0ogJPT6Sm3gkeJxonseRCKn28MPn7XHYHfq9MOq98KD7aPnj3itcezM nf77wG33fthrDbZt+TNbwilAN1jYCTBJI1TyNSDqQCrwce0wqHsBwGkwd89QwHMIpGvyA+6SEaAK y4Y6co23qVCJa4BNmuvs9Y6k6kfdJ0/V6z6UPs6fNNZWrpe8pFOuEzX1po3SZ9BZ+ZYB/HGbdvQk JaMnCSm84IYYIkVt0S58oPdtvxPF2768rvLqq6+2F1+st2gf989avcPDhGPpBdSEJ4AAQNTuEOuC US7Kw/DtNxax9SyDEInnIPdfzldxbu8PTfn/nvIggCrrCXayslin/pzHMwT044LXeqk8Zf3nugLk BVl5LDeWfPFH5xE2EPxsxB6BRbS8ieqgPjwJAuFp315K1/SRXTZIRH8gBQvweBsIhAGIIeDNjlOn FTqdPtFOn32oPXTqgXbynBbePNN45AH/FcaRh+70eoO/xOCLltu1EOe5BmsN1g887FunxTgAK8AH GB3oArZBKSmwOK/EoIccpBvceJbknZaZAn8gSgcl4jomaQZ4B2oRwfr09ihP+wZ5B/qUSIjr6ud1 7e3kXje6UDd1sYZZ7HWG814GcvjYz+u62iE/acsgRdYdIzGmawvCqB/96EfdW3zTLzR+/nNv9ifd n2ovv/SiF9480POkCxRHjxxuBw8e7AQIEGIZAWi/lgV1bI93ENAqJAEoEa1B+k4U900gWf+EMj0c 4q0GAZI3qheDuYhTR8gAiYooCWMiXpNIaMck0pFyDsGsGyETeqQ/9BOCLm6TN7OjY9cTY6B6CP0S ZiX8o09+30p1HpGnOyLvc+4czzROWz/en3rkwsPyGqcUWt0rT7HXa437z+1s+47f1nZ95Ka27b4P ty33fkjrDB728Rfo79YifJx0T3YHo8GxGEwcAUPlK+n3RhACFC3cIUQHvc8FwKqHPKwzqv6rhHr7 eeUb2w7puIeVH+osmaSVt6AcO14LiFeiPJVefajyRUjOTQzJ0M9JPuqgjfIwnE/b5ggRl/3wh99r 35G3YCeKMIqNAr/+8eIL3oliwQ0gAioABBCwkFl8subgJbz87htrS4hBaMX2aOJvAAgYswAPOagr 1l+A1H0TxveykGdtkD94Yms87VIXu0DjgjhPxFkMLwbyvY+GGNSbJ+/UUURQ+yKg39tSP5DazaJf Uy+4oIzSi2iHf8834BgPNiioh7DTDyV1nn6FyDxQvOfwXW3fPdv9/tSpR462B87c3Y6evrPdd3Kn n2nsOsL7UzfJa1wroCikstcYd6gMyAlQCsysM+rekI9Jn+Q3GCblci95C1R+poHF7ekVek1J6PIK 5eJNss7AO0zvlx6UHUmwELgFzIGc/bp0HqTnqfJFoCo3gL/XMZTv19Nz+sbR46byCIQgnX5kDHpe dOXabXTy4XkAB+Ai1ge8ABzglifgfqSTRwRxGCNgABI/KRdxEEiVXSMsdsgDcAAMO1lZFGPRQyST Re2UF2Jd4FBH7dB+8rO4zo4WJCHs4wgxpoTkL0emQGbTAOAS1tX7TpU33iw7Y5Av5Mn6hHvxHCH9 sJZRepHHfdI133ubtongkagnJKPuPnZKoxx1HDp0sM3Oz7a5rZvapq23to07P+wHf0zKFHhM5gJr 2MFmUPd8bMF68pWP/C7ja00y4CBtCH9S1tLBEWD3sKyXNTgnIVK1lTI5r7ImrNJKT+fRcSCE9DC5 yFf1WIe+oCev0tfjkXoZ55uU9/2ud7WJ9+N8sY5Vx9RTVlrVkbQ+hrrnMZKsmv0TC/mRGk/yF2l8 3tOWAQ4ml4eiBrIXs4C1wJLXNQhB/NNfgCZhAQ04AAkeATBTF78aTSgWDwNBAHm8SmJ4LLsf3lG/ 6qJs1iGy+ICXNlQ39QW80THlu06y8MdNHi2Glbb4rxf5HU624dETwsfblQdBD78iomtIUgTy4lxC WraIMRplQBYK9ez6m6t3+7ZpDVbtoDfPRVizZB12vB0+fKht27alzcyub3NbNrW53Te1zfd8sN26 /V1jOKPJL4vOZE2BAEBtDZl48k0muEiQvMnDtQEHKChH/bo/FZdVvhLK1hoDwA0gdZ0CMOVU37C2 oH6lDYDs7VFXEdz30YFyPk9d7lMnBlIgN9Cdvx91r4iCbgsIrjxF3Mpb/UIIF2cPvs/eym3SDnmq fspJZ491jWPXO3VM+tePy+pPeSFI7XIx8QgxPotfv9KBFTXw2eoVeSCNjga9iYNlz9sH/C0DPwfg LQQIWYt7PAZhmnfRuA9pevsFXhbMIUilhUQhHOeQCK8RPflBFEA+8rGr1z2uR/VVW2X5OQ6k8PqL dQk6843ix5Qn9/10n23g3jbtkO6ySqv1263/7uqwcd3Dx9rs7GzbtmVb2zIvoszMSNa3DRuQDTmf WdvmNt8h73Nb27jjw23Tvms9SQUkT5iEyeWcSfQkM3ma9IAmeSrdYkAEwAMwyUe5DhiDv+ddXI7z Akvdp44C7pC/i9uYgIpjlTcZBcLSI6SPTPO5bd2rvlt62xyRgYD9/rTNqVQdVf+0PbcvmYaXHMlX 4+s6yNfbn0rqy/myAhPiV8oFtHr1A0sP6JIW6+x8IkF2zvJBbJMCgBqs5ZUu+Gm3Qx5Z3wpdHNIo T3bYcqw1D2DkN+1FINZOHAu0eByO7E6NBBeY1Q71LgbwEa1LQpp4GoB++DDfR4i3MQnUPgRCB4d5 ah89aoMBz+b1l65Z3O/fv7/t3bu37dq1q23ZssVEWLdu3VVtIx/eNttWrVrV1qxe4+O69evaepGH /JBo/QYdN94mAm1qm++8pW3c/aF2hxb/RRYmaJzIEQz1tJw0x/0CS93jOJAAwHVAFHArn8Go47SM j5IqW2mAlrbK0k/1G8ovLrvonOPYfvQvQbcFxOx567osf/WBekvqmnwhTY7U57q6OD/16UhdQ1sT QZcFBO1jPtVlek/kSbgU8sjL9BCMH6D5NzryGAVA8gCsxy497pcReSYDifBYhG6sgRDOIQ/kgFT1 qkcRwSGbjrb8nVj2UCID9ZtUymuCyCuYlKqPtNrCrY8/kKc85x3//rEF4D34yGnVzV9XsE6Rh5EH PHT4oAiw16FTSHG0HTiwvx08eMBp7BLu2bPXXmNmZkNbL8CvXr26rRXg168X4LvMy5tAAkixYvny 9uGtGxe0jXz48kdTds1aEWi1Ze3atbles8blIdDM7Ia2devmtnHzre32HR/Iq/IDMBZO2rDmkBhQ zqNrwNGB4e1YQNDTqAMwAf7UEYCxzhjy1EaD6y1AQ5joEJIEvENd6EKZoVzKVp2kTXfhDLp+7nBI 4nXGfNYZlCtC4RmL+JW/ztPPEeToVPfcr57GOWlFPsYu/ei66NptTXRGQiLajDh8c9+ogzwpuwyv gdUHvCYSxMFb4HVEHp6FXLrED5SuNP5FOGEeIV5+XJYFPN6n/+hM1xAoYVbWQ5cIB9UODzrLeyWU Go8JwbKhYAIpDVIRDkIgvATrBcAOaY4ejSc4fPjwUO7gowu9z5qnHvHv6SHG3r17RIpdXmtAiLVr 1wjAgHmNAL5KJFjp8w0bZpS+VoRYEaBLbrjhhrZihe7jMUSotevWDt4D8qxcubKtlqx8YN+C9pGb PnGmrV+33nWvW7dGR3metXirhG/Uv2792ja7aVPbtPn2tmn3jW3D7g+2DfIoZY0BgsEEQJg4XRdY AoI+seTRxNszSZxnmOyeX+dDuV7WgOuyIB/3lKdIN11nJG/qqHZIC1DTNl6RdUYRLW1Sd6/fgASo KWPiAFRfT8Da20j5nJOH/Llf/YzupR9CetVXhoc+1Thwf63arrKuk/RBxvbq3Ncqs4xtZkIvvkHA 1m3tZGGps51MaMNO1zmTJ/8ifMbk4WcFeJ3yShzxEPEy59uJYycdepVnw+sgEAUvQj57KJVjXVNh Uq0pKId3gjy8zsJOHN6B3SpIsUeEmJ+fTQgkb7Bm37arwAvIETwAwjmAXblyhUhxfVu+/AaTCAJB EhNB+VasWO40AA+xrrvumrZSR8izQeuVtUrnHvWQd8WKFT5f+eCBq3RY9dC9qXeNQjh5nDVr0GGd z1N2efdmW9umORFo+83tjj3XDFux40R20UQbGDofwNTJA/iKOAZQB1yBpfJN7495km5w6zrgzjnl p7qQlnKpx/l7+dTR8+rIuQHtekhL+YFoui5dqvxiGXTrbdY6j3K1ETD0YyLUj3fjyDUE4GjDJL2m 48E19xbrUn3BQ5qInbTL2GqGBLwtzS/4CLESevHQUNae7V22kI/nl4beOBDYATck4kHecC2gj89O ch+i5JWUbFHj5fAUfv+LMspXD1Fr6xly4CkIrw7gNfbv0RpjR4giK71u7WpZc6z/Wlv+Aj3h02Lg 3n5gj8mCFHnWr886hesbbljerr/+Bsn13cMsN1lWqT7ItXo1ZFrZrr32fe3a697ne4C+Fv5uV8Qh nXzr1ol4H1/4cRLklt3bpEO8He1SR3RaJQJf7/QZeZ+5ubk2t3Ntm7/7Q23jXbxLpkk2CDKRi48G egeWQVnn3AMAugY4tupdAMN0rZQ6AprklygfACLN93XOcSEBRuIUGIe2exnyOa2XqfsI7aCPCUSZ nn9sp9enI+dud1Kea9otcXnuoX8fHwTQVzs5diOj86F96qbtrgNprqO3UWSqdMot423qvH1cr87g CQJ+yAOY83Ili/9sHXMvL16y8FZoxwci7KnyY6vatXMZCaEXW9h87+D4sQPt0MFdbb8W3Xv37FEY tc0Lb9YYLKjXCEwAiaNBbMCHKBsEeodACqsc7nQCFBAB/PLHF/7xL+Rhpyt1EGrNdPKsF/ABriy/ ZLmIEmJQn8I5LfLRoUK666+/zl4KspYUEWk/12vcz/0i+1SHklv2bFd+dI4HSnm80Gr1c4XWP2vb 3JaNbcvu29vmu/KAFHAW0Au0lmEiM/G2xkpbsMYAcAWGDpR6llH1jABKfZRz3T2trgdRGQOJ8roe CTaSbzF4kdKlgJe0COcO1yjHGmOi04LytKE6piThvIhG+4SIuU456uC66kS8dd7rHkgybUf5owv3 4rEWkLPXu4w3CJ7Q4j/EqTUIxAH4eTkxIdS4uMejsAivNUkRiwetrENYjxw4cECk6IturPTMurZ/ z5r25JUd7bELsrLyIAbpxCsAqMgqg4r7BqpIAYDJB4EA3TqtHVb3XayAkbwr243bFi7cb/z4Kefn PmEVpAHwhE2rVq02ebyY133azjayRMfZTjrapSzHmRmRXPXZa4lM6LDGdYVQGIMdO3a02+7atUAP ZPlfPxRd6K+8EPXRrg2D2vM4bVnbNu+8o23aCXn+om06+P5h4ko8gQIHYPHka5K59hrjEGuMDibn L5CqHIBQ/gCzgwkg+TqAMIB6G9P2inxJrzqTP6Ct9qQT9YkE3HN+AEn7PT9tc07eCjGTzrG3V7pQ rt+P3uOapkK3bC5ISsehLG0sUU8nD/rWveSdtK1r18l9pWdMSYu+3FvGLwUvy/vULpkX+3yk3UTJ azV8wYRdKEIptmlZeO+R10B27OA5xnybx3MACgESYAKMVV5XXOfwZ5VCmg3rV7WL5za0L7x5qJ08 DihZrIdABT68CmmrBSqEdQbksLBmENAAH20AXMKmgDBrk5t3b74KtNQL+PEe5InFJ+zSOslkDXmW r7hedYnYIg8hIiTgPOub6GXiQh7pQl3UTR3oQtjnPnR9bj5171W6fPjySd9bqXFK25F1EBovJO+z cf62tmnr7X7zAAJ5900TGAlYa6JLChwBwsRSAoouJpqE8wL6tI6pkMfHRfkoN11jVD3T+vBsgNg6 oY/SS58C5rS+It/CPgTkJjiEIL23kfyqz/mSZunl3UavZ6qX76vead8qf42Ndev3acd692tLldVx GW/1sh7h+cfePVpjyGOwvpidnRGARApvyWLlyzpLDHhZaU04IRGh1DoWwEpfuSJrAgC2VnlXr9H1 WoCfNcH+PSvbyy/ubS88s0plIVkIBAnsXUQeAFghEqCHOAasynuRr3UJO2LxPCHfsHOlfFOw8i3r dx5+UuQN2FNXwsDyKtRBOfRfJ30gzoz6n3WNyCJAm8weg4CdcuX5QmCN0ao1fe10vcghUlH3yUML 9EFWnjik+uTN1G7VW7qvEXk3zKxqm3bc6tBt86Eb2uzdf57J7ECoSR0mtE+mwaBjWcua6BLAUdZ7 yO+yC8H7j64x+m5b3rfr+Q2+MV+tMTiv9ooE8UoBqXXoMoBXZdw/yVg+kr6P/baOpFU/dEyesS8u p/prLEwU1UmZmYMV4qWOyscxdYxrKt+rdns7yww8dpAEviJHAI2117ktrq4FBsiC4F18TwBgwjfI imcxPAILWe97rDOw1ql3/bpV7fyZDe3zbxxoJ48lD3khHW0AXoN8pRbuK25oa5S2VnVuWE8IhadY pXBJ4GSRzhpHYVdZf+pBrxWXP+o/+53+k8KfHvxEdFb9Je6ryqV8+k5f7ZXYUSMPpBNpr7tOHtQ7 czEMiPWWDhAGndesXud+OK/XUBnDDz3+0NUE2rFZRmBlW6HyEAhjEIMA6Va2TVtWe+0zt+eWtmnf h9od+3hzuiY1AEEKIAbvZIILFAVYT3oHBvkL1AVsg5o6evmlgOh6e7uk+X6XCo+og/Sp16gwySRz O9Fn2o516ToUaEmvOjmyVqkHxCUhx0L9TACVrfOqc5qv6lwgzhOZ1kH/0KcIVs+/lmHZWV+UAKBY 5ACMUGyNwLNKi2tCJbwMAGOiHZ4NYApwTSaTJaFLgYx6OAdke3asai89t6u9+Owanc+bfF53dHCH wKprPfUF1EUOzqkD8hjY0otziFckgihT4pS84xAEAqwinhbo1b/onvIGvOqAQF4XqX7Cz5Uic3lD 9OB+8qz1blt26TJGeDLqY2wh0vWSxeQpArFpYQJpTNM/GSoZCPo+s3ltm9t6h8O3uXuuH37a7Ilk UgFHAcEAybWPylcAKYBxDeAMlEXgMaB7OV8jPe/6DuRqh+NUyDMFXa6VX0fOa11TZOAe53Wdtsf6 CrRpM2U5RsZ6SmgXXUOmnj7Rw+PR85EeXcc6hjI+j4er69LDZXp6nS/DewBeg1wgAkheuErYDl6v CZ0hHVKZNIAc0PH0ndBGHkugBygjgFhY4ykgY8Iy0mZn53va8nbsyJr2hTf2t3MnAaEsOIQQiChP Gw7XFOqx3hja7PUBYpNH5xCAMtkuXt3efuhvliROyZ8evJL6JKUr9UZCBiTPc2Z8nvx4kZATqTLx Fgk7V8hTJszsGx3qk8NM6XuziLKYPMsfZ/1DeZ73VHia9tfIaKzboPBtmwi08+a2afdN8kBa/2jS xgmNZynLXkCpB5kGEGJQdCD4vqQDIWAIMbILFRCO4BtDF1/TPmVVpuqtzYGqOyBNW6WDQdnrdJlO huRNuvWS1PVwdN1jGucGMmk9feqVCBs5r3tDWQltk179Lx2qbeodDAz96fmcR+cZp7wRYc9Tk1YA SngEQNa2ecX+W1gDiEwzIguWlXxsLVtY89hC51lHeZCyzCOQsoNGPbOz61Xnivbc01vai8+tart2 rLcnAGjDw0b0Un1s/6ILoQ0LaurECyAFdNpdocX6v9772JKEWSwrV1FW3gEP0UPQEDH126Ooj4OY QFm3sSbJdTwFZTAUGBu82vXXXdOWX39tWy59CCkhVfqzst14/O6rCESIST0YD0jmNugrmxQyKrz7 Nr95rm3efkebu3Ol1gLXDB4BEBRYOK+wp4Q8BYQC0ABunXttpHOIAdDJW6BG7OEG8OTINecWziUG vO7FK00sd+khIQ9rjCo3lHHdkl7vTCcqadTl++zu+X7yW7iv4+DdGIf+MBSpsLHyu7wkY5M1D+m+ 5uh8C8lLe8N4Vdu9P4z1sgAn4BkBQShCKBHAQxKDClKtDnAAC4tqNhVMIIOshx6qM2EX4U9Z6HiQ bVtmG98V2Ltnth0/uk5rnz3t/ClIJQCJEOhDKEV5pMrjVQhxsNSQZZUJEKu/atUKgfW69m/2/9WS ZJnKO+/9G69h0AWd2ZIOYehXiGHyqC/UTTgIsCE/fXBaD7GSD/LMqz/7PRbUfcMN18ozEuLFC1Ev BLJhePDgVQS66cQh17+c++pn5oGQlfFb2zZpnDdv3dzmtt8mD3SjJjRewEAV4Ib1RR27FIgKYAXS Ih33SQcgBeZKq/oKbHV0PR2EHItMBlkHpPPQVgcceSvNIOxiIk2O1FW6uL5+r9YY1OH2ugz6KN/Q BnVIOEfI489HqT+1Q1f33G7P674yJhMv6rp6v7iu8c1YyPMAAMCZGB1QdUvfJ5F72TTooVRPJ1yL 9xF5BJra9i0Cea1E7K6yPJhky9eebH6mHTq4v+3Zs01EWi3vs6198oW1ukYPyiS/yalFOztf7PzR PlvB9UYAutIO4IVU1k19+JO7ryxJGuSPH3khRMG7qhzrNTwhOtEGbVp39Zl8Hgu1S58APvcIcW1E pCftrlrFeFEXxgNJv1eaOHirEDIGivN1bcXHT11FoFs0Hgn9ssnAWGzZknE1geY2trnNG9vG7Te1 jXd+wIAZQKDJLfAU4AtAnvguXDsfQJiSR/cKnCEKIApQSAPoBkw/d74OIt/vUmBfSJDIUG5Spuov 3cgzkGais3XraZyXcK/6kLaSNowNR4l1R9RelaNtxO0UMfrYeWwmulW7XGd8Ur/IIwDKwnkhLcHi Mflleb0O6kBKTM92cvc8DleyXe2tYuW1CCyUxZrGarPhUBY7Hoj10dq1K9vRw+vlffa2C2cEkg1a vwhwvFUAOANkyIR3yINJ2g+J8oASMNpq86aA6oRE/2b/X19FHHbfACn1jQSifvrCJgf9UV9m8xA2 etZOXIwI5SA2YS3p9VwHPWI4QryhDY9bxgHdGF+n7d15FXmQVTs3e7eONx4YB9Zc9fY269DNmze3 TfI+/PZn/W6+x5yJLzFYOjAGANWE61hAZvKnFjzAG/MvPBdwKl+/pv5h16uDrspYF/J2gNHWtB3n 6dfIAP6enj7lnPxpS2uMutfLLShTacpfwHa9pQv5OKdeHd3/GjvK48kpR3rP79BsqItyY3ib+kQe PABP/9c41g5pmMDaAs7OUUBETA6BWN9AOgDHxNqzbJhX2fJiPLwMYAA74QsEKotKWUDOy5YzG1a0 Z7v32b+X8DAhHs9BIFBAG3Dz+j4ARWo9QV6O1Mea6dprr1G915pAb/vof1zwv6UI751RHyAuUEJ+ 3hwocuSVG0AfnWljSqAiT7ao6VOIkvIVBrL9X5sm2RSwMZLubLTcvHv7AuIgy//6pPtFvfRpBaRD 1DfWWhtn7rAH2rj1lnb79r9otxdomOyJAAAeYg6AnuYxgMY83gjQdYHYZcizqAzHyoNVrgehpHmx 7q/SdMBNyheRua77AWNAa4tOGeV1GuVKh0m7VW/p4NeQTIRRb8pSXxHQ91xPr1P5fN9t8CxpJEPp ST7uj23rHh6JcE5pw5jp3jJevuQ1fcACAP0+l0DDmwHXXPtek4V7CC8wrljBQ8BrlYdXXQB4LG52 3sYdNo7xXlk7UT7EgQgCmCy+HyaqvoMH1rS3Xt/VHr+4pW2ZD3BDtKy3Rs+mulUn7VEnAOacI7qH 3Mtdbzyb7j109UPK2w/cqXshYgF+w3peOk07rOtsJFYr9GKjwPqn3exIxhNDLhsH5SmyZKcyBIwk FCR/jBBEVD1r1rcP33/1+mf5/XdJfxkGrzkzJ3mv7nq1vVreZ4u/ezC3++Z2x84PdOAEHCMwCwAh l6XnGe51mYINGdYXXOs+x6FutWVAddKQ7ryVDtB0D6k2SLOO1MVRejgPgJzoa117fS6nPN4A0JFy 5eEGIrm97vmUh7Rqs+qgTs65V2RHkh4S2JtM8nJk42Coz9fRL7r2NJ0vi/eIhS8CeTdL5IBAAMRh jUAPoG64nsVw3jYOqWJROQKUIg/ntY4IGeLVIE+IJUAJTAB+7Zrr25OXZ9urL29oe3Yof89b9ZQ1 d90diPE2te4JgW4gdJP+kAfAlaVnR2sK0JueOOP6uMex2sD7pC1+0zN6OUCL0D4vr5KWUC1exzq5 Lra359s63n9D31436eSDsFkrabxWcy4CHbuaQCseOKCxxuskbGYOGCfaI0rI5sEdbfNdN7Z1u/9M k6lJ1UQb6JrokgIaoOfcE08+g6GsdwCLFBkqH+eAa7pBUWRCKl/VObYZkNYCvcDt/FwPROikMKCj k9ulPp37vu65Xh395oLyW//ebhHZ9VOWfnRdXK6OXaeS6qsJxLF7FPSj/Rq3oY86Ukf1gTqXBdhs CWvyRRKu7YF0jOBFxlie8IEn4HXfu2I9LGGiIYetscMZLGx2w0jj2uGXAAUAKc/CnTDuwP717Y3X tnnnbY0sftoL4Fy38pPmskqHGIQ4RRAEAvHAscAGYSlz8+4tVwF07b5drqs8REK37uHQzXWG6KUv YSmyRl6TcUkoRr/xihCkk7yvI4to1BVvlXGCPKtXMTZsuy/9BsKqHXPqS9ZT3mnEy0oX3nyYm581 eeb23tTm7vqQJrN//pbJ7hMNEMfrAKEmn/Sy0gFt0gAVYCTdJOp5TBbqot5+r8Bd5epetel7AFBi MuhIHgDKuQHsOqNXeZgqHyD3Nnr7g3Dd74Xcao9yEx2m5YpAVa7qWVz3jH+4l/Kk17hwvsAL9Tb8 ek4e0MWyFggNHl1nsvsznE6mHAllAKe8g/J594oy8hgJZ/LQlHADIEOg8jxIeQ+OgHd+dn176so2 eZ/1be+ueCtAA+DYNq+8pLMeKlIVeaaWnTQvzkVWCMG9xb+x4TrlQlJIU/2HAISHkM8hWx8Lh42u nzQIzdpH3lMEWMUWvnWKUWFcEraiSzYNfJTEuNCXtH/jttkFupWs6jtwrB8pS//Qc8PsOoVuG02g rXff3Lbe96FOjlhTJnYApyaaiceyck2eAWQdOEWU3E85Ax4A6Vj3hnQdK70AFQKl7rHehSGR69C9 Am2lU873JLURwXkRo+4h5A2Qo6vrUrrTerrbr/vUVWmTeiw9zQYDXVQeAtHulMxek010rjbkeWI9 E6YkNMrLmUoTqHjbN3kCUp57cJ1nMRMpYBso3XMZKDoXmQpMARZgVBuAUG3Z8gsURw7O2vtcvsQr O+zIhdSQESJyXSS2Lr6XdU95h/QlR8BWnmXN3qsX6LfsYa1HfvKmjpAJWdP+fO6u9r6Zu9ofH7gS AklqLKK7yCJZIfKslCeBQBAdj8g7evSTvFXG29ZOq/XaaHB4VWexfmxp027ao68cM3YbNq2bfPft xnbH7mti3QWAYdINjA5WnQ8Tz7nyFUGmYRSAy3lAHLL1dF0XSQB1SdVZQB9ALaENg3ISFnGv2mbh XrqlbNJox/WTr+tb90vX6T2MQ4WXSOlW19N379Cv7iOUhyx5xqO6+npoGEvpOeg3GZNlNZGxglj8 TDRhAgAsi17PMeo+bxUAjvxkADCHGCFQ1iImGEBWXYA+bzZXe8pv4ADYtLFe64onHp9tn3llvh06 yKs81En9kCjeDEtMexVeAdQiIKAP4UQGjIDq9a6dQSoLfyXPV2r37f2XLrfrttzb/u1dl9s1cwfb 2079x6u2uEv+5OATg55FXsK0tWs3tFVqY2UHN/0yyTQe9LM8JmmcO7SV7ujscXV9GdMVD1y9/ln5 4KFen9rDQKjNNYyZQsONm25vc5vn2qZtt7b5Ax9qa3f2cEkT7YkvoAkURQQAYEADHB0NHPJN7psk LrcwHBuf4AewBqcJkGuTSPem/2lDXvIBxgIl78rVTleRiaP1maZxLSm9THTpFD2SVnpUuaojbaZ8 /YzDouuqC6n0astjI7GeE89Znoi8HGnf5GF3zS94MpECHm8rM6F+DiLJBGeiAyBIkfuUnwI6YRLA igUnLyDifoHJMbyPCGmdTAoD9+5a1z7zqfl25XF+Xao2FOI5X2+j6sJLsMD3A1ItrtevZ6tZQNb9 a2YPqq617fptR9qf3P1E+2cPveZ33v7w1GcGMrCFPSXHP0XepvIJzQR26ZqfZMyqjwnfSrct/CBu 1w73iXfwIHR5UfRa5fIQXmOFV1Q+yjIuKx64+hUedgwHT68xNZF05LnY5q3zbXYrbx58uG3cd91A gljhcXFuInGv3wfoACPeINa4AMlxIBMg6yBFFlwb5GN4kzK5ntbl/B2odfRPGqRjgb3yFvB9rfrc ps5LQp54QK7JX7q4jOoooCe9E4TzEqVF4uHIa7LoXkgzHkufoZyObkfllmXCIY+sqSYR4UswazXR MwLuvH+uIBIoPYv7heuDspocQx6s8RgKFXkAD4SJrGrX37Dcr/h7bdTFpFi3SmHbhvbaK7PyPgq5 +rMdyiVsW+VQiuvrttznZzn/7ORr7R2H/tbnS4H+f0mhrffcsd+60MfZ/nwI3Wsc8C5btuXhpvur vNdcc43kfZ1I6ovGICEYoV+MCQKBPvzXS3wDwSEmHi9ejzbwRP5w4pzCty23trm9y9umA3372pMc q21QmEwBF0dAY1J14BQoSgwWRIDhegB2z2fQIovKlRRoIdsCYqrdKUhJQxfq8v2ej3oD3qRRB3kG 8uu+f4/T61hctsgw1MM5fen6uIzOkx49q6+uS+2krowfdVSd1c4yYvNswwrw8iJcb9DEmDizM20X 3xiYnzdASgBFwiaIg8WMMKkhFqQR2TrB8FhY6+XLRSBAJ5CRP88vCLsgXl46vX77vW3dPUe8cXDv x47LW3xapHit/Zu7/rr9wUOfXhLQ/2tLwjM8SPegGgP6UJ6lvDTn3K+HnNlAyVsJlp4/YzQaolU7 r94dRNb7YybKU+Ul7OpBns3bN7Wtd7L+WT4QxVa1gyLSAeR7dcyWMsBgy9YA7WAvkE1B5XySWpf4 vgFVeUcgAkCOU/A6H+CTeB0k4R5lhvI6RoeRKKQhRd4pUSovxoCQbqWEdINdbVdek0AyjkEIaf2U Zh37S6ilM3q5jMulTsoiywxyT5wmjUn2Az/IEaIQhtVv+SvWT/hWBMmkQwKsKtaQMkWyAhQhFRbX E+7rPKUHXAWcP3jof1wSrP9bkncd/ls/uB3Ajtfo4SeSMcKbZJzWa42SMZCsxQPz5gb5s4ajDKHw dLycf4kNjpWfOO2HsDZYeGt57xUiI4Zvdm7WXx69YyubB/k/ngEEmnTEQDRYAgDuT4E1ALLnrQeL SYsYgKoTELkuXRdIqx4DcAJQ7lUZjqVHdMlmgsvpmjKlA0eTzdcStzUCuHQx8VSnvZLEenevSvsW XXOv0lN3LwP5dKz8XFd7ztv1tf5uM33Xmifg9fpGRCiSAIySTGj/aXTlx6vw8FCAMPE6EZxXZcgT QIRk5VkMHPJ3kETWtH+z//KSYP3fkrz9EJsG+QkCfc4no/C4MSLVHzYL8nqS1o7q2xqth+g7XgLy eAdS5b3e1HiWkRqNTbw2b1svJtAtp454w8Ft4QFVP3khFZ+t4rvXm3ZqPbbrhuHBnye8A2FKkIE8 HSgApu4DIm8bAzoAPAFT5TFoJQXgAjOSxfpYd+VHH65DJH7OXZ6s61B5JdRjj9KBTb75Q/l+gjdF JLRZpDbhJvqj50AcCMI9Cdv6VS76d++ndBNMUn2xHuTt7bt/va1lhGr+0VuXeBxCjhCCSRqPkAPP FEsJaMqC1prGkzopQ57Kj/exNdY5AKn63n5o6V9+/q8t/3zRmulPJm9omzjSm5c141kJzejnchOH tR4hK30DzOlfQlm8D1/74ZyNBR6Mcqy1I2Xyhnq94ZA6kNohnMpNJ+5V/TJKNlIxVOiAbnPzfLZX BNqhedr9/sGqF+CnQDYI+vUAnp7PT/MNwP67ng6wofwkL1KkGfIATKUXSZ1f9TlN1wVA12EAT4jQ z6tupK7JzzlSfas6c186qx0Tq+tkXbo+HCEPfbNu/Z515x6GQvfpM18i8hdPVXf1y+forTx+w4CB Lw+Rh5iZvCl5pueEGQgA4c1iXsR07N/zIRAKYpAngkWtxS5tYGVX/ZN+g/O/lPzhqf/Tgmt23Opb B5zzZRt+wg1RVux5YAA329kGqHSusco46VpCvgJ/EYByefMiO4MYDXbqAD1vmEMedun8kw6VqVCX 8/nJB+QZ5xUfP30VgW7evc11eWylWx4rrGubNs15DTS389Y2d/eH2oZ9f9afnL93CFkK9AVcQFMg In24Jo/EwBJoyguUdUYAGT9gM3h7OcBFOuUR2jXwej3cr7wBY/Llfo4uTz7qkJ4GOm3oOrrkWG2U lG7oWvWXl2JNl+vkdfl+Xh6r6kUHyMmu4NCO7pUBoNwyLCa/mQEIfg5jwCek4MdZfKlmuhsEGJi0 bFmHYCUAjHJ4FEK8hCeZ1OFVFSwmBJJQ5l/t/ssFgP7/R/7ZojUTP7n+k7s/7vM/PP0Zv/wJYCHH B7fdKwBe/WSfV3nQDS8JmMsTIP5NEpZ+gSFQn5w/L8ZCgiID/Sas4o+stm3b4fukTceQNHszz0E8 M3lMOB2Rm/csvYEwPMOiHdcnD7hpfdu8da5t3Xtb23zgxjZ38AOefMCIFBAM4A6IhDUBzQBkv/e2 0GPlWuBUfkK6lTPxTovJRf4q53PALKm6q22Du4jS87ou3UcgfKVTt+tUmaq78posvd0x/9gvH3Uf nassbY/tRAfOqzzXVb+P6h9Hk4/6VZ89T3mBxOPLRRg+75RPPJk8muwAv+8GCfRFiniVhA7cC8Hw UtmeRsb83QKbQKlr+Yob2r/e97F/kgf6l2dfa386CfH+5ODfiByfsLBNzaYFbf3poY/bW5S+6Iau AHX9OtYr9UxGOi7x2o4B3YVQzZa9k8VEEkgrXC0C0TfAH0JwTj8hSdZ7u3bt6ffjsQbyAf4u9ZZH zkvHzM/afVf/BiivGFEfpEvIzU/c57aJQLvv8JvX/nCirOeUPAX0gGi8RgAV65Vai3CvyhboykoD yrLyRagiSpFoCsiSAjT5p+msK7hHWwXYUbeFddU56RWG1b0iiO/188X37HEmRET8oRPVW+XSt9zj WG0WgZbV7g9Hfl9zw3I+m3SdfxfjdczvIUpZZa7JxySTxw8tRaCAFSAkZAMI3prtYGNTwQ8blbZS bfPG9gc2H2zvmHzAg5CKtwE4ElZtv3zE4ODB5Id23q968rR9+oCySFHARY/SHaChM/oPYebOq1+L WXP6IwY8P1GY2SBvpfImiMpRT/o+vo1B/Szi8T60wVY2ffNmgYS0khqX0ql09D2RZEZhHD/rhoQh YtZSHmvptVhXftadvnUDMSPizqxpm7as95sH/OfP3N1/4fCj/lKEyUdifSUdoAPgdT0SJmAqsFXY Q36nKX8dizSLATeArgjh8slDG/W8xnl1H49j/XwezxKJbuRzORHc1wr1qj7yc3QePFdvu6TIbel9 4Jx7Jq2EstV+6TrtW933B0AALq/ArFzJB8/5Mdk1tuIQIc80MjkFljrPEcDmjQRAxTVk4pqfJNTP EsYv9IwCkfBC5I0lzpqL/H9x7NxVQEHWnTvg+yzCAVzF+ymLxa9wJ56Q9BGsIq7DGwAbsFHHjcev fi0mYRvfOGBNMi9QCsBOA8h9C1/hWfqcsYBA6zqBIM30p+wQYcinMmV4uDbodW3dde03tIe24gGj z0xb+Ynxb1QwLMj77j3Z/u1dH1eY+kTKiEAbZte2ue35y5K5gx8UgfLhxAIbR4NFxwKeQQH4ihQd UF4zKV+Vn4Kp8iCck6+EazwM9Q3l1YYB2cvSHsRG/JxJaeXZENqqrWfKOr3fL6KYBDpSr4+0T106 Vhrt1/Ov2gyZ6u/8ypvxUb39fKwvY8U1QpvLasfLX/SU8FInXuea98nzLB9DLk+qpEA+vK+m/JTj +2pTQJIXkAG8/E5GADC4OnEM4oQottK6Bmx4BOr3a/1njywAdMmNV04aaIDZ7Uk/yoYY1C1PhEfr ISTbuICq9CAUK8tOPei9uI1bzhzWWkUE0VrE/84gQHp92AnjD0B2UBdZ6e+Q1sfL/dOYUaY2BYp4 3Gd80Tl6ZDyQqjfrGqWvGXW+8Uo2EJZ6xQgC0b/1s/I+229pW/bd2jbfvaJtPsTmAf86F9AVULDe BYgCZYHGVrkDEzFpep4C3/T+AO6JuL0CoYmjcwn1GNCdePWuW5WZ1oHUMydIFD0U9vXXdEgrIrhf Xcq7WGfVTTv0rcqTfyjX04e0np9rE0nXA4k6aR22ZV0CefqiXxPK7+jLcjoEgjACJFIEqns8q+AB ICDEQjPBvL8FUWZn+T/OeQF4/GwVbZiQivH5lgCgD2jStj2FyiJLfTC9hHsBXcX9su7+kRm6htx4 VvLM8k8M89t03KGwZratVlu82DkjEM/Ob2g3L/FZ3NsP7vJCPtvT5M3HQrxxoL7S5gB4HenjBod5 kEh6qQ36R/sIxDJxNB4hMu/i5ZlP8uCN4o2nax+Huj7X+DAX+7Zf9UXUqbxda8H10hECzW1f1+Z3 3tZmd9/UZg/8Rbv9zoAEsAJeS7fIAdsIWKRAw3kBt6wyZQFhpRNW+S3uaT0FPEnaSl1D/UqzcF/3 rBfkdlrqMhl0DairPcjkNiSLdaadarM2CSjr+iGQ6qu83CNP1Zf8C8mYY/QjT50v8wfL7XlkqQXc vMPGBwoBQn8YB2GUFrIAzExowJMdN29Nqw7Ik4d4Cpd0zkuSieFDjoQnIRGyMFzpYAEgeB+u3c7a dtMTV2/XIqtPyUP03S3qKsAF3CEWYJ+d3yJ9pAckFmlWK986AT0f2chu4+JnKitl4f2zahGGD3Gk HUCfnbH0I+HhSo3hWqUtvld61FhBtuha+bLN7U946Zg+ZKy9RuzGqsaE8Vi+6/4lSTOVd977lPon 3efWts1bZ/yHWZv2fbDN3PXnDo0AAEACBEiAFKBxD1By9HkHUFlrwAm4DDDlIy2S/NRRBKt7BWID mLVK5dM9jiHGhKBqy6SR+LrrUEI+69fbiK6p33V28Pu8lycvunNe96tPiO9x3tsi/6iTRGXcXr/v T095MazJBrwB9Hp/7J0jE+i3ATR5TCr37SH48ZctZMATj5R1B+AIALJThMXlHt4KgEBM0qs+BIKM dWfRz3mEegXC80uHcbecus/gQ0xGrH7vjz2CdQKgEEiglT7+OYEFguEVNvi/fBbXvWbfThsDh5/+ yIn0FeAxCPYyJmu8r/uhurNtDRESwiH+eYQMCutIysQbRxfr1UkTso11cvQH87sX5VWgf37ytSUJ M5V3H37adfPi6CY+27vrVv9tydzeD7eNd15joFQYgwBeA7wDBDACxHoQCXgMnA60vAcXsBqwyl/3 EOoaCKbrKsvRdXZvR92U931AKbDmdzUj2NHF4K8jeXXfOlFGAsjRfWwvdVT9iEnEPcromPOuV6+f uqt+0gYv1+uOh1IburfMYDB4AyDOiwQI5wY+6cpLfuLw1QqPIFC8TnaumPwiDyShLgTgBkSsgfKh xGprbJvzKYGKkCElaXiQ7X999d8WIvzzAJ7OxFUdeSDJsysInLYjkGsENbrRJ8Ikzlc9cXZhvZ84 K50JPcvjUL/q6cBPiMo6LT/J2LJFoaHy8xOJdetoh2M8K2PEy7He4KDvat/hmesgzFxoMLIRkx8S zs7i1dBzjb+5vRRhpgJx+a0R48fHJ/nqzubN/eHpXR9qt+967wA0gFDAKFAZjBNxGvkBWQeXQQ/g lFZ5ICTE4nqw2AZ5SDOAFZDqvMhh8HbgmozKU20G2LmeCiEebwC4Tt0fypGXa/TUEZ2cz22lr1Vn pQ319vPqT40Lmwz0I9c5yvMwKQFyHZnEhRMJKXRPwPGvSyVeyHbPAyj9bpykwqd8TTQWlftOJ6Qj hLL3GUOtLLTJE13IT73Rg0U/Xg+wrW/bts22e//91btjCB6If5nLt87QcZ3BSj1F0kiRJx7AHkT5 CeHW33P1n/Ku3bvH5cpDhUh4jnmRNOm1VimPQ1rIA4hjkOgHa0z6Rn/xpmWcMBy8J8hGSQwIBiPA Jw1vyscl7WE1du+576klSYPwEBg90SEbDZrbmfUam61tnp9v77ylbdr7wRE0AopBhZXtEuCP4Vbd M6h6foBXALM11vmwoNb9ECdtuKzycV55i1SAnHzlJYpARSznpz1IonIpm2vn1zESnZzP+es6xKr1 TqVX2Ep97ovSq+5BR/ct6RgFjiWD52FCC2B1zaTWNWKrrnSE9IAAAkRII49DHAhiD5My+eEYO120 wVsNLJrjoUKk3Ecy8QGQPzgyeB+AtK4dOXx9O/c/LPzn65Kb5Dm2bdFCXzqwPqhnUOhAnQE/7cRz bEDX+W1tLaSVsLvGWmdaJ9vDlKN9+oju9BGvAnkgqX/gJm8MYeKhiqgYhIxPxi06ZLxypM366iqE ylhAZo05mxQaH5eRzvPybNt27GjrD+5bctPg3SJVQj/qRg88XzcUc3eYPP7p9i52395vgAb8AVgB njTeIACIBaQpQAtopBWpTIZFoERyTwTqIU/lDTDjBSpfCKNz6vZ5Bzdt9y32qjdlUkeVr/SUzXmI k2u/OUEdnCvdabpOnuz8TfvsfkqsB8eJTsvWy7XPaIDnBQbAFcJMrXSsrUHntQppEIm07lEMDICT DYGAq0+47sUC4plCQqTqZZKLRAFN6uWet5QFJkBbu2dsaMzMrGlXLq1sT7x09UPDkvUH99vLJfRL 2IeOtFX/gWpP42PfDbS3kBdZ4ouea898xP2uPvrZj8BZH3vkeRhl81xI3k8gn9GRPKTTz+ozZOGc /qEPf8WIkM79Gg/O7WlsaCDYlrZl2w6/+3bL6az/6lnP9Q+cX1AW47FhhjUeIWRfTxG+beKzvXPe xuYBKl/eqfXB4nXLlFS5n/QB4ABX1wWmAlfdp/y0Lo51v9INZO6LgJZFhBryc23SXZ0+kIY8k3ar nSJJ1ZkyXR/SqYs+9nMTdUqWXk+1w5G0ZTxs5N8PGHSseqxzSFMTOAI9IMgklVA2XiShR6xzkSbk oJ5OIgHY5OvXybNRANG6AnIq3aGPdLJVVhp1QwCeP/FNNtrYv/ea9sZrR/29t1V/c/UvL5HVCuPw gNE7Qp20BYG4Vx4SPU3snodX/xfXh4GpcaAf7gv9UFlI6ucr6Iqlh1iEhB6XGtfund3PeHfa51en 7EpCCrbRM8aUj8yzxQ4RGWdCYaUt1m31qUOqM+PPPEI0tuY3FIH5SxiMnd992xzvs/3DbcOd1wbs HSBT8AwA7kdAA+gGItR9lSmrPQXy4vIcI2N7CB7IoSLE8fmf2OsN9wFrryPX/ScDktKJ+xDA30eQ hIS9XfdJ+XaMvy3i3mq1w71Ks069HbfZyxWJ3D71qD1kWU0sVtoh1cR6FXlCkEw8eX2tewYcEw05 JJRPaIJF7dZV+Zn4WaxgTaJCmwBLVlvlAaDzA0wJbVZeQg57CNXFjh+/yqTOLVvWt8uXVrdXXzrY ThxdKbAfvgpQCB7Dz56kW/WFukxqW+eAHHH71Ufdu6qucw+YaAuNSsaG61h81lt4MfqQcYIs3PdG A/2lbcbQbcejINZH4o0E6YAe7M55bWlDA+mk5z37r9KNsQnpQmaTUGO+xutUxhEd6C9tb/BvfzZu XdNu33p9u90fTlwIHMDBOdvKtSgHQNO4vwBLOY71N4WpQ+UNugAvgF1IuhKA7jXVENaFSKSVTlUH 5xCt2qyduSIKUjqZANYhuiOVt/pYaxrOIW0ZEtJCwPG3PfTdYV2vx99tc1ijiVqrEKl2rBI+FUDG 8MFP63UNIMpz2FNo0tlMYJcLC1jlIxAxD0v9YFRhokGryWQTIpOO9HPF+lwTDvFxQNYugJ+jH9ay gyQvd2D/te2z8j5PX5lX2LPWGwaLQYXcfPJel+eBZemFl0gol00OA98kiIfCO61d4l2yDfccUP9C hhqnSHYR6WN20Trxydvb5JHAKo01u21ISNQJpPGb1xhtkbegbca49INEJrbqwQstfseN6yJ02oM4 mivGW2O/Ru3wTMtjbd3xTKx9bmtze/L+W57RBGgFwgXgq3vT6y4FOAOsg6vyc12g50h6ARtwch3w Ulf3ABB5okN9jWcKbKSIWmnkyUPa1GVde52ut+cbtptVFh3K67lN9NOx0ip92sfqm8nD5GSisrND qFThUgGLyd2xY5fPPZkCWFledpQgTX56nEUxYCWUGQGSuJ0yJp3SmUh7HsDV2wppsvtEWayuf5mq az8kFHHyUin/Wr2mXX5sZfv0Jw+248eyVfz7CMTD1OrPCPws4jkafIDLfeOvUGIsrv5U79mAE73d /4W7h8iCPkogF31C+K61PeiK8ceDzq/x4tt1Dim1rsGDsQlBHsbbHk/3IM9UH+RGtulVdtSnttbj hfCC9oA9zWvVuYRv/mzvvpvaRoXBAKLEQBLQfJQMFprzDrwhnwRQ+dmP0gJUpQtknNfReQir9l69 KDcgC/BTHSTkQwCyyal8nKMP912XCDOQpxOJPNyzoBd1qv66n7pDpiKK23b+Xh99VtvVr1EneR4m xgOvyR4IJKAWKAoQAUh2mQy0Thp7HQmWdLoljGWvhTpeKhMX0NqKqjxhypYdO0Sg7s16W9RROlg3 6lPaoJsAkS/5rGuHD13XPv/Gsfb0E9vajm0p9/sIxC5a9cv9EBhzzrqDdUXITf189IRF/NoDV78e tPHeu00gPGGtdYZNAMazHwGuxbp3DyKd+Tk2hmAwNE7HK87YQO3atVfjsssey9/PkwGBhBBr0+Gr P02FMVlFfY4cMh/l+YgoeB7H+sweUOK1maKDTfN3iDwb29ydN7W5/R8SuP5sAAYAsrUV2ACcQdoJ 4TwCms8l5IUQBla/jwDGlOt19fo4VnoBmyPELMKiQ9pPXoAbII/6ceReeTuuAbzvqe3kjXdDqKOe NVXZkiJy6YawQ4cORZ6657yqz+Rh0gBVFu8hUXbdsmlQi2q8A+I0yLNOgHEcDnAgU4Bpq4yFU17/ BBkr3OsOeENC10W9ypv7EEiejeteX8LEEXRFKudTfax9nnmKb70daSeOA8A8iL3trp1X/Van5La7 9tiCz8/zl/lZa2DtWbib2O63PCV90fWNn1i4dX3TJ8708QgxrLfyYtFtgJSGJwlI6Uv6jifz60rU q76zjqHtWkex8zcvPXbskn54ny3bnG+N6l2t+lar3psXbWTccupez1958jx/IjpICOe1XI8M/PKq dEZfe7pZvjqq8G377W3zXbe07Uc+3G7fM373mmc2BcACVnmPAquBJjDaqnMuKe9AuVjzALcAaEIq H+WHawBedei8ytraqy7SuY9Ozkeb3CNd5yFMz+M6e129HXsXvI3qLv3HtroevSzpJn7pRf39fulK mWUBYg9bPOh54AcomFSeKczoyCQSXgHmsqIs6McfcCGcIwCcOrHsbJUSHglkKkNbWFCEcAZSADpI kXLSQ8RwzC7dArxYZlvOnrZOR6+FVO6IvM8X3jrRnn5yj6x2vFc+Wr+mfXhR2FVy80mFcSZxdq8A GbtdANzk1nV5V/6SZHH5DffsU/4ikPqOjuoHXpZx43q1vAH3vWGgI8ThDYRsDMg7AHgJOkBmNlCy o5YXWBG2mllLLl/FJ6xWXqUH6zmHxBgBiMN6shOIsSSduhm/GETGm35lXDcpfJvfytb17W1298o8 PN35ZwZvgbMAiABawFQgM/B0DSANNqcRPo2WHyDiVWodYSIpL+cGqe6RhlBPyJe6DHKdc11rGROo 68Bmhttxe/EQLkeZDnbuhwwJ96qNtNONwFBH2nXfdU4bw08yej3UyfUyLLiFCWXA/VAtngIQxiLz bGFb27Vnl9NsXSVMfJGFc0hH6EYoQ+gTDwMZAHNCiFjgvlWsdIhTBM6EdqtvQKCXrCqeR+AD3Nt2 CGSefIFWR8iza8eG9uxTa9unP3W4HTqEd8r6Ia/8yFoLYItBh/B1GtpNSJkj+hrI9nzdA2pc8DbT srzGQ1gH2dDZb0OsXmVC16YKlj79lceR7ni2Wf9VImTqxO19cRgICelTn48Yn23qwwavfz68xAfh vRHC+Cm/icm4dTJF/3gk9GAsxvVkdOTNg01zG7L+2XpH27TtlrZx+wqBQ2sgAcvSAel1BOsA1hWA sYPbYIIQ5NN55asQDMBBnAIm+clX3sCApJ6JmDA6AlLaWrEh/3BNXuop8Nd7ctU+aWkjpKC8ga80 jpSv81GfsX+DnrRfOpjYrNXUhvIWyZcBVMDMJIYUALxcPt4jk0GePXv22Nra62ii41U4TyiFFLH4 1lusOOSMNYYI1I2kbsDKMXlpI2lag3QvYA9FHdTFtdITnvBgF7BsEIjn2/FjN7Qvfu5Eu/I4a5d8 maZASx/W9IeKi2W1wh70wYNCEp6NFAgBn/VVe7cfvNr7rD171G3QlwBTnnAAZQeurt2/rkfCO+7L uPSyNXa0s1bGix2ytWrbnkjn6MJY37Toj7pWn/6I8rHDWV47BmAU6q4xj5FCT79sKhI5jTz2jne0 zZvn2tz8pnz7+q4Pt3U73r/gIehAijrvQARogLGAD/i4X+A0KCtsoj7yqQz3y2O4jk6AKuf73Ovn tFftck3eIpFFROLo9CHkjP5pM3UXKdwvXbv+Qc9JvyRFvKEeyqKr1kMO2wLYhEl5viAAOGYuieWq vExKkWBYHEu4X6QYgK9rXvmf7+sJ6q76kDF/wguAS9mqA4tqUAs83C+rWgBBb4h6YP+W9vILM+0z rx5pR4/G2qdOQJs2eOYzBV8JD0RZVPOaDYCdV7hkT6x6C+xsCKw9e3V52qkHrhie0htAZlOANyLw mjI69L+TkbEgNKRP9C0EoRz5sr1MWIfUv1UsbnvN6fvtfddACJHHpNV1vFbGEN3Qn7HmmnNv98tL 8sJp3qhnTjSemzbIC834j4O37L69bdp6S9uwPT+iw/I6bOkEKEANHqgDNJ4ggEt6jlMJiOuTVj1v BzTHqjPeYSShwd7rqDSnU07X1FVfuzHYdUxbY/3lcYrsVUeREs9Tddb6qtpFryIuepk8sUBY3Uw6 IPCDOSZE92JNGeCsTwidAIjJ08tX3pqwbGvz6kqIZfAoPztDJidtqq54HcqwW7anbRNwi3QAwesf kw2rGkvM9TrdT1rCzHldXzizsn35CyfbU1f2tj27igQAlf6FQEv97ADhtzxr9yUsZRzYiUs5rHLG Br0Wl8Ojkc/rMPcrHg/hRdlsRWf7nzFiXMnj7Xdd26uqX/TFnsb9ydvgEMJvh0tWLvEHXZCOMsnT yQMBIY5JKbKorRi27v3YFVS+hJQ8bE64R130OeM007Zu3WpPtHHrTW1m9w3tjl3XCjwdkIuAB3Cx 2AjXAykgDmQAyIBXYu+io6079ztQTb5+Xda+gFr5pnnLI5WYEIRW3QORD283vW89KC8p/aqeIlXl mRqBSi893IZkma2mJgzQIEwsg83ikt/hs4VtgjAxgBkvgAeQsKg3sTp5EABEfeVBTD7VZ3BpsuLZ alNhvbeEyUd+XugMIGKZLdKH9lNvt6gCAHm8g7SW9gVMeY29u2baJ19Y11575Ug7cgTvIz07eTjS ThFo8cufJdwLgfBqjAneFALFA95y6mrvw1vX4+5WiJb1UAjo9lWHx0KS/rA+rK+FYmQYQ+5XvzOm NReLvx5688kjLsd8QEiEehkX1mn5oZ901ri5HtXnX9NCLu5JmA+Mg8Nx6UofM8azbW52rm3ZvK1t 4mHqzpsdyt2+PZ+xAkAA2CAHgLoG6KRxLHABwAC0ADx6kQImZfyHUng26umW32DWsfIU+QavpPJF xIFMHeTVtj2H7pMfPchvHTopOS89qk6OvqcjfU2+6IVXqs9tQdBlWCMmLBMfa28SadD5STQvdJIG ePnqJWA2kTTQWP9aFJcHKqDXRgKTb2JqQigLedZOAGXisCGhI8CjLcqZXOgz0SkhWMjDwtuhlUAA 4ah7VvVdOHVD+8oXjrfLj+9ou3bE26Av7WMoaAcdqW+pr3EGmIc6sCgPsXeY3DYyqodvRk/zc126 ssuHfuxSUi7hXxGwjEIZnPEtA4+Nxizei7HJWJAfrzJtD7nl9NEhD+V46MqY0T/PkYSxoS7mwHMj 3eNdVE56YQBNVvpqnVKGTQobGn9AcXObnZtrM3PSc9stbWYPbyMUYAPyIhTgs0fhvAOv8nKsNYXT OxnKCyCAnryUrfVLyo/ARoZQUflMEsrpvAjsOpSfjzFyNIEGUT06Vh1VP1KkJw0dXFZH8lM3eheB IN4yrCkWHEBhqQFoAMsiOjtXDp08yJnYTC6ESCgWQASQfjvYRMnWKOW5Ropg5PU2ryaedIdXsngB Ts+jcpRNOBT9Ug+kCagMHhbY/s0KE7+hHdw/2z710ob2qZcPt0MHZW0BtO6VZ6AO9CQv10u9AIqs OH7AW83WVWMCeWKx5/2QdHF+/+JUIIR0rG14gZOtZlt0gxzDQt91FJF8VL4YDsYc8sTYMN6UGcix xHcc8La8zlNjyhoGAnEe75LxoB3qzTZ17nkMMVaabzYm8hA1RtKh8HryZB2WL5Bu9ZvYs5vvaLPb 1/pjipsOKIzD2ncQWwRMAFYEAJBFoOmCvMoZpBNSFPAL/CYYIO4/IwDYRYYCdbVdxCuPU2GX7/f6 pqQjDUJ4jaN62PKeP3xN95bRv3Sr/KUn5ZBlfomRhbJAy+4Vg8YzCiYRIAM0W3YehmKhDOwQwGuD AqOta0KjWL+Aw+ToaZyTbkKRxiQ7n9rgeYYmOJM4lqNOe6sOLMRgELBNNunFRz/4rxuAsmXLTLt4 fkX7/JtH2sVzeIsQOF/WEaAMSuoNoenjUt9DQ24+xTtxaQNQkRcrTx8Wex+2smmnQOqdM7XHcxeE ZzAhA33jZxHpP48AEAyWF++qI7phyCDW1e+yrTp1n/VKX2IITJJJFDCmR+cVfE9PYSJvZngb354w Y4EBZCxp1/1UfxO+4eklm+J9eZmU3wNtu/uWtvnuGxVqva998NabQhABMMAOSEOeCeAEUoO11iGV f5KPcuSjPodNyrMgn/OO6UUAhG1keywRx6DXvQXlFovKux0R2Tqb5PFWYx7q6TroejAWve1lsTax Xgy4AaXBNWg0kExAWSTIM+OfAyc/ebfxOj0hFNZU92vypvUhDpv603XqS50BNWSgfk8iBO33bSE9 oQIGeQcCAZR+PWmPDQ302Lt3XXtZa5+Xnz/Q9u4JGe0VDMxuVdFL5LQXULv1+5jFwg/hvHCXnuhY BFizhDdYu2+XrDgGIIYnazJC1ZzTP4+Jwjo/MJXXYV2CB8iairwqqyPEgEBbtl3dzsqH+PlBGSsI kP57nDyWmTMTQ2PF6z0rV/FGev7hYpyTzA918CyN8amyme8QH+9O2tzmzW1eHmjzzvVt677b2nuu 3d/e9l880EEI+AIyQMvRhBgAF1JxjZfAwgPQ5OnlOyjjYUKCIkDupY0Fnkv3qh4fux7JlzImQn/L oTxSSNPbqzZ6fZTjI+/kq3a5Hz1DVvLK8wS8AIQXFrGcAISBL0AzURGsXUKoTDBAEBg1+LacBstC DxHAMhHyOEyM6w4h8o/aeUOaSStSmDyesE4c7gsgATqeq9YETPTo8QiLcj7THruwvH3+jUPt3BnW Oaqvt2nQoAObARbOBWAdbz+49E4cr/ms2snDyt6uy2+56rUdiBYvhVXXUfrggchP38eXYCEudfA8 R16MsVJabWHb8yvdZe+9+psN9AMp8vCgk7Gu/segjIaLe7xgiudJPsrV5kHGgLGtX+x6TKU/9/DW bGT466mQbfPGtnXn5vYv/otTbdmyv2p/9K9OtNm7PijQ9QV/JwjnBq2AV8QoYPpa90mr/Anpxt/x AHKHUOTrMg3bqIMytFFp5OGcduq9tAL/QASlJTRT/okukKgIVGmlK/pVWnk60pbxwcIAmIdteVuZ yc8DyIRf9RA0hCAMyjVSJMpAJyRjgqgnk0F9sWiQC+AU0P3dg04uJo/yWG4mrH6hSV2Ug9x4Ja+F OAIUTWaFdplsdCF9fTt8aLa9+vJMe/G5/fI+kD4ERk/rrTq8iFf61ADw3tvv20i4ZU9ec0kdMhZL vLaz6qH7fI+13xYBtCw5/Y6kLEc+qkhfVmqMVjpkVX8Zpz6GyM2LfqfEg9IiRwQiESoyxvST/mMM 8KplINiZ5MXdvMHtPpNH+jDm/p2R55Ij97uuIhVlKUOobjIqLP4X//K0iWPy/MuT7Y5tK9rc3Te0 jfvfbxBOCRRg6ijh9z7cT1rAHYvewzWVgzwLt5j7PQN4tPq+B5B7Oe5RJ8e6X0QK2bKzVmnZiQuZ U3+118uSR8J5PftBiqzk81/JG9QDETRoGzVohDdah8RSB2QAnfxssTLpBixgQFTWRNCEApg8JyoL iYQcXFedNVFZwAZYKSdPo3o8sZBGx/EcAmWS+S5ZJl2iskXk+S2zbdeuLe2Jx1e3z71+sJ07RWgZ S2+iUq6DjWsTEJBQvsvvIxDPddjpK7LxZ7tX5VEfyiigM4akQjnXr3SPhc7Rg/v5eULmAm/E+FJ2 cd03qj2eEdX4pv4YQBsgl4Vc8WTUk/ZSX41/zVfKx2CFMBofj4Xmwt4GDPC6kuqTzn/4hyNxEIg0 s3N1mztwQ9t87wfbhn3X2EPEqgd0gA3i5K9OQhjWJs7XgWpgCuRl2bkG1AM5TJDcLxDbe0gM6F4H +UfyJTQLsQJ+2kQgThHX9XEtqfOF4d+Yx/p1MvnrObHCIU2Bx8DC0gjYeYjJ7kusUAin8M7gT94Q Q2X7uoCQL+QZrRxegxAMoPrJN6TUOWsQJrjacztdj9SViY5uAQJt5tUUAJC2LYCA7VaVO3J4vr3+ 6nx7Ae+zl3ZC8hBIeVVX/Swh3mxd7yvroln/BmgxeJG15+5XHhb62e1afJ9ygBIjAynydysAPCET 68RtKu8+aDwcMotAfj9O3sG/i2Ks7lriWwrOnx/TsdETw8IYZGMEfdA9fYJcjDntJBT0OGts0A+d 6l1Eb5tr3FxGeRlXNmFWM7aKAlas2CfiJFRbSJ4z/ibc5rtWtc13r2ybD6wUga5ttyuMm3qJeoDJ MYAEjHUvwCV/pQ2ia9KLPOUZAP60fEiZa/JAJnbQ6lew5UlMHMr6XG1C0E4I0rLRQMjY1zy9/iIg 66NqX54HawRwYrX8nGIAGeDOMc9Isn0ZsogEnTxYcghli4s17JPKYpPdvHgN0uJVyM9LkpBlvbwS E5qQJtvC/JdNTTB6FFkARL2MaWtKu643YYxJ5PYgOQTd0J66sqa9Je9z6iQkgdwhpUMe6cdinWce fuKvdiDErj172o4defb0+34bxA5Y6boUyfhJBORh+/iG668XUOu/itLf/fv3+uGk1xu9jwVof42H f5C76sFodtkqvC6yJHyLEaMOxsnGSXNJv/yZMMZJ92us8TRsIOS/ZPkbmfwWizz87aXLiaDLV65u 7//AlqtIU/JH/+J027xzQ9u8e33buv+2Nrd7TZu7c1WbVxh3x97+8XYBzWQBnDoC6PJCBUSDHhB3 kpSHcB6BljyQoPL6bQalD3VwT9dFLoTybktrHM6djh7KC0nY0eOn1/VmBLKQnF0v0qxDdCwS+ouh gASLn3Bhbdu2gyfk8gCeFCY31ipeIV4EAgDGkCfHEKhCioQLJqUmhXQmKAASKZQ/O0xYumwY4BFo w28S6zpfJaW+WEba3bZtl3epQmS8EiSF9FkrOPyQvt4tUr2HD61vn/nUbHv2aV790X0RLMSmr/E+ WFzv5ik/IdmuPfvbtl17BEC1Iw+x9sz9C0BcsvLKGesAAVZ+YvGnek9JbzyJyGDrzjfZ1Iba5TvZ vI/GjhsPUxk/QI8wdoAa8E7rQ1Y8eMjjFKMxhoaZj3joGnuTUmOckC5zAokYH28Eqd+MF39gxl/6 44H82ED1xfOgy7r25/8IcZB/IfL4d0FbNratuzeaSHM7b2sbdi5vs/tEoHo7W4ArEGLFKxQiLZK0 kCf3KFPhWHmO8jbUWfc4r3pMLuUp4kEeQsTKkzanZEmY5/CQ8x6ScUSsk4/K29uCROixjK1Sg0QW GNDm9x/5yYCJ03e9Yt0AJYMfKxewB8De7hT4AhKAKXIpzd6FSRFATBzCA4GIha1fn9HEM1kmgOpN OyLymuzyVFuxstkl2rFrr0i0xw8JKwSjDsAPQMlrUppwa9qTl1e3z762t504pj7pfsCEpY+l9rMu AY6fFKC3Pxsl3fh5AB/SMMkPXv0xROTGj/NO3M522xLvzN28e7N14N02+m3PK+IC4vx1y7iAR2fe Z2NLefkKhXtL/G/QihtFRuXxeEji4UUejVf9/ghvAVHsyZmTPg70OSFh77faow7qCmmz65k5S10f /OCuJQkzlT/8I34YSBnmWxHF1rk2t1Wh445b2uzuFfJEq9r6XdcMYEUAeHmC8jQA3vf7EW8AaOuN BAN5krcIaRL1kNDEUVnymHgiDwTjusiEVL4K1aiD+tGljmmrE0nk4tr6SVyHyaOB9ztQska2XgJi ABlQYqUTFpVnCJHKepNWEwAAbbG61yEE8roALyMhH4LXSp3UxbOI3Msk4qGoS3nVDuVrzYSE2JB9 hzc00KXuU6fXBFhY6YA+fHXz0KF17dOvzLSnnpDXkveBvOhZ5Mxvd+h7SGoy00cJu18AMdZ9w+99 J45/bJj+dw4CsWwoVC+LbZOafqKn2s840FbGlnN0B+Q3Hl8YshHCkY5XwkvYk/BxlDXUnbkzyaUv Y8i4cM1GjN+ysNGAsJkniEJ79Intc5Ox68Qc33TT/iXJslje9rbTg4FhnmfnFeKLQPPbb2/zu9bo yL/U3dpm96wU4LoH6CQoAawFzJL8ZgiiCOjK47Se33k6yaZepAhU9S+otwhnUV4RgHTymExKq7rt iZQOSbi2xysZ2hV5ZgRALxQ7gEtMBE1CAMhgB+yAFymPEIKxY5R/SqBMJkVrju7BCAvxTN7VmpCN iSzSph7+ciMhDvWz7ti1d088gSaoYnlbWdYrLheiE05mkZsFd8idkJJflz739Nr2+qt72pHDym8i xzBUnqqfc6y3F+S6n9Au7dTY/N5vJCx67oNAKuoElKwRTSRJCNRJLGB7TARodMPwLK5n9akj1jdv VgT4lMWTMIaJGFgPsjOmvrnueBfG3M+D1C7lYggYhx45SD/0IY05evd77luSKEvJ2/7wtNuxAYCs hPLyQpv5NoJCOd7M3rx9ps1tU2i36xaFcdd6DVIbBwNAdQSk9gYAHED3f6XjmjxTMpBvwbnyVb2V vwBvIuFRulQ57lX7VQaZEq/IUukVsnEt8sRqjyACiIQx8QK4fJMBENlCcz+D7/UFFlsTFI+RnZsi EJ4hb1fjgXgVRcD32wgBYpGs2kSSxo5Rvtazaw8hGp/PHb0M9ZGHOijj0FLiD7sTDjksQacAi23q U6e2tdc/Pd+eGH4sJ4MBYNVPrDKbJACpdCMdcGdcRn0r7+/7cd1iYcu76ixJPWnD/4nUyeAQD3Ld c/XzI0hssqvfGZ9uBJgLh2ysFeOVAXGtW+pDKUVg2qIO+sU8MpYca1PhPe85uiRJfp+wde0++WcX MkAiX9pS/ZtmRJ7Nbeu2rW3z1lmthda2mR281pMPLQJGA9NWP2BlB6xCrBAoeWz9lQ/wVxiFkFYk oYy9j4hA3VOP4fogiIT/Ear6qp0F+Z0vepGnyFTH0tk/ww44At4MAN4oaQxMXHkGOxY7k1/CQBXZ AgLWPnnY6nejmCAGU0IIUb8xQTzIpOlYUnWWPjy3CcmZaMjTP0/bwR79Fa4IfCy0ve0sYFUIR117 9sy3F5/b0D7zqV1+gEpfICIEIr/b6Z6x2h3bJ/RUGxqHDRqHWsvx7ttikC8leKromb4xPgkrASwe LjoS2mK5bzm90LOtfPBQ94QxNuiE7jYkMk7+MqjIU4aNdMJNv9jKWNLHPt5ce+NCbRO2uj6Tb7a9 /e2HliTIPybvetd9HhvqYUxq8wk9Mn5aU2/e1jZjPPmZ99bb2sz2m9sdO65v63bUlz0JnQLUAm8R iyPXkALBwxSAKQeB2LnjnbQqUySYehXqBvAO1zjvdbPGIT/XlVZExpPxmo51kgzb1OgpWVahC8IA JMRiMuIFGOwCUQYFoCZmHr1St6Ld63Ak/Mr3qZm4PnkCjEGiuisf5WhjKgZVD71oj23tTEqsJBNd ujgc6voNoKAtgCqhHoeH0vfksfn2hrzP5cewzljKkMJkU//LOASgAYFfYNXEJ5wKcWwMXHb+n0wg h0iddAaaQa72TJgOOgl9WVx25YN3qw/TrWl0Vd/Vfp5ToUvqjdB3+gVRGNMYlwrhuA9hCXEZY/r5 Z392/5Lk+M/JO991r/tR4+XxVJ3MQ7CBAZ1vW7eKQLwbN9+/lbDz5rZh54farVsAfbfmSAc5O1sm RydEvJHIM7nHuRf4EkhU3qHKFei5hkjlZfgJg4lFW66rE8x5e/uTNI7OK3E9SqPcMr7sz+DSYawb xKjt54QtAbQHvibZz4EYIMgTYAJAwoR66EYIB2grrncdgFpSVqmuuUd7Idko1bYnh/fTDLoCSMp7 DQCZla8mrK7ThtZRKwk/+VDIbPvkCzPt069saQf200e1Sx7lB0wmXe8z+iDUgXgzwWND/2VcdGQt ZILu234V4BcLbyJEd0BM3YSTeA1CUEiF0dqy5Jd6MkbdiwNQlQ3JIV68RtVZetcYuk2MAvoy7n0O 0Tv/7LCmvfOdh5ckxj9F3vmuwyYqbduwSRjHigCINjKem9qc9OfnDfNb5trstu6Bti73blwBlyMg BbD1nhukwNL7eU23/gZ5JxFhXP4/p4dXA5Gyfqr85ZES7o2eqdqt+6SVhIijp+Noz7dT5MF1AzCA DuiZKAY/lksTISLReTwFJGAyAHM8VCwyQPWrMjq35fcWLMSBVAFigdDg1qRmkqf3RsvJfXQpEBsA Hbx1jQ4FfP9/jerNLlRebEQoP31Qy2tCZ05taW+8NtuuXOKbbZrcwVqGiOg8swGLiZ7deHDsegfE 8+26v7i+feC6v9A4oVcW8r/vM1cl9R+qtBFDlboY6wLyqocWejLebcucxBtCMPTw2NpohSQhE4SE YHjQpDMOXBPy8q7ahnnls/ELAZn3pUjxT5V3vCMfUIl36ySSnnl1im1/5rXmbsa/D8ILzW3e1DZt 3tA2blnTZnZqHbTrgwGzgAy4i0BFkgHcSjd4DebxnPxFrLouIpLH3gki6HwgSM8zbQdJWDYSqTxd hWvedNDR3zBAmKDyGvYYuk6IERByn0W410IajIQwCjNqojQ4BprEABQgOa91EPUU6CuPF686J80v UrK2WKQLZfIrTjYxAm7KlN4A3y9D6rzqrvo4ZheRtxWiH2ufV16cbZ/+5JZ26CCWWPd7m+jK1nZ+ 188Wevdk7nvvn9uZb3/wz97W/tk/f1snn9oFNNLl9+3EIWweVJ2121agB+iQZ3EZfqzncLK8i87J m6/9oDsGhDEY+45Rq/FHmKN6DsRYVX9p+/rrty9Jin+qvOOd/OapG1/jBiMl3IigEMjPmWSM+Jqp ddE9cLOZddBmeSKeCe1c0+Z3r22b71rZNu57v0AbYgxhlo5TEhnkujaYuZ6Afeo9uA/oCe0QeyTO 5am4V+XKA5WQj7QKz0oX/8cPbVift8vzaBBtLdQpBmDFCl4pWdnW8OMydZZBBqRsG/PhD95Fw9oV mArE0zXQGPoxyXn45j9r6nkRJtDA17F2ugJ2DbRAldAvL1Rmk4DJz4cz0BMAkbf0Y0Ly0+esj3ht BgLRhgEmEvGLU7wKL4q+8dp8u3iB/oTog17SnfK7dvE9Bcr1+/RHQvu3rp9r/7v//R+0f/Wv/63q ls4SxsNeUPlvPL70Xz8iaxXiuS3VmT4wLgB9Q7t5iY98oLfBqPwJLdlk6EAlasDi97CPMSjC1NyV /n6Jd+gjEQJ5mLf1S5LinyrvfBevDDEua9vylTJ4OtKfRCVgBaOUuaTtGus56btl83Z/cHF++x1t fsfGNn/nLW12n8K4PRAopFiwaNe1PQ3A70BnLbQ4Dam0kCdvapfn4Tw/pQ4xyFuEw8vYs+joujvp ENLIV5sXWvMEoLFmIY/fd/LfEea/NlnoHjp8uB09dtRWzOTRBMZSF4lI62ugTp7FD0Zr8kwwHbNA HvMlFEl9qTthCaBNPgDHZGQTAKFN7jFZ7Ir5w4I6D4m2OJRkEvEWkJAF7N49s+3VT25rr7w03/Yf ALhr/atOXiZFP4hAv9ABXagbYlPPTTff2j7wwZXtHe/58/aOd7+/rbjxFpOHz0OF8HjMVb+XQP6X ObUTsPO8DIDFGyx+Q3vlcR6MhiToARCLPCESumo8AaTrxOukDwg6M2YO9+RJiRjyZkX1L0bobW+7 +oXPf6qw20YdzBWekwfcXEN42gYLhYvSK8Y6BnuereztW9rmrfP+6DzfzZ6/68Y2e/e18Q4CbKx+ fzetC2l4KI7xIEkH3PZS/RqPw9H/xaM0Nh2KNCaE0jjHA0FUE1Rl7JGqrh0Q690mmR/c9udP/lvF krwassIvM65audJ/JAUQCG14WfLgwcNtz94Dnnis1jhYATwDxLfAijw1eQF8dtc4Z3A9iH0AM8gB SOohTyT5sJTR0RNlIAVw7PTxYze/MEq8T51K56s8Xk84Xw8XdO0QZnZ9O39uS3vztS3tsUu7VL7a zsR6LGRFvRuldMpQnvvvveZ6y7v+7Nr2nvdf19bcSl9zLwCiHGO4fMEXb+ovEP/gE/+T5e2H/51J x2LfHkDtTImDsJMHkRk7r8c0rvHY3dNBHDyP+hwrX0YqY8jYQfyx73l9h36ZfKqPsIrxXYoY/xR5 xzv6+3Z9/HhWVN+Z85hKj4TbrEWZh4wx+tR8zM3PtS1aB83zLGiXDNneNW3r3Te37fetEGn+zCBm PWNwdw/hzYPJNSSqkC3kmBIgJKkQDYKYFBxFiPyGKPmrviIQz4Xqyz71yhBlIJLfqmYi6ASTn7UG C29+YyIS6Rzw8XCTFzIPHDgkAu13xwFyEYgBYbIgDkeIU4tXJpK3hfNafqx5WZ4a+MVepxb/XAMM dChPVItRPIzB0SfC28idPLSLUD6L1TGNCdy7h123HVr/zMso0Jc1NhoQx0ToFtpEd/sz7YblN7X3 /vn17X0fuKH92Z9/0OSZelv043Nd6E5dePAbd8yZCIv/OxR5+6EnTQY8JJsJi8nDdru9rkCPzmVQ /J1u6ZUn+3hE9VNpRRjyok/mIuM8zg99C5jzjCmEXLHiziXJ8Z+Tf/vHd7WVIiP6ZP0lo4qOOmaO q13IFVI72tGx5i3knpH32aoQbmOb3bahbd6zrm3arTXQzg8LvNeOBMHTcC6QIxAAr+R7/HpUQA9h RAzlQ4o4HH0uj5U0vEiE/BDDhCSv0rxOUnqu5Xl0Xe/amTyEaUx6rGveLKhJArzTCaGjPJTjbWBb QEkNBpNSHoR0QLqDNZIGpuoCVNRP2XroWTt91W4NNHVCtqRlUmrDAkC5PQ044Uht97JIrdje92x1 0SmkrLUVaey0seZ5k7XPOfVnHe3lb/FDIKwmk82kqz2V2XT7uvZOeZz3X/chk+ierZt6v9Aza0TK ontteFDfnx64siR5SpbvOd74C8gpcfgMsD/RxbjLKNR3Iux5JavVDoANAHnulDVGgBgDESnyQDDW Z5pjjQ/g5Wf3GL/8ozdjtqX94R+dXZIkv09cD/2lHhkc3rUjgoHYnkuJ14JI7w/rRo9z6c/Db+kW Am3u383e1DZuWds2bV3TNm67qW3cFwIF6LH8nOMp7E10hAxTTxSi5L7JZCJMwrLK088rDzK2lbp4 EOsHtPY8qXdZwFKeIyFLrkdyAIr8GrRbEbxABzpCfpMCkElIG6084CWNkIHJgiS69qRmBygWvtoZ QZ8wkAVv2nRooGPenxqBMngfPBFbo95RKn0BP3UnlMw1+q/xD+Ref3VX++Tz8kS7RGKDPhsclK/+ eGdM5ec27my3rL27fXjl1nbrbdtdT42R9WcslI9FMwBhTN556IklCbNY6o95izw3nTxk8rCeyXe6 YyAwIkWg/PcpxoT+0++EyKUX4rFzP/Ceii50dFiFKN8a9TX6AvCZJQmylLBOuv6DO1WP+qyyzCs/ nvMarL+lHj1oK/Nog8ucSIIZ8jBH6C4suA988ndTJ5HCOLa0t97mnbi5u67zA04AXeTBy/h7BQJ4 kaHuQxR7p06yIgTC/SKGf9ujc/LEi43v3UGsIiV5qow3DOhEDXisJhYkz0oAJscixwjEABDgL8zD vUwWaQFsyAPQqXvlili7yhvSkjcTDhFq2xpL5PY2SEcdHaernaSNwOVYZCVs4+OHg9XVvez09fxq kwU4kz0zs7Y98fje9uZntrRzJ9SP9QE8IU31IW9IUA6w7RB57pQcFHnmBDjWRNIFgAISxlDXPkov 6lqKKP85YX3kjQHV4c8Ka+wivE4EQRizjGs2HGKIEMZ1HNuMa/LR73VthcYeLzHMlfRGV7z/O96x 9MPSd77z3vaudx32e2zveveR9qHle+xZvDmyhp9xaLz4M2H6bF3yGpXHDNLo6N+G0Qfdn37KK/2A TISimR8INDs343fi5nkrYdsmv1S66c7lbePuG9r63fmJg8EMiQRuv2mg8wrhuDcQRMA3yTroQ4qQ KOSQQA7ld16/yZB0fj7ufEovj4WQ5j+3QhjMeIY8nCwwAkBAUB6q8hs0gBaLoWPtAmWyRqHe2tWh XIUznGfw0g51GOwSiFNbzhCIewWEmoyUH9uhHGFl2mMHTn2gPk3OvMO11G1Ph9W2Tmvb0aM7RJ79 7flneANBdW1Q3zrRHB76nLKy2rfvb2tuOyTy3OP+Z8dL+pBPwnmtUbiP9/nAlkPtbac+syRJ/jH5 k4NXMp6qr3SGxPXQN9caX/UjREj/nVfX/MyCcbU39H36I6/DXPIDPRHffUN3xlN5liLOu99zRPWg AwYM0sXAMP7+iYMIlN9mZR79WpTGKuRJHvInSihSseHB5kL6VJ40ZGbsMt+zeCDhwDtx/vuTWxXK 3dzm9n24rduZ/+UxaRxKRUwKiNPTOAJ0SAPoTRwRAcI5ve++sWlgslnwLvFA3pigrMpUea5NHoAG kPAGq1bxkwIeTPatXwmAC+jz3hpbvQayBp6JcRytNBafkIKBWgj2ADXPJQJ8jpWvCOr8aqfy1L0Q ibCEtijDcxhCO5UzKUI8rBwDzwRAUIiRkCXhWvVn2h79mZ9f2566vLd99tOz7cQx9MWboD+WEiLQ jsIH6XbzmrvarTfd3lbfulWTHfIARiwqwKBt6uY3NIwPAK3/7HnnvX+7JEn+MfmTg59wvxyOYZ01 ltaLMRfoQt4YPq4d+khsyQ1K0gJGr0HUHzwwBIjHWNs2OhzfYM+yFHkwAHzTzW9dSBhP8BAJiRhL xpa5Qr/aPCDdfyFpApEPz9N1l475l+6QO+HyOofeDkE9/3yxlDezZ0Wguf5Wwvq2ef9NCuNubLfv uMbkKAHQRQ6u82wHDyVS2aOENOV1ph4or/jEe9X2tsljT9VJ1Hf3XA/kKcCHRICOh1kZKAYasAWg ASbALnADkLI0TCR1UU+Rw+ce5DxE8+6Qy8faMPjzqpuBJ70mA6k2mJA9e/ifTt4D43qmHT580N8A KHKTL+Wq7kyyw0wmHi/kfozkQVJ+XTtyeEt78/UD7bmn1yhkDCHy2lJ0YDJ5ADu/ebfyAwDGIf03 oB2mCDiul0lHJ8qmT5CIfO+496n2h6df91b1UmRZLH8q8jCO8fLonT5YB80H6dGxh0FTcE4IxXow hg6iMEYYKELzHBmjpYjzJ+yk+TdaYIIxDPnok+fHY0+7ISnAZ3z9+SyPT4yJ9fd8Sn/06QQPBpKv cON5smEMeUKk9SERL5XOb2rzO29vW3at81+g3LH9hnbL5hAEQCMQZsGrOpIiDucQhHOOkKy2sn2v E6fqy5pqDPUgEJsHkGjZdddd623VAB+RG+4WJoDOuiUgDYE8oR2gduMaACxkDYBDFlscWS2le6I1 UAkfAsqAXaI06qaePJTFu2SCkBAou02AEq9z4MBeAf6Q10YhxehNCiQAYjAC/lBj2qX9kpQlTFzX nri8q3sfJpz8E4Ohsng5/1ZGE19/lmtv0AFbYGBM6tsO1Ueeq2BZqWuDPNTKJ84Oz33+ManwNs9j BCYRtEIzvAmGaewHXmfUOd6FNpk7xi7hdbyP+uR5wEjwYujSP0VgrZN5yBzRDuWYI9rA2/r3QAY5 mzUJt92W8vrD8hLGLkRTmsYK8hceMo7BA3Wjf+aROURyjt4QCIOHF9q2fWub26K+bL1J66APtvW7 /ryt2/E+Ab2TBKB30EOSIWRTOqGZ708INqxllA4xICDnDuM47/moky/rsHW97Nprr/GnkSo2BfB0 AuvLuQmgjnng6Rgd9/2kmzzeqcmgcqxJisXM5LosQNT98grkSx2ZxJAXwIQ4RZ5MAFZTk4KFVR0m tO5xZEDTBgPdASIBwAExkx0AbNxIP0axkdiwRt5str352f3t2SfXyNOpLuWtzwPXJAKULcPPNeiv xJZzJI/HoAOBukmbjqO9xj35HsI/RqA/PfjEEAbTtgGK5eYo3TzeGk/WZzYqTo/e3Kf/NZ/kCYCr z+kP4TQh7lLE+aM/OjOA3mPaSUnZ6h+68INFXoViN5B5yM9HRCCEdxKV5t8cEdIpP5+x4icvlIU8 hHiEcIxfCJZ2GLdRMq/Ixo38dxDvxW31emjT5tvbJr6XsP22tnHzrW3D9uXt9p3vz/qlg34kTsjC OffseTqRSC9vYyKJQL6na4vy26P1MG7+8Pt4zhO3HEsSq4aSDsOUzkYBE8BgmQCaQCYyQGEQI54s lUGYICbQ4HGIoPuqH+D76DCKujLBSMgUwDGpLuO01JVwCADh8jO4HBlwu3m3p4F2mwEH6VnIYjUB f85TH5PVwTTDF4PWt6ef2tM++9psO3Wc/NLR+UP8WL9YX6eprNtBB3/vLgv10btCnIXnJoKuKc/X dSAQ29OLifPOe58cyiLoWHOTjQAAShgbEDJOMRTql+pmzcU/8QFkg58+A+ZZ5cd79TCTb9z96Z8u 7XXe/W6+fNoNl0hp0nvco1fmhYiAndF8zchjI7JYB8Iz1oHMmYVXpRi3kGfHDj67tUV4Yc6Yx7SR cVSavTtrNwyFRLizsXDbCuHmtratW7b74/ORzSbS7FaFczu0lr1rZdtw5/tNFL6gM3wOeFjPTLwO IrL4unubabjmPPZGIeTq+YRzy1asvCHhgRSe/u271ypS1B5hbciF0DEPjITOOd3hUSyDn1obQPWD t7ytwKCTJwKAcsQrkK+IEsCkrZqkAh/vnmWA0QsgZgLrTQOD2vWjV/LyOyDaKvKMZAoJXMbgWt9O ntjWPv/mgfbsU6v8BgKApL4iW+ljPQGrywPErDMyPuga0Jc4v470IT8QXHfVP9RBoms+dqW9+76n 2oo9D6gM5RjHfIiRHcOk4WX4lG998QjyZCzR0X0izN2GV8jLvPQvaxD6wTjx8Fp6yxC94x1Lf6+g +ll9T//TD4hS3ob2ITG6hECZhyqzTuPk14c0/vEeGC3d76SizowdujOPGU97cs2h/wJF9/l6aQiE HpFN7su8fyO0mZdM+RuUuU0K5+Sd9t3qV3z4ECNfMd141/tNhiJO7aKZLKR18jisE0F4mZR8kIbt 6jqHfOXBlgXc2W3jyOT7WwA8C+gEAuD1U10mzx3X9bA4NbhHsATsfZfNa6mshQJGABDrG9FA6Noe yvc6OF1PwMJ1Qq+F97296cmIZcsEpk509VdlNHHxNqydeIZEXF5tR8pLHT68o33ypUPtjddm2slj 0lFrH/ri0EdHt6/Jtk7Ua8LW9jjhWrxxCKT8i/rDkXurvXO5tvF39lMCId5BpF7pE2+SF1PRm75R h42C2kUMQMZVQjk+umJjor7mq6aEnsyVwGfjyHxxzhjNL0mcd7/7iMfVc29ZOA7Uv2OXwjWFbHg0 Y0I6EdIyBwY/fffYc05datt19fFTP7ORoFCWa+aLI/VIZzxT6pLuSmezCcMN5vzdDOnP2nMcD83r 5h1ts8rwU4f57Rva1t0b2uY7b22bdt7Y5u66vs3u/2C7fXcW+yaDiDKc6zj8oVYP40grsg3Pf3Rt j6TrZfVqCeCuwfFAcS3JLlq9ZwYIZMGJYZkQgwJRpzeWBSywJKYe6wx4GEwskl/i1ACyAeBfiQok DqN0r8DBMeSJ1UfPEC/AqUmr65q4WL0sSplE3jqAMICPjznmVZdMrMlrcKxV+ky7cG5H+9LnDmnt s9pf3aH/hLZD+Eqd6i/1ZxudV4w6sKxjvKL7rGv0TgiacSGd+zEqV3+Lmg+LlG6QB/1MCpNnHGPu 79CabI8/zgiAk0YINZAGgwfQLB3AGo/aAX3Xu44sSZ4YScpEd9774xkPEQRYYKzov70EbatdAA5J 3bbS16oP66RveSfaLyNjo6e6mcuQJ7o7xIR0qsvlNJ/27JRXGgRC7+im+ol8rKvuYwzUz3mFb3Nz s22rxmb7njl/ydSh3M5VbcO2m9rMncvb5kMfbDPyREUGk2MgyEiqIo/XTxLWOZUXAvW/GIEYTHAs ARNB5/LiIARYpYXlcilbgKADATNgYiAz4AA9k4vwhJyPUFAHZamTgWQSTbo+eGydljcCODV52T3K xISkie398wEJbZCf394g/rczAQYSMYncs3VTGVt0SXbtimAR2q63EPbv3dBeeiHPfY4dlX4b+trP DxYBEXpQTu0odOEtcyYaQPhtb+nKzlisLN43nihAnBCry1IfiuefGtAxoaj0k45Zv6XfdQ/S7N2b z/bmntJN6B3yDErTGEAcP71HD+ZNeQLSpd+kzg5bDF08H2OP7kQG6Iz+ta5VXcyn64wRi2GVQWEc lI5n4uOUzB/1pt8Zi0jwZm+r8ujlcVMbjKmfXVFex3hOyoCvYIING3vSwkvNJ2tWwred/CHXbJvb urFt2nZ723TnjW3+7g+3zfeIRP6DLkK6a0wcyFKbDByLQJxnvZPnRYg9j0nAuqZblAJ5CRY13oOv 8KNUCBIQJBzLv7uFMJT3PQ1KAReSjINGZ2P9QhzyUw9vBQBwwK+BlOQBbOJ1QMs9wJ/QTAOlehHO txDbqwyxfP0QjnrQiQnBq5UlH0kTQrKWyu+AAOWGdv7UvL3PE5dXqB50jfeMfrRLP9FJdWAZPbEQ Q32h/zUGvc/DPaUhtFltk4ePI07Jw29+ACZCe964sMQ4kOb+SdjFYl2TP8sSUDEO3doDYkCWUJFH AfQjoH/Xu5d+KGqd0Y9NHbWZ3UbGC2JyDfFq/jIvfD6YF1XtMfr4cI7HwAsxD4ydx0TCnDHvGZ+0 Rz1lgBmXGr/MXWFB7ckQ5FFByEN/eC/P7/lJx3o/LmMbHG5SP+a28KM7RTq7FWHsW9u23nVrvqu9 +5Y2t/fGNrP3eod0eBQTSN7Hz4DkcRymyUtBGO7l+Ha+VR3Pg0u2wnTKQuMoV0DA8tDxMHvaeQbL EwWIsHLKj7exZ9E9Bi5ECXmw3CZRH8h4PI7UHfEkeBAkBlrKeUI0ibyxbSJ0MjsvpNB9yFPPhQaS qJ0pYTgvcvlc5QKUde3g/g3tlZcPyPvMtONHdF9WzG04b9Z5CG8Qe7t6QgxPsMiCweE6/UrZAC5t Q4T6Ks9SP0e47a47VQb9QyCTQpJNingd/7u1wAlxuJ9dLsYgxKO8vbbaznwyH0lbijjvehffI+hz Ib2oFz0xdvQrY8+3H8ZQinTCqRX9V6S0y5zQHu2a8Iwr16qb+a4QGkwxRpT3y6qqz55D4nHEcGp8 h3Ctr3UcohGRKA9j77e5dfRGhMrSFvXmVbA4BdrdJMPIs6HNWzflu9o77vDHGTdty3cUNu1e3mZ3 3dTu2P2Bdse+9w8hG0QiVPNxoedh4rOor8mKWw/QA5YR2AZI9zjxVCgGeRi0bh0ktla4W86HgQtQ C0wpF6IkXYOGBVGZ5O35uKdz6mUisYjHjh9tR48e9ZP/mhw8IHVhlb3A9iRh9TLQqTODy7HIQ5kd 7B4pH6TfsH51O39mtn3p84fbk4+v1D1CH01yf+5iEKLLYAUR0gLQCJM6IRDtakxt1dGDfqsfTlff Fn+q1/8yJ7CUNaYPhGRFEHS2N4JIGAv12VbadaffCPeZh8wr6dv8vtpS5IGcgBrDk7HKGqrKeg3V t7n53DFHz3fvM3NjzEjfImz6DphloCVcQ/xtO+gLeSCOPKPS2ZljI8GGUHXQdwhUG1iew04gnnkx DoyvXzRW25S1B2acdI+6a8PKXkxtZOzWtzkRiYetW7Zu9v+szu9cKy90c5vjM8E7bm9zO9e0TTtu arfv/IBf3al1T4V1eKVlTEJ5mgJXANdB7kHLBNJ4SCBF/GoHglLdO3VwjNa4x/xWvFs01cmR/NUW Um8LTEGe0IPJ19H5ZGk1gYDj4KED7cypc35IV7raO6odJrn+59MWSoONPtxPvfSnSB2g0z7rJM5Z 4xzYu7Z96uWD8j7z7fhR6tEErlxpQccieaygrLAmeQBRJxh15TwemnMm0u2ir485X3/w6k9OsfaJ waA9QKh8NmqMJeUjtM04xcBl7AAQ60CMwrYt/Fo2mylEBzwAXUwcNg9qrmssrJfqJt1rDwCrvrLV XRsDjEPeWwRDye8y6CI9/Elkzw/jkzEIDqofwZ5/Y4SBRJgT6tLYUr/XbMYT48hYkCd6UVeRgzbQ yx6zzzHYq51QsJifxNA28yM88BhjXh5IBOLl03neo9ssg7SdD9breuetbeP2G+WNtC7yZkK2q00e gMZCt+J0KmXwsfp0LApHomT+guTQ4QNaqPKsIRbAyjAYHnBCmuwosUtVLyGu1bppCqa0Q3kRQ9bR RHEagx3LBzARr2UEAn9615OZjQM/eCUvg1VlJesoRyjpSSM0qGdNI2ETMkayHspkkG/Htg3t0sVt 7atfONaeuszOG14U78N3tANefjXK+JQ1zIO9kfxpg/HI2DiU1cRlazb5qj2O/KP2lDw3Xjnte56b LjXG9COeDyBkzGvs6Adh7f79+72ZgPfwt+ZUhg92LCaOyfPufAsb4FJHQrZ4FrenMbcXII8IwdsD EDR6gJMethqY0QeymdQQT2LPxXypDeaPcadMcEU7akNtgcciLh9t4duCBXykwsgiajxeb1f68DOO 2rQJeViWgAEMI+1F31qq8Pa9N6E2yTPPbfbbC36LgY+TbLujzW69vW3aKqJtv7mt2/7nbb3WRngg /0sCjfL+VBrJb3mwcH4j1ov5WGzSmcz5LTPt5Knj7dSZExrAAKSAgNR1DUwGB9eaB6a48AC2yAPw 41FSTxcN5hoDkrYhmMIThwvs2DHA1BEiOfxR2bLAq1mPGMiUJa/CMTY8OkmqP4SNbJeTHokhoF9H j8y21z512DtvRw9zr1tKkQCQ8MCTZzYFFCbS6ep3EQIhv0mq+qMjIRcWPP0lL7LUxxPZjas5YC2J VzSBqBsQqVyNd/pDqJWXaQ8dOtgOHNjvh6U8g2FslvqI+x/9i7PSJ1vbBq1kmBeNn+dJ+rIghzxr 6JPSxz6o30rDOBjIus5YMC+qh/Cd8elGkHaou8IrgJ1folKHylJG+rCTx7jWj+2QFctZxzAejK3m EEIqDzpEb2ED3OCdLIkkTDo8mObKrwQV4XU/usQzU+fsHP2afOXUhOpfOt1+i7e8b9/yoSIP7EXB MDGTIKXUMRonjckqwAEEFn1MEOn1DIR81EGZxPQjQCICiYDAIg4BiAF3SDSsAQBGJw/WDvIQLpSF r8EqsLgdgZ1jEdA/9V0VvdCHtrK+ilQ/6odzIbOE+iS87b1n10x7/NKW9tUvHmtXHlshz5c+VHmI 4ofLjJn0dvs6Mg6MCd8wGGLuPq5Fereh/NEj/aDf/GHvYgKNBgiSMTZ9LjRGvBlC+QI68wZRIAzE OXiQCIE/9mLLeOmHou9971GXSxiUfpkAfW6sK15Gx3pFBsvvOeiYQCeTB+NCWdXF2wA5h5Szjb9o tDHUXDKvnvPeb3sGideQzC9kFqC9OQEOVBa91sgLrVyR34ShK6G5Ny9UnzcelOa3EpR/lT0Mdffx o27rLx0tIaC9no72Wp1YMYgzbZPqnucrp7zFwM/DN2/wxsOmLbe1ZXTCBRkQT04sWXXMVkfie24s +WINoxS7Gv4HtA6UdAyAhMHuoK0NA02HQiDHnAZuJG3VkbYpE1DUMRaDzmVi6x5ktbiNyWRK1+iM N4gRKIEEtMfngtEH3SlbYJnVIB3hv30+dbB9+pUN7eB++qx8fl2JsQp5ymBQDuGcB6vXXXdduwEC yTvx0Y2EXD1kGfoZgUgcId5V5DnzEdcZcGViPeFY6W5M6DtjESBAzC1t/4G97cQJNlYOOcR+z+/Z KKgNBep1aGiCBky25qq7yJUdMeYmUmPN2PohKpGFrgEwsmb9RpMBAgXUtIGxZh3DHAHWEKf6aA9E +4TdEryiXweSDuiYPIxnfsKAHpDCYZkErwN58qtZ5jb1Vr+C48IF7eeXxZT3dZeEhpKN9J/vbPeP Nc7nk8HL4maZTFkzBkoTiEIGtAoCdoc9aihhRwaVSUwHtADmQaLAVz8pALS2xqojgMrAF1D40Rt/ NciP78ZOhLgB+EhgD0y/R1p5N9rP5AU8dDrhTPJSp/uiMIH2C5zTyYY4U9AiaRc9VbfGZMe2te3K 4zvalz9/pF06f73GiAmhnz287ZNG+9ElOuJ5brjhBn/Kq4wKY8LOkh/a0obyVt+sax/3pf7jlG9Y 04YfA6g9QM6kOzRhgqlT5fEM/s8e1bNn76527vypdumxC+3I4aWf67z97XzOV3MCqDyGGn+VjeES qTR2eFTv9CmtDJY9gucmfWDc2bU1DtTfVervatVnb0Me5kjlLTo3eaRnRHMqMaYkK1dikMGRdFJe QjM2PEIghXMyDn4kojaYB+aSMTepaE/3CNshDv+vGpJC2j5eOoJB8G2DQZmuBzrEO5EPXFAfelFH xml2E2HctvxLAkzkxb08uU84wbZtfQQwAA9446ZVgfL42uRi4AJqr2m8vgkQiWvZvSmgAxKDFxCo 8wmXqCeTkIGIR8vgZGByj84jAZz1lL4hQ1n0EB2xflgwDRgTnwnPein65b2xAm2VCXlUzl5ind80 eP3TR9prr8zIE8kgyCMRYg5lGSusovqXgVf97gPjEYuHvh4jpdd3DkgnvKSftEt9VefiP8pi8wBQ o3fmosaCtpgf9NZ9HbG+TDoW+9ChIyLQ+fahD129w4YQJgFUwiHqKk+TDRgIJH3Y5ewbCMxhrDJ5 spaxHmCkG1r64g+LqM8QCPLYCxnAjE/IY7IY8OukQx7iBqhgCY8eMP//evvXIL2u60wThK2rJfEi SmPJulISRetCYUAQSqVgGJHOzkqlUumMVCqdTqWhrFQKgjEwCIMgBEMwREIURbFoNpvNQtEcmoIg GMVhM9gMhYKtVjlUkseuqXZUyLLsdjgqZtzjmYmO+TGX/zPzZ8/7vO9e3/kSSNqu6q7OiBXnfOfs y9prrXettffZ52QZPX1jvJk3ZaUP2eG0I2tkSV1WRnO0w8J+VA+iLaeGbhM7wT7iONwvAOK6dMrY KOv5FnxRd1RvljlPKjJgDGDc08fgiBoAJgaHkBzaO5gwuKA/CmQADt02ziwdkn/TLsbFNeolqiHI DsoxwshIBfHeJoRjo+E+AkwZytYSN9cxvGqjgMDY+P+mCCl9M17GQOoVAFWdlMfwBkMCkKsr0+3h B5fbn/zRkXbh3ERb6fvMnNr1vpFVOYhEaPoI8DFkGwEk+SAvgMk4zJ+uUy/Lv9kt/SuHrn9wOvXZ 1fClek43JbsYTF6dr8UbAIRxYvxLy6ua+2zsCJzbbvuiymAgagfwiE+iOOMi7WP8kWPSrhhUvDER ZVq/vTFU97y6hSxlK35gq2spV6mUIoGNE4MOGHA0mZsSrfgcFS8N4nhjX8hucD4Zt42384O8bZ/q tzIWOygiTgdPIk3IQDGAZKfwJD7YrZ29fxkb/TgC0RdlHeHiALxY4nrodibggYlKGyAUy5zGBTVY OnakURl7VZRmzxrQ1JFyMRYaDyF4eyz14ZURlCCmYjQBCe/5G2wIHi8nHuDHhmAeEsmcInZQcITC c0Ae8DMeBJL2zZuEZIPz2GJ0fk4lytabALGoeLND0O95RbOjh/m3jJvtytMzmvvgWFSWeQYyUfko lygq3sdkiHE4n5Ycq01eSeB8GEsMibEveVk5ILhu2w7RR7Ib3mmKbAAPS9OHD295bkOEzeoWsllq H/zgsR3BE2NKOVKd/cgaI5OOaAMeoscYuz2v+0U+XENH0SlzIZ7VOKK6TIzOqVNfVEGHjgKj+pEz /2cVAE3gMEWOxoyt2x82EPli9ESBGDeARQdeaKJveNW9ij70z/iIUhyTnlKWc/hjvOKButim5I4O uA9oDDLIIBPQVZZ0lLeCiYy7YqQx1AJQQnaYMQrFPPftgUZgk8DV0LgRQJSHKQPEgtQAVMceS9cO agD2Pm43xl27lhFQHsIRlsNLCcXkSKF+Rrx10Gpg9Mc4ipcCUPHIPUDsJVeVJ/IlXYTXzDkii15X R4Ost7e6crA98uBS++H3lAYdv0NCZlyACyOIcq1gyQhjQiEomZybjwBiQE5DetmKauXd7WgkUx76 5vmJeF+7ful66rMrKrPqdIxy8bZ8yGS+HTm61Q5trOtcxiylozfa3+mhKP/MqoyoUhpHB3RjZ4Ps a5Ifnm3MOtIuxuN0TwaKUSYlisGlb9Id0jHmf5kHEU1sDyLao520xfNAvk4rEImQWUWrwVaGOgYa 24GQp35b/tihbaF4TV1HSOxWsg3wkbd+w6/rxnbibHBacsAiUjkcyogYU5cFY6F/gyeDCUAAzrjn r3uhrhAbXhBckavqUJ5BzUznvgfcB8WRnDLIZdLfvbvqxMjTBxNC+oaICgEJII2xYhCVEg3lqBvh jsbS+SmAm+SpbLg6BzwGkI8Zr+t1b+aPKyrqMDY2jJ48Ptu+o7nP008cbGurmqf4fR/4CEBr06LH bWfB2MW/7mEAeOFJnIsUSpmKhNxz6iJiDOEl/F7737f5NyUY0vqhTe8gyPiQT15SI/WjbeSAkm99 z85vipIaOjXDcDAqEfzCSybvjFvORlQpC21yz05B6RVpFpN7r45hYD3SMD6DSdecQnV9l16ir/TF 0ZFYOs5ig8DTMxE/MKWc7mfqEF4tL1I80Ud+dbfq0qfAPMXD+DghR1PxPYnMiUJ9DBg/fCUSpX07 PLctwGgMpLA+Mh7PBwFixuhFBI1jUvzuQvgMxoZlw+R3GOV6gQLjGOXrlBWNe3zKkNqBcB6igfKk Aww+cyAG5rBrL8yndxM5IkwGhTAjWDxUCbp4DEWAKJLfzHmgoRxpVLW1PaIAvkxkBzAaQKRfuu8x 9nruS3wQmaiPN2fD6OOPrLU/+t6RdvLYHRovvCBkvHCePVDfxsg4dK88bXiOZ8cj2lujUNeVJ5vg 29b8Z4o8SEYGgGCn/xS3//iWgWqDV38VXenD/aguhKG/613Xz3fe51es49ycFYwByOAhzUIHpNgC D7p01Bkjgwg9OjLEIJlbxuByvXSZhaRB154viuxMu+Nx1FC7nGMr8MPr7fTNWODVOyXgSbJ798Z7 2q77d22jm0/e3N65+a727s33tH0rH1N/yXL2AnIBws9+zDt9RUcej35HBrJz8X9gv8oINImc0o8A iBOoMcEbDsTv81R6wuAqJ8UIDRx76tzzwHjG0dOVeHnKxrANMrVFwzBVShmPBvRTCj8gL8MxxhUa L0NEiKDxgITUUnYGgGHCH1vyC+R4Xs6LX9riOtdo2+DFOCXI8jheoWM8koVBrrqu5764l8UUos/p E3PtxeeODh9JFB+MgbQTwy+ZYBhFaS88x/BQmGRqBea+vbqMsfqO82BMC9d9xxqawbu7XmRZ9SwX +ld7GN21wIHYZUC79tAq7/kospW+qGswcNQ9XoH2crPlxtyl38PTAwp+ux6Gp74BkcrHBpAnPJbT 7XLtzgjdIe+yuUr5GJsXlMSXU6V+j9fPl5ZWnZlcC5y/j264+6b2C+vvbO/83Hva7qW7LH94BISM xQ5NQIGHODQANEQ3Z0ujMuLvE9jeNAsGKCoGgyLKS3iQBg9CRSlRFl4RIeS8PB5CiWACngjZisE4 RdV+GXQMGU+dZVoEyrFA4Agoo3YK5YUArkvJuodCuI9Rs8KTd4bSRi0c8Lu2F9kQu4HEsLoXlGLg rcaDkBz2Ox9WMLx4/PQx19bXpttjD6+0l1480o5u3eE2acPjUhv+Sql4rnSzZFTHELLTta4M+qN9 G7woCzMxJM9HpORrwfNLJz7veoyNOpF12inw7PTfrflPbvCHYwpgqKPfzAPUz/T0JzweG5ENF/DE qSL30UReMhwthgAu+lUbjkAYofiqt1Zdl3Eha/McPmtujRNzisgcizGLSua0NXI2us4CyPs+f/uO IPkPpZtPvrG95/O3tXdtvq996FO7DQ74t4PTOeBhO5BBRPrXl9Lt1MTvrjAPozF+jAjF1xIuAigj oFzubwdCGRjXEZQ9iX8P4ImSQkSSrGpwv1bMAhrIRqDoBnjyHInfKFwKVvnt3px+MBadW+gxntwf xhXwEb3KyFJvKKd69prqT7/HeeK+PRW8z88o+ky3FzX34TNVKyspW236QfNYH8iIPqAReHyOQXBk jAHLflIhEfk4RhSjieFM/tb1/3X7l9c+7XZINWZGRl/j2jnq8D9ESwZVzpGi91NGaoBwTfcMCB25 7tROdUrPmSPhMHWfeYQA57IqV/OKaseR3o5BbSITHW17ODYZI/MwJuzpR2WkO8BDe0n/w8t7N2/b EQz/c9CNJ25WH9FPFkXqcQnL6BBOEJ0p+qFUT5jxRl3hSeUgmEdIIE5K1297+m4UBpTOMcwYbRSJ AiLsANAGiMJULunPsKWdfvlUUu0LGxld7yseMm1E4QxszJOpXxuo+gt4uqHaCOk/PGDg9JcoljaL aJvrfnJdPI/dTztVdrZtHppqTz6+3F564XA7evgOXUMm4YutOJMT2aoEH9TlHnVjrJRDARwxUMAV QzNgfD2/MznF++q6POG+r57YBh7+gTBgo42nNne3pz+/t/3NV29t/9+rN7cvL+68jw29hKcYeAwT Q2FBI4ZBf55cawxcNx+UQ7fijYhkvnrZrKKGT0evEdgAM6tW6SMRSWW6A8yr1p3gx/LtANP9ZDCR D+T6Or7xnlt2NPz/KXSTQPOB+Q97Qce8dH1i45aDAwiLMAfbBPMgnftb1aDcEagLNQaYlKqA40jC PYxAx/FGMWCAkesAR160//t2G9w892kXD41wBnJ7IyNLFDPYxE8E2o15DDwxwBhkVqU4pxxlOv/q O+lZoqhf8lrirUte0c6zJBuQ2qIdA1n80C5GznyH3xV9zJOMxDzOT7VzZ6bbd1844uizvIQM6S9p bz3cDYAyrvBakSFlOcfwEzngHZ6S+vi3zg2i7s0nl391G3h++Pu3t//Pv7y5tX+7q7X/g4hjp52A 8+5bP+8oEa+vIyQePPlHn0rJ+e3HCiKMHtAmsiiNEZBsOMgIWYhfji5HGdohjQNkqpfIGiB5iVf3 y1kYdOorOgaMAEz30KMcKjL78Kc+3D78qx9p79l8b3ujUizSrJ0M/38q3aq0rYAxKSJVhSev9okP R1jpzE5AY8sK3lT+xUiBoAwJ8rsrCBMDxDi7t7bX6AZmxXcjcFok7x1vJk/pZwDy/mLCu15lfKy3 20NZOWJQbfrJNAIUcxi8eXBZhAsI0lcMMMaX/mOMXA+N88794j9zNFbGeHLOeyreoq8jgCgwVl3G isNgvDV/CoACfK/IqO/Dm5Pt8tPL7QcvbbUTRz6gcSZaD/Jk7kj/cgwoQ3x7HJJfebXqm+vOo5VW Qi6P0WGEEEpTO6QRFX0+/6VPtPakgPLfdQI8ne7f2vnfw//7h25Tv11vvV8iSRl2LfQg12HrTYAb gCXvx8AwKoNMbVTUMvXUpsATAEVnGCF2lvYCxg8v3dnuWv14e88Xbm83/vbNopt2NPD/FPRuQCN9 ek43Bp4JxsM1jTEfsQnvjNV6kX5IUw0eVol4zmCQdCPCW6NYL5vKKPLh7Xj2KB4jxXgxDM7zO7lu jAWhspnODw25J2HzkNRr7oCsUwwzbccjimmRlWlhR9ExsiiMPpKCpW4ZYkAGwUMAxHWPSWCpZdJ8 1oj8eqjn6AagdI5hFHhqL1XSunjcpaVpRZ2Z9m9/eKxdepJ/lEUERi4YYKgWLDBWyEvAjEdlkGHG Rp2MJzKo8Ug29tqh8uz7fy3Rpz0ooHxd9D0R0ebf9KPo/i9cDx4ABcieOcKmVvQKD0Qe6cKAipHT B9f9CojnH+iYcUenNiDOJc8syqROlq05ZqxO09xP+N4tkOwRvWfzPe1mgQTayaD/l6AbT9zUPvCp jxgUXoavMYjqWZwjNHKRflhVjC1n7Ngytj76/zwo0pO3Dpry6JWTsnGUeQnGNABmu7JLwPymHJ07 75XwAQzebZIlQNbQda/W8L0Mjcftv01SzAEBKd4wBsZ1921SP4oO7KPyRNNGHw8RIMCf6khA1AnP 240UA3G7rkN00rzIk3/ud/AINKzwGDyUh28JlrbPn5lof/z9jfbjPznaHjjPl3Z6KjhGgIe9efXK hiMSgFKfyaMDIBuyyKtrnSIf+B7mDdS7/7f2BjzQRRGRB/AQdXYADlTA+v89e4vHxrgL1DYSjcmk Pjwp1v30q/47gAtgdppqo8BjQi46AhDo1gLJf6JU6z+Gbj55i3jbl/Eif+nBMvcYBrADHj/stWwC HiKSsyb00u189JDU3robHApFwZ60YwS6x7Kiv+DS5wAIjrKhNBZD7F5cUaqiUHJjdu/yMJD5QPYv AVSMPt6ddEWMKU2BOcDjZVEG5cHRNn2oL7UPoB0pNZfyyp0iUMCT9BMqgww4whvCgU8bAP1hHGoz 34AWEAGyzuGnQFNRBw9MHadQ4v/Q+sH2nWdn2t/+1bH2nedm2rGjyCaySFoEr/AkRR0Y3qLNnAOP L8X4oSggQlnwCugYCxTQ+P0XGzDnM+3S1q0DeL4mquhD1NkhZQNQvt8B9szhfdJ35nejdKuAZHmH 54CVDEDE3IfoIqPas3RXu+szE+3OT9/Vo8h/eoDcfM8tXih479Zt6nufwPneHcvtRKSDHxHPzn4k Vxw1DsS2bgDhnLHbjB0Z52F2nJr1h5PDZnoWha52+Ym7FRoDs7d0QVVy42kQMIxPnjF6P53vgCtj teHqdx485p7B2duNEYVhwEPUIXKMPDsGqoGRjtngaU+DMcngvNCgOgwwEagiiQQjwlsHHIClG8NI OGknIBw7l2HOzsBHXvMOmBVxdI6gyf/hLZP49EVbiwvT7eKjk+3f/3ir/Y3oiUen2soqq2YyPEjC pw8cU/ouBWnskp+jscADOSrxPozuVbTB8QRMBR6R7o1AU8RvwCFgXAscyHMh7tf8SOd2eKKkKgEP mx4Bd5zabLtTRgpQ3qko4vnIif/0qRYAIVoxid8DQFc+ZoPlg/Fe0h6l6TNeIdupjaKbdf8jv7rH QJgEDOgbuUqXlenkGWcyD452bujIzht5U0e2y3yW3SY4V+5JXrvs/aQ4Px1H2TY6GlLD3RijwBgp HSZSzcp4FtryEoaGsruRquMSvqmX9faLYs7G2+8BwlFaFM8OZbWLgQJCKMZPeQQ5hE+MOUvg+RcW xSNeBr4hAE39fl3CgApMiTzzBs7KylpbEs0vCjhqzy9j8QDPwoY32sCJQFPtzKmp9u9+MN/+7//+ cPvBS3Pt5EmUCwDw3IkoBk0HkGWlY0AtByWDzX+PIy1gpYcVry5/U/iDGO+3tt67HTQFpH/5MnMd os614BH9zdduVXs4xynvD/vI4u72zs+9+3+x+YhBoojFNps7P3NX27e6z7LBSdtx2+Nr3JL1OBV4 kCXp4cvxetsXbredecFFctuvc+Y4jqJ2QtgHR2SdbVo4uVrkifNOlsEc3E5NAHL/sgX0sstKFHlZ VQVtwDSqTpzSqAGY9jZ1pUe5R4d4VE3ANdjxNyIZlI1c17LIkCf1A7Ixpp7OuWwM2tFMx5qUU8ag 6/dzDohq0PQZjzw9Rf0OIA+ae5RVHQmlUsBaIRr6Tv9FAGR1db2tb2y15dU1g6ZCNd6q6qYv+jnY NjfZLDrV/se/3mj/x5+st8tPT7VDayonsGe83RAsfNJM2oP/OKlQlwtesAM9KXRkPaRzc1kkGAfN GIiuBY7Bc1jg+TPdF3h+9JLovxHI/nBXm/ovd7V3fOnGHQ3vfy4iMhBFWGYmxbtLIEHmyM62JHna ziQL9M/jhHyNSfqTIftFOuxP8rezRPeAiGvot+vw1s1bR32+c+NW34+BI7/IbVRPtuJrrk87iSI4 sbLRnMe+uTfaFa/ryarS9q78iDElEgRxNUm0IXfwkL5guDQYcKHYPsdQfY4GTQFBqRsrdLxrkuiU VA2jBqQBagwyAJLgCKm+noHDgyNR5ytAYtAZPJQlXfpOueG+6qovVoZQhFdXdBwEHyDUNhy83tra oXbs+Em/QJZvLIsn0jYDKMIOv/RD9N3fnnx8qf37P1tQ9NloP/7j+fbg+RV/LIS+kRH9IZ+MG7kA rrST+wFQOZ+cZ3wcaykYEH7rC4o84+B5IOf3S7bXgQdQCiTjBv2fgm48cWO74e4b2tvX39k+/KmP KJJ9xPPbPK6I8VpPXRaMMemPruk3xDkfKuGjMnGC2J1sTTKy4Ys81wAQtNUdLG0hN9LPCbbTsEzu PuKEA07kTX/S4TR2hJ3F2VZfRGDs01MTO8bIn/rePa7xZApDf9iywBOPl7CVJ/5Z36/JsVGsgeUd GxgaMwgGjlfsSge5HClPxzYwHQOmLjRAYAMS80zGNSCA6vmErnPfA9K5Pe5B+guz9BdeuB+QeLFA Ryaz3C/wGDgm9Us4Fo8IyF7egIefLHevKcoc2jjk50D824ytw8e85T8vAMoB6Jgl7sig2jYgZg60 s6eX2p/9YFHgWW3/t79ea997Yd6frWJrkSf8llcBZzt/JUc7IFMcAcaXlI/6ApDOPWlVWyPg1FF0 HXA6eHYy9v9YmvqWZCe6/0f3tx/93Y9M9Xfs2DF/LQi+kTFyh1fvSBb/nsvKFmyQfUycJ4vQbxGv WGxsbPidJkcl3eNVbgADiDjyagDLyMi1bIIj1yYm9rc9eycMoiy0qI6P2EBknz45x2FCiYIcASvA 8f+f7XYFlfyrL36z6ir5xuuBPj4oyLeIZ2TU9Y2tKDxGSmdWPh2heEenCILfw/yE824s3cgrGtEG HgFwsprFJB2PUFEOg3I/KosRscrD+xREF4wLENagEQh8AQDuAQ7Oa+AMlPac8omSRiU8Ew39vWul CQjrkMDid2HU9sLiSltcXu1zHgQa8NSXNAtABqLaW1s94H8I/H/5q8X2P/7NSvubP1tsjz3E1zol WxlR8vc4mfCUcSL7iuKO+vDp69nWH0NUHV3L3JT3Xfa3k5/esw1A9//KDlEH2gEA/xgaB8kzf/i1 9syVr7W//ZM/ad//+kOir7d/8clPtm/82qoAc7d5xDPzIfn6v0PJZrAbPjfVJ+vYiR0kKbyuc00U 2wmRAeXfNLLHLSBj3ElbJQNnGNhbQBEABRxOr8THXoFn3z72ouFsqJf5pvXsD4iQPck2CBAi6wO7 07nBCp/YqWwI+zKpvKcJuk/5quMPgOTfhHRDXOAzqwEIKPTeM1O/ZgoQqBvDiFf00p6uOQ20wSZS FGEYkFPBLkgvBwMePMpoS0eEGuPSuYUWr0wayM5lhM0zoPQXYya6YIB+CAq/1XeNpaenfHPu+PFj 7fTpU/6uWT6SLudgENIevwMkOwXzGgeQFA/nwdgDnvm5ifb4o4vtr/9spf3tT5d05L8srLRTJ5AZ hoN8RCz3akwxJMYnQPSlajsw8W5HgLIopzrIl77hi3mpl/l1/It7bx6B50eHb2237vqn22jq1mEe 8HL0jq1XtHd+4RUGyJe/OGtgXPzknOiT7fSNN7Yv3Xyzj6fe8IZ2j+iLb3tbW5rgjV90GJ0Acr/7 InIWgs7g1REDHWXZ1y+kab4x7ZckWS0FDBpj1/nIqXQ7iQ2ImININgaOyyI70rc5ORJkRARLRKEd 5EME4iU2t63+aQ8dbx3eEuCPe17r7MrOsQBEG3n/zNES3nTOGPinzU4V6UNlAS+0i4ZZ2RoMLgaE J68o4nf1RfacMhqnQiKUHa8IkxKi83JCthpX2Xj5hHC3p+sGkQWUvjyX0DlgKQ8doeb5Ax6F35XC OP1DMTK4TOTYfoNhB0DFVygGX+d2DiqHII8dO9oee+zRdurUSXk7ol8prfphjgNIdN2KxWACTp+r Hy9p+trBduzoRPuT77NosNx+8idz7cf/Zqk9/eRy2zgkXllFw7ngpUV8Twyl2AGIf6gmqXkfCc+r 8chA4kTiYUdyEeCO/+odAc/Xd7W/O6zos+t6uvWfKopcCN3/VYFM5aF7b7jRdOqGG9opgeP0jTeZ Tr3hBoMEurfAc9NNBs3c7t0yXsnGGUJ4z5xCMrNzg8+yB76ZNtX2Md4+Vra7ZMVL9QQixkY7VTdR BKcoA9W5da42AJCzBq4BFpGBJyKiTTCv0j2DQWQATeBkAuq8Kp42VtfW2ik5zKNKMf2/i3COXc+2 xRlsMTIPqMUfYJFtGEC0T9+dZ3/ovVISjjESBAH6yB2zwkDneAGuo2SMsiIQndXzCsBjw+pt5N+4 0ybeJV4U8BSSvZJlTx7A2UgkMHtdUYwnYMk+N87hC8+CUeY84EyfAUD1F0AV355naczLK8vtxIkT 7ejRo97nhqOwUagO/VkGElQ8Yijt4jjSppXKCo0cxPraZLt6ebH91b9dbf/uhwvtB9+dbn+k6PPA eaULiyhYhIyYfJrv7mQYq40kbSfNjVPhSP/I4e67T4jfe9pPfvIX7c9/8ueeZ/z1f/FPsvom+tGv XA+eb72np3Zj9Ht3CTACySmD58Z2Tz8aTIDn9T3KvPWtijIT1hd8mUeMSXPQGKWipX6Xxy4QcSTS 1PsvEwIQ0ZY5i6+LDICu1+iJ81CibgAIcc7kHrnQfr6JgPwCxn3qg34oBx8AEP4AEJuTKwI5hZMs mZbwQp0do35jg0MKp3PG0XmhP675nglw6z71dH8XO4wh/kUf4MHYAAXGgcH6ffIxY+S80hcEaw+p Bo14hUw/LxLIHLEAmNOleH+EVWSAwKAYgamAMyDBE+fZB31KKF2BfnvSFD5skH3/mIEtI+YFO9oo gueMJ06hjoCbaOUHtOKR/nOvFIqwEWKUGwcQoZoH3WfuVM9z5hem2oX7ptoff3+5/VuB56UXptoP XlppV55eaSeO0wb8oMhuVJYVymW8WQhgrPfc86V28u5727e+daX99Kd/2X76l39poDDngJhvPCVe vvzKV7bTN796WLoWMADLtQD60fRwnyPguccRpsAzAOk33/aO9sndd4mnyNAytgPTOA0U9EiKja41 r1AKZx11R1gfGmTFy68+y3gZKw9gs9UIvWP46CxyHZcx1/g9imgYM21jIyLuI699+3pqhjyli3pF IEadyGDQiGpnSF3nyHMep2SAo4NnBFq1Q4QzcPSba+aHctiHcFG0i236TJwBg0GhlIZVj3yZhcrx iqEItADGgClDqIuHxKuUcIg6GH6MEjBicAFHBjYwFwHmHqkNX0fhQxBZFatoRfrEoNwPCgEw3Yjd PsbMU/qeBtWR6waGx0M/w9Kv+xf/nhd158EYHVlElM/cI5HB3kp1YlQxLsY7PXdQIDnYnrs6LwAt te99Z6Y9f2WmvfT8WntC86G11ZSlX1aD9kzsa1/8zd9sv//7v99+/Oc/dkQJSP50NDkHKBAp1OnX vc6A+fKrXtW+8rM/2y5N/Ur7ux/9qD179BMjcPzd1vXggb5082val9742nb+Fa9o53/2FWrnVe3M a16rNl/fvqCUbPbOu9on75rQ2GJAATWyA+z9XAaFvjBGylT6iMNExjZsETul9zFxl3FztBEjc2xF OkRf2XGOXtCZZMl9ydK6MSXqYOTeSEx//Jbe4YWvsEL5gg7t5TUBz0dsh4A419klsrJ6yM/sCkQG uYj20D3zXcDh1JJ2OngSgbq++zn8ZjrDa9gy8GFynYnVysqqVz2YI1wPIIwghgk5laJMZ5xBYiB+ vx2h2sjwLCEAmPqchyELrBtheSbvelA73AtIuxfSoBAOAKROhJ4+QsVf+k67lNO9EUhjFGkb8BIl F/xvCvN/PAMc5IHCEbLX+TEgl4eH3r/bon12Vs+2p5+YE3AW2/e/M9+evTwtAC23//2/+lq7/M17 27cvf3sEEv7+TwIJdPETn/AkfZRO9fTp9M/9nOh17dyrXt2+guGLAM4PL1xw/R/df7/B8d8svbp9 4wOvbV+68dXXAaeIeuc7AZ7TtP/61ztt+8z73t9Wbru9ffLOCckH48q8IVExixqc23Nb9jFygICe 7KTQm2TvLf0qO+GoE2dh+eB4JEsAQ1mn3nJ+rGb6Cb51F/n6hTsda45km+pHRwb0ezD7I9Et/HjD MTYF2FTXq3zuVwFhaSXgIUsSlZ0mEpGB6J70P0otVc+2yVj1+1oAxRYVeQyesXSNCASYWPXJ5DUL CBhJgQDm/cELIb+M1gCAOuN+C1DloNSLQbJcnCVj2okwHIkYqI0RYUchKRPjdxuAh0FD8FT3e/ko uPNjIXMe3isaDkCDlw5K8cxzCFbY2JrDV1q47vkHczIdaZulUARqBZtXtYWA8a66f+b0Pe3bl77c /uav/mX7f/8///v2//p//JWN/P/63/2p6Qf/LNFkAAr0Bp1nnnGPjJnrAIYoE2PvoPmZn233/8zP GDhEnG9pHDuB5OXoh/dfaOfVBu2Stt17400mwHqy+ocn0dr7f7H9+vt+sc0phasvyQRIePPunXXE gPDCZAB2jCL0Pild5HvTIZ7/kEngvJKeozsMW3WQv+TrnQQydM9bdO4ooiOTdCIQRm3jVR1slt0r 7NTwg1RdJ9IAlsyrAJuO6sNzLOzMdek/7Xv3AtcgdNr7dHlAqD6JtNio22XMvTx8Ut5fDCXasA5u 0AAkMQUxkXb0UZkyxkQPhImxErI7EBCG7tu7m1JuABCGmvTN2yAAkpmDMRRDuRj3OHj8uxuqvV0N GIO3EQ9go40Cor0j/Kgsde2lerkAuKeDEkIEJ0VJcUur621z60i8ka578i4yn44+SV1P3nOynTh5 sv3FX/y0/cVYNPkf/s2ftj99/Bvt2c/Ot//d+kJ76N03tQffeXN7+NY3tgfezspWVrQG8EC6Pg6Y nl75XAb/lV0/0+4TAAANtBM4/iECbPz9669+1W2ffe3PbQePIpF5GlEiIASYfs2R6aMBjyOKdIUM mU8SoQ0kgME90jnS74Bnz5697UN37PE8JXojfetOlt8y6CwHY9gcZdxqz89biBgqb/tT+Xo13//h goyJxSbqypYcMdETPIryXxIC+lHaqbLoFefr6IMtCSBlV3YQvXxFnI9prKSg2CG2Ujbhh6QYMkIA OH7DUkDi9/Lqip+4430ZbIwZANGRzokgAsnotxQUo5RA1CaGPf5KMmXjqaibwXgeo3qUrUhQvznW PCueLQpLX/EAnAc0iToVzQw2iLZoR/VJF7wQoZSB9opPyBNaKYv/eMbuAv4LHUq7997fafee/h1P 4Em5fvKTn9gISbdqAg9hZPcKCKdvuqF9DbC858b2z957kwnQfO0dN+raze0rb2FyXhHm9ZrDvDpg GQfMNtD8jOY3UwZNpWn/EAG0na5XOz8UgEgDIUAELwGPSGDKMnaBpyLjAKxfA0yiT32UeVKXXz9i 3KRj2Wwc42VetHv3nrZ3H/8xAp2i86REgBAjLvAQgSDPn6wz9B0HaJuxvmILviZ9l5MDeK6n60QL Vvr2+RUY8aJICCCy6EGUAzjYidrqNhPbEvl3jvAKj6zqcbSN4nTF767kjDEmFgnW1tfb8gqAAUyL NiYvJdtj0BiGC2CG1TQ6jbEmetBWUjQMOx/0q28Qe/IuAVsIYqy279SkfjQwBIPRGzx9blXC64Ok fgaafhHOyGt44CLKwg9AUb9O3wweFjQQBLwguOl2z71nDJa/+qv/3sTf3/6pJvCi7z/0kNOti+LV y7nMF94ACDA4SIZlw3tD+90339geff8t7Ru3vqE9IvAQee57yw2KQje2r//CDe0rr321QEOU6aAZ B49Ss6/I0AEARLrF39+XplVZgDac71yW1O9Hfc5UIKLv33nNa0YR0c+BeDg6BqBK60waay1xQ2vv v739uiITYLFepCPkmVRcR0DiKMQEfzw7IJqHsqigTALnKRsgIvFVzlrWj3Ptjx4c4UinaDNgJN2z k1f9gCfANQlEjoQASHaB3ZQtYzfhk3Zw6LIJ23pStqSsWUHcRypKWY9xNq8k4JF5mAl4Njc3lbZs euWJaFOD8SqDUEunAAIk0wn7wRiMjZe2NMhs00jEAESU9xzJXr9HGIwZMKgNP2tSO3m6rrYYlIHT gajy1CnQQAwAkJjEf/pmoHg6BA4gEHK8HO1kq3tSrnvuvbf94dU/bH/5l39p4i8rXX/aEk3mYzgY ko0k6dbJ172unXz962JoAgrRxsZGmW5oZ9/4hvbwe99k8Dx86w3tG2+/od33pje0+177yvbVV7+i XRB95RWKLKZEAAyYec248f9Qkebl5jfj5QKaov5bILm2TtUbB9C/1jGpYiLe77zmtRpDxjNOjC0A 6lGIa9wzyBh37jP+z97+i+2zv3i7AWQPjs5sN8kQRim/xmVQoS8bcHTmOZCOmcNEr8ksYk+kaoDE 82vq4ERF2EQWF3h4mlVNIqD50LVRH9iOjgkc8JCU3/fsgFUOntUm4MGeAh5WEWXLuk8bfiUhXn9G UWROkWetbR0+rInzsq97UqfBeGPfCDxZfQGR8QSE3wwOgwcsgIQ2ASQPYA0qefx4/jwg9NxH7fmh 5dqq0sRVXZNQCjyKDuVt6rUH2rcgGLwVgTebFH88W0JZGmh/WxVhnDx5ul1WyuW5yV8k5cozkz9t /+qhb7Qn1ffvi07LCGIk8b7jxjCam+j8pCJOgYc6PIEf6qbMmZvfoFTt5vZ777q5ffUNAsxrAMwr 232v1KT/VT9r8Nz/qgLQK9p9MlqMPRQDv3Z+syNAfLz23tj9lwMQ1+lL5wD0//zHf9y++Su/EgB1 MAdE445BY/f4Sz4DeApAX3zr29qn7rpLxNxI+kaHMrJ4egyczZuJAp4/2l6SZdjpcU1l6gExXt52 pWvUzaofi1Qx7KzKZf5UQGKe5cgj2icb2EvWg9OW7XhFz044QEtKSWaEDWG3KlNgEbEI4U8I6xj+ ilLWe9swThMTMUUctjE4dROYxpehw3SM1og1gUTe0UcoMDFEHdoEOGtqL2lc6iMMzrnGYADS0spq W1E5Nn3mGiACKAGhQUp65TROzEs4GTBg3N/O/M697fz532l/+Iffbn/+53kCz18BhUiSuckYGEYG HyPBIAKYuncNeETxvKF7NfkPeG7qRqbfiky/++pXGRwPvOaVAkrA8lWd34ECk5wAAJBqSURBVPdK AUUAuqB7XwVMr8DAZdDdmKGa2BMZDCaM/WWpA4RyL1N2J/BA4+UBEH//+sIwF6o08ndeKxAx9rFx k7YCFB6qLggoCwJMHi3gHAFAooWjhnTJJDtpUDduDFNH9AcIuIceeW6DMTOp95xTDjs6phwOkzL8 xz3+qwZ9CXi0S7aio+c59XzJfQGefZ5r2ZmKL9opwoa4zjfCcbgVEOCRNvbwMFa8egpAX2pzNBcS 7WLyU894bKAib/5klY25DmmbBIAwTOqUYw2KzifEoL2CBAAlR+0htrfriKFrgKaI+wUq7zJQBIAf hFmvRgCe8Y/Cnzx5sp04cXd75pk/8OS9JvB/+6d/0v4HzU3+6BssB885vRoZvleOOlD0u1Itfpcx FFD4nfMYzKiNbkDD7xxHDzBf9aoYnEmRBJAIIIAGAFX0IdoAmvt1vJ+I87Oa4zhteoVXwvgDQAWK ogEQLwOUna512hE8owg1EJFuG4Dgq8/LeObEqtun7sqkv7w1OkX3/sjJNQByuiQyeER+OKk6ZaBZ AsYZZ+EgqRZtoetMyh1VZHOxrWQulCGC2QbVppedRRi/dx44DYtt8q9LPN/WPa7FyXM/GdD4Nf8W QOAF3njQe8eevOJgkIscQNQn5448nldg6E6l9LuijYze5wZMPH5SJwhAgVQYZDWNAQO+HkbFRCHc KRsDFw3Xh4WFCFmDoFwXOpHnzO98ud17+rT3clU0SSThCTxb4+dEPZqIiAQYNWnVAJ6edhgsOQ6p RgdQB882IF0HluF3RRhP+kl1upENHjvzGSLM1258bbv/da9sX7vlte3BN7/e0Yd79+tYwLpPdZi8 Y7ysiG2LJDruBJ5tZf4B2gk8UO7TxkAVheDnSxojoBmNXwSAktpgwMk4MOrsCMHIAFSf787KOfZn MbGjPEch7ak5BOSX2ESOHAYAqZR+69zPXWSjjhL6DXki30Hn9B0bA0C0rXYMHtpX5NinKAWoau6F nVYZ2yG2h83pHCwkUAiIagsCQBD9JILKvmlL5K/nYMQ2ZFUcGTNCQAAatBt14zH24RrIHVBMmTw7 YXWud2SQcS8UdEfAleIRTaBL3/pW+4uf/rT9VMSfJ/CKJgCEVa4YL0Y8GPK1BAA8qR+BZyxv7wDa /rvaSxRiTkM9ABKDSRtcw5BYlTrHFpkOFCIOIOJ4VinOGdUHWNS77y2vaw+/503tgXfc3O6/6dWO PsNch/lPAPR3mnN4ftNBEWBsB8A22lYOox+/f+3v0N8HHpbEWaxgpQ/gE334+1cPPeRxI5s4nC4P Xfv1295vAyxD9LMdPq8FcLAn7ETgIfWvvYNlnBgl6VDAQ5olIMoWvDsB0vWkcCL93o89yuYASVbR ErGyBQfwJPLgeMuZcyQK7dm9z7slnHIdSHQyvyJssey9QM81yla7WfpWXzr6ga4BJEcAeFgmJq2q CFRUjdl7GCxDtHB6R6dqkLBXcyGT2yFy0VFWTTLhC3hOnCDt4uHi8MykognKenL+k57AOzKUEevo dKoMuhu6r/l67o0iyvi9MXC8HLF69IW3vE301vaFn//55PNvf0db/8UPmjinXLbL8FyEKJe+bFC9 L36fvokHoQDzhvblN72hPXjLzzldSxoHWJj3BEDflCz5Y34TMMiodwREJwB1zRzp+vI71c21nQD0 FdVN5LyWkkbW6uMg+3G539B+7X3vN4DYa8b8YgIAaVx8HQjyoo9spZavsRXAw7IvK1dEGgDBsjRz JMjnNnCAguGSmgEelqcTpUj9TNzvhk6KSIrGHCYpW9K7rAzjyBX5VAebLZBgs9g59Tz1UL9Z1KLd HoEogx0LOF597hEoH3oXGBIxBgAVePJcho7VSO+ggOCHlmI6H+0IgMIU0YXBaMB4BITiCHWg3X33 3e1bijD3nLzHIFq4c6It3jWpSeeEJ56LHxVNfFTH/P7UXXe2T915Z/vknjv7/Y96GfTXbnufFPc+ pRHv9zXqLMnjfHry46mnOlXvk3vu8m7hT935UdFdjpQWko7F74hvXWMcn5n8JU+IiVBeEDAox0AL WKFrAdSv1cJB5juvdJrGSltFnx9+dez5zQgIMui/L+JAO4FndJ/z4bcfsuo+D1yJKly7FjxcuxY0 o2NPJ/ljoypjZuy1nWfcAX3m1ve03fzrfLw+izo45P4OmI3R9hLHykoX4Nmzb3IEHh5oQp4HSf7e fWA9AaDMQRJxiEwCiKIKCw9J5XIvcyNSPrXLimsHIFuMeAmPN6S9yVSAG18AS7RSescqsuZr+ffz 2DLtEe3U/gigqq9zz3kMEAMoEagA5NxPDfBsxF5DFTF+HnjSGfXomHJZwiY6JcoAFuejdCYi340g Aj6+Sc1/XWNe44mhX0JiiwVAE8Oqn4UHhA6Ah8iWKMmg0pajo+7zkpyX1tU2dSAATr+QX5By+A7g aSuASbsQwCLqYAxO6/pCA9tYTt948zYABSx4Y92XURV4iEy1zYbULqlZjkQcos8ffy3zmwE42wGR CDMGBF8brm8vm3I8WB1FkTp2HjL515E6HTTj9PdFnwIRUQgAAZzfdlrMQ+LtEf6k5ovL77nN+sMu ANCU9DJytiLrUnrHuY4AIePPsvKkjrIxbKWuCyREGqd4AEJHLyXrOvOZvXtVx/9DRzo2mDpgehuZ ImC7RI8YP1lRgaccJuRdC9iMbCo2HPC6L/NBm9gN9fycJxXISQMgDDrAobPa8YqRGdl4CAOoT7hM YaTmQmEohglxPYacOU5Ft9HCBKGwPxhzPgzDIrwIvBnM6oe2DXCRB9nbs1JUJgOX8HS97nEkfO/F y0nICNHzMfM0oyj1Ub8paSB0YHgHwZhBcBzfSFn38MRVz6DZtoAQAjA8GIW+ovPt8xtAA9V5gWI4 H0AzDqKQV+l0NDAKJEXFQ13vQABo14Ln+uhTNNQbj0L/7YMPGkCWw5jjQA71APWzH/ywZIyRxh6g pETSkeTODminROhbTg3j3KuoBXCycCASUEjtiFCZuOdfTxpA1NE5c5q9e7DH2Fut+MYpJspBBzzf yfzFqZcdPddjqzjtcadq0OncjrengJ7fuW0cwTRL1XjsEMBhmZonuJmAqUEbOIPEmwcMARD/ErEY jgfhfsI0YTbIT0chjLnAk+hAHQZHeifSOXUSylVHPGyfiwHQRBi3obYqmlUUqogEaIqcjyN0A35G Kd7HnZKNQIMBjIDQwTMGoFGZijwG1GA4Z17zmhhbN9SRIesaR6LN5X9y7fymwBHjvTb6DPczoTdI oG3tp49r++Y8VCAY6B8dfa6pW23XPO2//frXLZ8sIkQmg8yIxiFW55JGYXwxbMiLAlyTTjBKl5GB snDgHQLSf/0fUY61MocTLGPmQx+OPHvROQ6UzCnZjx/u27b6vEVEesceNf8XhH4NZ0pd7M5BwKCK DVdwiJ0PTjoP76fYVc3DUSZ3HPNKNrus65sAeGiANQCip0HyEhwHA+Y3S3rkjDCYEOoFBc+NQgmF EhgGTm6pAcC0gdOZtoB9PdGs6haIaM+htUcVIuF4OhnwBLj8pq/Z3R9xWvabb3u706+stnVQXEs2 gADn+lW3ATw8hY9xdUPuBradfrb96IHh+c31IAl4vJ+Neyp/QXOjrMp1APg4tElfo3P/7kZev8ep 7o2RwboD7VR2RGpr6E9pXF+Rq8UEQBPwJJ3zSmYnfn9acyLbTrejrKYFQP7ajX7bniSjLBrIqKV/ toYdnP6EnakNH8dKVtIduAGoKOTIIyBgM1mwEnAg/SaqOJqR7okKiJz7PSC3l/rYozOtTgaQgYgd y/5GgUZznkqDAA/HvJaQj2R4vxnvs4BmG6IG1oFS3h3jzBGgcA1QYPwBgSOPjJ2IUe3E4FnWTOrn ndUaKJ80NcPklAhOoMomPc4HAHFMilZAhqcQvPi+hACN0jIZf4Emk/xOYyBiU+f4cmxdHxHXRJnX DMvVZVA7AYiFgfH5jQHysz/TLnSQjL+kBlGnVuUCoO3GC433M/S/vZ0CWO5tv/8fPveBxtrq7dZD 3e8/9HXLxQASeLKFKQD6guaQ0Mr7399+XVEInQCemvAzmefIb2yjDN9RwQDoqTyA68ABDON2BID8 vQKoQNCBlLlNJvmeDgg09ZzJ55OAR2RnS7sJFKwYknUBQN4LGr4GRNnY9a5KgZwOGWVqBITN8lFr Xo7rH4TDiB0FCHWJOOPgiXFzPYCgrIGg9rJiJ/AInNyL1+BJdeoBKu7zIW2nahos8xIAVN8rgEbA ccRigpfyyVlFag9ila0m/gFFB42BkiPLyeMgSrk3tC/dNPwOYOJVx0FTxlTGPDLobmiUIb1hzxjz hPtf8TNecQMU25/xaA4yDhARbdXCAlt4CkDjfY3641jU64ePTlV22/3ezz8EoB3q5FquM0bTq17l Hec8tJ7b8xFF+A/LKEmTWbaWUWPkZCA6en+ZDBSwMP+sh6G1KIDxes7cDdapG4au8sx59ji1oy3s Ndu3eLbk17KrPe4DHIEgi1FZlKpFA9Iz6puPHnH80Je+ZNfOeiDZF3z4XSHZJ9GoxsLCxe7de7Mx FA9u41QBEFVP+iFAwDYJmMhydgBQhEEDJggAxshn/MUTr8J1ABDqPL9SeadSSvugvB6Q+VbeBaG8 +uyrb/AzDtC8hRrwJozGU5GSHX7rW2TwPWqYBvCMwMC5dxp0UAGefp8X1c6+6RYT4HJ5tTG+glYG FMN5tfd+8TozS9OUA2i8usAfO5Yx3lo0yPacgGG4VmAYjDR1hu099+s89Qa6FiTjtO3+tb/H+vn7 Fg/y8PdVTk0hXtaDkB2LAkSWYY5zg8HD3ze/9U0ZNUaJMctBSk8YnVMh6YmjjbyvkHHOvMVzGaKK AaPrsicbNIatcgBs9569bc/effotW8BOZFNkL+xuqIWEzL1lT8qYllfWvM3LCxfq104WYDkQsOI3 zHeg0bQEcKk8AIZn751Tm045BR7GRn+7iAYwgHFikBhyrZL4NdbOjEOgGhxAQxomMAkgoBzw8F8W uEeqxbMfdsYWgFzPxk59BkHIBDxZQLCHMJMMkjIAp8CTdr39o0cyaOGjdykle7sphi5FAh7TABaD o8DUCaUXeOo5DoD58pvf1M7//M+3MzffrPnR2wwKdhUADJN+B4Bp2++3jOgNgxGxS9lA6EBRlAEo nDOPwaBH0UfXEn0GI696BpDq1RyoyECp8uPXrr3X72/7LQL850TXggdinHEmPQqPjbHGnbFvBxDz Hx52X/nDK84y0BcLOOg7FNsBHDZ0DFfA4ByAOBLYkPHyOHV0HoNnyRiDBUAcy2EznzV4Jpj3Jiox f2autLy2bvLrC7qG8XsZW2X8vEbXqs+acwN0L2ervhcPOAcPovATx4D9es5T0aC8u19V9UQtnqIm TjH4TMqp40g0Ag8eYr+EkfDridsUwOlMVDtjAKIdyIIFtIo41KOtrNUjOIRO9KOdAGZRYfPoO94h xaJIFBplRrEBDxN9K79AZOWj5NAX3vpWz4VoZ+PDd7TVX/rl9mkp4bPympubG+2Le+/qUYn6tN2N pBvOuEHZiHQEONnePy0DFRhktDb2AsEIKNAO0QcA+ZjzAUDjIKv7A6W9sXsdHETLM69+TY8cREe2 HsF7xgDPv6vy14KHNhhvOZQq61cSrpHBSC79nCPPg/i79K1LMsb9spVkDNF1dO65iXQ9nk4Bmhgo doK+81VQQFGLC4AnS9NqR/dq3gOgMo9SWWxRIGAFd3ZhKXMX7M9t00/6ZkHCcx9RLVAAIvPVQcPR wUP26dVh2iXYiHY5eqjxAlDAMzzvKYpR4yWyWEBZz1U6eJjH8KEHiAFViLRwVNeTLtWBgSwe0G4i GMDcNsnT78yLJAwdYX5p8uPZJiOllVKHyX1XppXM7zc4ahxVeVbX1n/xF/2Z2Oxa+KgFkPA8OIF8 h3qxfebjH2+/9a53ae7TdxUUeGwsMZQCzcnudcvj+vsAZcBjQAAEiTLjKViO24ExDh6RAQiAsjPB rzGMAYi08cuvVOoIOASML4mIjMWfeWXirvMQYxiIMqRi14IHOvvqV9txjGQwarO3hR4sl8ibMrmX /gpAf/DMNx0d0GnZGjaWyIExdmPFhmTAGHK98uwHqcx39rAcTXQReGRfpHlcL6cNcABTIhgRTW1j U4BGxs85/duGex8uT11ACel3rcb5s1QsMogKPLFnAgPAU9tyArt4e9Mrbt2YOfK79rzV9USKDHpY 1YpAAiyMnYmbAKRjAISAiFjUw2A1MHkiOk5d2k+0STgkfYxn4jjz4Y+0z/888xiiyLBFpiLG5z78 obb+wdv7C1gCxsTH7XH8rMcD7WloB6kXPQA7gjE/cRbcW/3lg+3uW99r0IxecOsU4KTvWklyuiK6 ODfMb2zsYxGnALANPNvSr2ujTwCVeqkL8fD1K699ZXvwzW9oD/7CDe38GwUWG+12QMSYQwWebYY+ Klv3ck5/OwGIXdVpkzbiKGrctIlOEpnSh8k89d86Eo1//OM/l8Hvkz66vUgfOK5Ekxh7pWrMdfyZ XhvzgbZHUYZI4x0iAEkAYuGAORKGD8iYwNdcxaDDhmRfC0vLbfXQobaq1I3HMBUU6Du2Opm5F+me 7RSnraiFbagtQAdhN7QX24y9EIl2+fvNo12vFAxQAI6/osMqmIy9UIfRY5RlmH73x6txACjAIjoR ShEORpo6Yoho0iMX50nvAE+MOW+oTrZfe9972q/fdpuOt7W53Xc6YtRzJyNffdMmfXqVTjzjuTxX UxlWeRIB85+fcQD0xaoK5WrpEoETierZj41BwGG+AxlEFYFEvLsPcAAQBnTt/GacCiD+bfD0PW4G z3B/lJYBnte+qv2uPP6XWIBQREhfoVM3vK797ptf3x569xvbN269WfOyGwV0rmOs40ZbCySJwhC/ 7Qx0DIgCnqLP7/7gjuABVNXmEHWH8XN95NQo42PxUv2MRaE/+OY1+u4rbwKEV73kRP2Na9kNBsx9 og1GHtvTfd3bK8e8W9HmA7v3tDsESu/Mpg10ip5FlOf55aHNTe+hXOWflfE8U1MG7AcbjI3SN/aM cwXYiTSZYsS2yn7Ng8uBldnsqmbLeB6M4pVl5DI6OsAwAQ+RolBXE/ZCMZGLf93APIn7XpJUXQOp UzHCh7vDcMgvKCE0yMICWEStGD4AY2AAuqJgtV2DAfTwaXB04gHcnr171Rf/+ZjPA2epnbSQ5woc aZcdwSi7jM0kAzh9083tSze/UcYJgAKiIQrF8K6b31xDQwTJ70q9AAobRnmtgRTrzOt/rn3lLXya 6mZ/YWeYx6kfGWhFkLwqofJvvKE99K6bDKD7f+Em8ZkoQPmMAyOuNqre2MpiH0MMW/d5LqN07+gH 37sjgL7kFUTA0j92Iip+DGq33fsrGYrC90C8yUtq+81Ll+O4rHPpwzYxGD8AIm0rAGUhgTlGwIM9 +btwOEhFj3qPiIzDOwcoY+PHJmQfsmn+y5+jj2wltswD/WQmnkqY0j6rvDUVYQGLxzXYHTYXPuLw cdyjh6T8pwB/zEMFEz3yrjiGSwfVGcQSof99ewdQ/pX7AB7qBa1BbF0ro016BjB6yCbP9LlAtV/A EYBG/3q99xsPgMCvAU8fIPcR9Og7xu4jczN4pJyjo+qsKKLFMEv53ahsWKFsBh2o7v8LORrPb5ym JXqMIsw46do5gYTl3jOveXX73Ztfr5SLyEFko9/BGM/ecoO/sPONW2/yeRY9Yvzw6L59ztP717cv v+l1Kn9Te/i9b24XfoFvJvQ6vb1t9YkSvq5xqp0BPCnLPcoAoOO333odeBhHlXE7quvfY0TbaUtj 6iDyF3Y6cIq4xzOhikLREZFGzk6RhI2hTtuILqRl0qPnIwBJdkJZ6112EBBk+oCOnQaqjOczKueX Kp11aO5OxCG7wvlOkepNqM4B27EzLQWEwa4SgWrxqmwc5+80syKV7inyJB3iOO7dyQlhlMb5nVUN okKikhvsIOHcy8wq78hDpGGA1Fd7Dn9ianxRwGUNoHEwAR6WIWP0tDEiVmt6mxVGC0Skl35GpLYn JyR8TTABELyYH1N2Gxx+61vtMaGR4keACUD8m+tKPcrgoH8xn/kNDz63AQagCCSQn/uw1Ku2qUO6 5OdHt7yhff1dtyhq3OzzMlwM6vSNb1AU4VtviT6UBwDl0at/G6b4os2zb7qpfe2dt7RH3ksdAAnP ARd1KeM6HscY9Ta3X08kOfzh918HHuhLSiENFGTWiTrjbXA/Xxaif/Wrvp3mum0R9V0u8yD+vvnN S9Khoov0z95DsgW/EyRbyzwE/cZeDDLApXvYV+wqNuF5czfu2urjxxoCmJ2miI8o+r++z8h+ZrCt 7pRVH+DFeadPImKll/SP04WwI2dMbns6aZs9sisN0aXOY7yEV03WeF9Dc4majJfxVuM2Vq7BZPcM Mfwy9jBFilcAgsI4TEHUyQNXyBGnyLwEkP4/PV7y5l7mPhao2iUlqIko/HzyzrvaF37+LVZcGcvI ePltg8I4ZXD9GIPo5XW/PCY7B5iXOKKwIvVzfGWmR4eRYRYo+lxDdPaW1yrqCDzvflM7d0vANZS7 oZ17840CF/MZog/Xcy/AGeZexfO9AhxR6oG339geve3N7YF3vFG/eYgZQ6fsaL7Wx2EA9Poca+mZ cWL0v63os9PSNQQvrqMyox3V19AX3vKW4WXCd7yjHX4bW3Pe2j7/FtHPv9UvHObDIbxs+Pb2X//z f94uXQJAMV6Awc4ECCCUbWWRgRfZZIMCmRejdG945kdmwS4Csg/0nkUpKHN45kIyfGxW1/he3+IS 286y1E2dPPwMeIhcw7I54I6dBwdpHzv0/ySFuAmq6vdwfQAQHbEs6E/5TFXIHMDDeVBJ+YDH9elY jBjFAg9fyGGwmaMU8vEYiTrUrzZrEldRbjTnUrThk6uOepQTcAIqfjMhPdjm9vRtOqV4PODryoDG wdMBY4qhxcBSr74OWhHFZdwmeT+GlHTF85UeNfK7g0fnAOKhd99sAJ17c8qMGyCT/wtvI3W7uX31 bde2AXh4n+gm16l5DPeZA1142+vbI+/7XymVu6X9zhtptxt3HxPnNl7JgpVKiM/nLr37Pe1X33Vr m/rgR9rUh0Uf/HD79VuvT92gzVvfY/ljaKycjdsKOsZI0YMNDCPGAK1zdCj99cyDI/YQo469FHg4 un0A5D6wn9gCtgN4AJhXyfpkH9vBefpfiXglNXbI4gA2wvtotE1ZR7QOrCyGxU4MHB0rS+EI7/7n WboOeZeE+nLQUMrHvMvgoUIqZT4DeWnOgw9wHBrFmLdT4BnG5iVl6JTlYRgfUOT/0VRonFY7o10G Ovpj26KstyPAij4KtzqGnx6tdCwiRBs8EnxSTcCTsDwCD0IRrd3+iyMDczQBCKOUI9cHIHA/hnZY BkZqR7Q69/kvND6xS5pRxlyEUcerY6wYM94+0YZjPSMxqe6Xbvo5R5WHbr1R4CEi0F4AFEN/g6PP g4o+D73rRoNgvJ9Eke3vE3EdL373rW9u9+99b/v2bx1o/+X6+9uRuQ+22Y/cLudxl+WGIdTcAT2x yIP8MBov+9qoYpgY5Ymbb94RQJ++kwUYIrvamiCtD2iir6RPzH39ySj6RL/SLc6P7TKeS+gcB2oj lO0kDeI8ZJ3363l+kxQJe/AzGEcFphXhFbBh7J7o88ldAyg8YRvYN+Voy+XVXmw2NuSFJMkkNlZY 6BFH5wGQ+lQ7jlwOCPTpHQbx3IDF+aM6ZPUNg0xHQT7lQDbegwdWlcIxSAQBw2GIORARIgg9KEZz HxDSD95A7YhgzB5KAAryYS4DKzDibRAQinW6OAJQ5wnQoBTxC++/8aEP26i2GXqn8vKcY+S/+fZ4 YXYsLN6FMUiA4gc+7j5xt9M00rXRKhbtlDGL6t8OjqJEbzcAqjqAh7QNYNziec3vKvJkXkMdABje Tt/4ekURUrc36ji0w7tHR9/xLhO8MnczSU98rhhZLC7OtNOnZ9t3npttl55cakcO827WYHjIlw+u swKJg7PT0T107AeEUDfI/Z/51R3Bc0LgjQNEL9JHT19KT9wDmHymmVQKb82r1dzLPAV9ZdsWPBdI nGbZaCN7fvu1aO4JMPBP27SDkTuN0+8Cm3kCCACUVV/9JtKkXWxqsCPASD0yo1pJw6YogyxSL07b e92QHX1DskteMbdd65gdBj3VoVMMk398uzhauo4hM08hNBKGvXxoL1ULCAfUBqkUA8MLMFgx4gUA jD6D8CCJQITxjvh6p5yBOQx38AAMylugGgRKHf+8UXmO+tTVwl2T2YFgo8Ugx7w6hqlrPM/hmwd8 F2EEQvHqyAVP8CLB/cEfPGPgjP8rkAEMRJgeZfjYx2gZewBOrc65f0e617cvv/E1SdtuJW0LTya1 OfD5+nb6A+9ov3fwtvYHv/vLbfOffFxGgbzI+7Oog07iMJCR+NY5isdJ8W/tT5+YaVcvb7XvPL/e Hjy/py0tIcOkJehr757dMo6sNqETg0B1TSPjOdAOTezZEUCfUnpXUYKyI6PH4EQ4snqNhT79RZ1e Hs+O/vkHzhC/nUpJr+jdRiye+L1HfE5M7BUv1I0dVD+xIewCXjsP2Ir69BvJtikccsaFHWX5Odfh hXrMm/mviNgu1yryMn7snGVzL5fTltpgu89+5C3Zw+uuzCcCkHgRvtg43dbWVtvW1qYVhLLi5Zmn gGIaB8EBBZ5sYWG2LS0TsRgsIMgchrX4Ak8JoAaLUXi1TwN2mO8RhoGEH3jDUBLmUQQAQsAGkIS1 NPFxR494b4w7npwFgs+/+c1t6vbb2+yHPyzBsUKIgyD0A+rw5bYkjPQ3438XwhwnzzF4vpG5Uow7 4DGA+jEAGFI2iPMChedEaoc07OvvusmfogI89woo8MiblnykZGb3Ho97bm6iPfzQWnv+ymq7cF6K shIjKxwF4LHHBDi6hgwwKNIM6k8d3N8Ord3RnnhsTlFotT360Eo7tLpfxpMPU9Zqps8lyyL0CSCx BQyZ6LPT0vVvK9rGMLsDtb7om3qqL34dXRwdxDvGi5OyfFVGuuc6ZVju9ZxCbTg6SRcHWEqWfdlZ Kkr6GgbsqEG5RA7anZjc13bvvkNZ0B7z4tQLAydqqB+Wq8vunC72zKnqE33W11fbSv+0NG24Hd0n 2sEfW3WcIYn8DIn2NRZ0oshDNAmSCEcIlkaJPHx21/8J2wAiWiAMjBhGAVCBggeqhGwExCAzH4L2 SQAYPQO3ckcDitHy79vJh9lDRG7J/7Jkvd+5shiHvFGV/lU37RxQpLnLkcbzABns4be+3YsDpDN8 JYe+ahHCczMJ3cYhRdIGIERBEeJUu+eee/y9OH8lxkY/Dh6eg2QZNiAagONnJCLOtz8TGgBERGHB 4PcOvK298J//Z+23ln5ZKZPkpLGm/6QOnlxP7W/Hjs61y0+vtWcuzrTlRcmBOSSriX0+V3O96CSU p+J4Strc15aX59pDD8y17794rF19aqWdOb5X3h6DB0QBzH7JhiMRCb3XBk6vcoqfTx5aug480Oa7 36vycaIVfXB0fpVEBpqvKSWawyMAz6MQsoSACDBRj3QRnWerjewCuYgXHCmAghfasN11oDsa4TDU P9OHO+7Y7SkE15wZiTfPt9S+5SqyExZ/1E10ge8D4mvW4GHxCZsMiKkjkImctqlNA1LA87cVGLvO d/nVAXmJLBIEPAEQgoyx4eUw4BqwQSay5xYhQBu1wETEwWOgkJGRYrxijPbi3fBUSRsQKO9ckMIx aPY1WZBisrwZHoMwnyXuqfZZRRMmyp/T/OYzvyQBC4DeNi4BoRgIocfIYgj0T9RJ5GGcERL3+OAi f3w3zsZPegYw+kKAV9W8PDt8SNFkYARAHJm/AObMkQRopYm8Z8Teu/XV6fbMk2vthatz7eRxUgb6 L4rzitKm2uLCvvb4o+vtuctL7fwZ6QI+5Zx4QTG7PjDMyNFj87gwDhmAjugBB7ikdk6f3NuuPrPR Xry61i6cmxcY+ZfwODTprBsoOsLBYUzUg+qfO+8UfaBf/QjpW8kxKbTlL0Pjd8BFW0RMOT+Bx9HH FDugrv+HjspBRA7uIwMWMCAcA3OkUUS0vWFjHKVLjQEwsCBAn4AY2+Ee7TmdM8FXHmNQNuXjMCoN Th8BkBcPqGN5clS7Ogc8fDaLxYtdGOXiAv+LU5M8GxrCiGFDKIcVlPl5/lcnBtoVbYWpnD0FQgzw ytvHm+WeI4/uDcYyEO059VCbyZHDfJSgwVoJDBAeFr072iBUmI2HlGcYASECSIqQSXE8dAknfCdq pvy3vnXZy9DsjB6f8I/AUREGIHF/bJ5zLYiYU3329g8KMBNWOm9OIisUcmhtd7v01HJ74bkj7fCW 0iilt1mRFE8eNzLCKeG0JjV3WWjPXjrUnn5c0WdJZaRkyvJV12E+GBnGkUVmjmK6Zj0IIGQCRKEn H50ScJfbxceW2+YhOTmihr0v/GGs0RX6R2+jf60595/tCJ4TGn8cpvq1PgIKgFN6SGSKEdc7MSwa pCz9woP6loOEApRMD2oFDDCge0dY/8ZO8jCU3dZ+h4c26rmeyhAVPC/nmsZmEFBfxH1/I07gox3s AhuBF9rGdiqqsn3MEZX5ko4BUhw6fO/i3weurR5qm5uH/Y+sGFRy1AiAxgo8NGIG1RFGQblxYwTF MGDQINjOEGX5PZ5GjRTvsgGY00EDQf3CNAzrHMXCS+0A9yABT48q4+kDqQIRxwAT704bdKR+UgAB CeWJ+LcjAOdaENS8KXOcupdjFgcSWUgTmW+RKtrDqi/az5wsRhVndFAe/4D/2e/VS+vtxDHAs1dy QbnyoHI0+Vj+4LSIPk8+ttmeu7Sq6AN4pDTa7DrhyNgtX+RIPeRCn9KDDUzt8hFCdLS6src9eN8B RbONduWZpXZSPMzN7Xb/GAsGYYOR/Ad50seM5zk7AYjoQ9s8S0EXZCiJKjirEDrxfAwDJjpRRuRM B57Vrw2evnTf4OG+x0iZANIgUFnbhK7jZHf7s1MBkF+q09Ers7rHSpkn+qrLfIW5UF6pHv7rdSIV /EaW2GhsP/KF9/TZwXMgwIJfeNo1L/Csrh1qx06c6m/dYZzjAtCAhPy5WUUmNRDBRiF0hEKjgEJu PGLlp5yX5yeiJSopP3UkQvEMQuUBl9qAKUDqfJkBdwVAZZwerBWW+1a4iKP/s5fL5d4o7x6NZ6bd c+9pfxPb32Lu4KhoM5rTdPDkQSllAijPqz76UUdA5BRAki9H2RE6vMQRIBOizMrSgfbsM4tKnxaV tvEPg+NgSB/I2yMTZBX5HziwR+XmZOiHFDWmBSaUFmUP/XTgdAdEfa4VqCrFQeG8q7R+aLmdP7ve Lj811V58bqk98MByW1zCgBPtR+mKiPbq9+RnFncEzwlFYOwgjhRZRM7hUXqUjjIdACBqV/e2k8YA aTy1/T+ri+EfPqxbp0myHfHjeaHsg2OeOfYUzhTQk/bXxlLPWdSuI0+PfI5AuudoKzKIRcjL0bcD aDSWUUTvILZTZ28by4ZK2/hHtvOLK0GnKkUQKBIjZu7A2vzYxM3GHqOlw4o04yiO4gIqIkYBiMiT 8qXszhyDhFn16ZUbndcAxo3Cgu3g9T3XSRuJWDlP/e3gYXs6fzy/SUQh0gQ848+CCjxc++LbAxgI oWNU7BCHD8bktBMPimBFNS6X05F51+bGjOY86+2lZxfbmZOZ8xyQHEhvIWRFe4mmRFtWyD7Qnnjs ULvy9LLSuIoEfaxdzhguZCMDQCJHPfUbHsgSZtqKHOOp08fbqZOH24njs+2RhxcEoM12+empduwI z37gIc6rJvWWuc4x/N/46P96RwAt7WFFLP1H3hhZ73fMcZo/5EK7fQw+554IA58kg9FYeEbo9FFt IBfPafocx87VOp5Tm4pARBzApfvelaA6yB2w1cZSdIMMIjfVBUA6h0fAho2WEyIDsv7MI9GG40D0 X6lbNoayGCDKlxSDznr2AwEcQEaHUVIBg/NEDefsOuLF4snCWAEIo6h0qhiNkDnHENNXJoworA/W DMcQykOM2uA3wlY5Ryv4VpTMmr7aGQeg6NtX/lBp2vDhcqLM+G7hEZhEjjB35pvZPLfiP89hsHge PKAFLGXXOOjLgtX9jEkysGJYFJlpRw9rzvHsZnv+yoaMF5BnLMgJuSXq4hBQTsnvQ+3kidl2+Zn1 9tjDPA4QWHtkKllw7md1um5jFC8Gle6lHfGgthYW5tvRo0fb6dOn2uo6/7xspp0+NdW++9xce/HK Qjt7erXNzeMUpS8bsOQnXjI/mWkf+7XFl108cNqlcUYmA5CRQ+TP/cxTiLQYuI2z9+H5rurx4Zl4 f9HByKTA4+dBtO96gEdy4LmN5h7MiQ0YyonCw5QBlY2i8FV2hU1gax1AnWd4RG7ICkKXQ/k4Xo6U dV8C5S6vojEBVWQgbJbnycQuxER9ga+Q6DqCSU6f0IbxZoASiugAhiAa96gYGCE8k9Bado6iARgD RgBhLgZopgGTyrlPtYFCYqxRCvXNr+qVQGupFKqVHwyANG2Y3wwpWpajs1rGtpy53bvbJ/fsUZtd qHhO8U6UI9ox9sigjDTGQj/0SaoZvsRr529WKdrxo0qVrs5q0r7ajh45KGeUeVyIthkzRqW2WYgR GPk9N/eh9uTFjXZJ0Yd5ShQ5yIS6ODrmpXEqtIGM1KbKMI6aY8778cOqHwxOz04ZLPD19BNrAvah 9vgjLHHvbgdmBDj4QcYeNw8zD7RP/MbO6dtvvPNddqAYe/giGuA44zxslLqHnokO0AAsjBI5IdOA h/80WLKorMYLSdgF48deAY/OB2clmfjYxy7y/Md2SFvIrexJ/ZazxnYg84H8pEvxXG3YHsvG3F+i HKDcxQY6M0PqgeI8WIxFhbmmigl5gCUGQxRZWl7yf87m3X97FgbYoxEDQHD2el14hG/64s1VLznD lO4FPACPslwrQEUIMYi0GcGkvVzLAGtgAVKlmVkaPXnynvbTv/xLz2/yjsmQkkHsAp7TxHdOgMEA JvbjGeUEWO7VeL1Xzg8l4yjSHzzFIOo3fOIU6tWO4hGeDsogjhxZUNRZaVcvLbcjW/z7SsoTRQ/o nHoCnfrDgAArUZqIMj29p507u9CuXNpojzxA2Yq8Ay+UW1xc8oJKUjaMhb67rKxXrg0e1imvaEYg 2lifbI88qAiklPLZy2uSGf9Hdq/uY8TKJlQeviZf5sEp9IkPfEAAwwmOAUjGXKt4bCYOEGTQ6Bdg qU3PGbE1nQMYrsVJVTvIOe3ZPrBNydk2K+PHPkfgwaYkk2zilB2pr9ELc905l+6clZDd9Ayn5DlO 9FltGwN2jEovDcr9Ac8s0QDlWcgImHkCihtHNoaSOQ1739YPrbfTZ87IKI5q0rk8YpbyIwZFtOFn OfSjNtlRXU+fYaQ8D+3TD4OygMUcTNKWlW2FYyjxvFUHog0MN2BKm4yBZWj+AM6wShbQsAGUJ/sG al8B5F9LAJy9+/ZI0ZMCzkzesO3RMgIVH+qDfiKT8TFg2AKGt6dkjDihubn97fzpPQLPVnvycYFn 82BbX1tR6rTgXRkbm+ve0QFQMRqiHf8bFkeDw1pcvKM98/SWl7qJPjUvgp+Ah//9utxWllfVN6Cr 6BSvDW9xZIlUJUtHVJ1PT022pcWD7fix+faUotz3XtxsTz66rx05fEA8pQ58kDLNvcyDUxYPspoK CSiApoMHGv1jXezC/Ay8wS/HAo8XGspZAQq1k6iGfnVdMvY+tv5wHcNGD9wjOnm1rffLO0D57wod YLofUKS9spnoFB74HRpAi8zUpzIL0j1ASnu77C3lWWuTHELF2LPenjDHICxs38tS8PLKcjtx8oTB wz9fpRwGD1OcUxaiTVI1HrphVMyfSG8q5wy4YKynhPIQDACGWWXhWpSnsuKneKu267/ZhVcNmrL6 /e1vf3v0/AbA8PCSj4awsRIDd0TtAkueHS/LaiD7qjhizERYp0Rqv+YUWSxAEfDLeIcUgKjHyiQ0 w/+EAUTi8cL5qfbclUPt0YcX28rSHfL2a21VMuTp9vHjx9vZs2fbyuqK+lCbIlYSiWKZ4+xu951X VLi02R57cFogQQYxLnJ2eCHSLi+ttEUBLnrEADCSGKiN02CPt6dtb+KEP12D2IFwaG1vu+/sgfbi c2vid709cJ/Avb5XdfY5ShHZXi76fOYu/vcRWUfSeMCTuVD0UsAwf52ncd7Mn8qjaxxHHBbgAWzM M5iTIR/VJy3XmL0E3u2IKQa6qHkpK208dPdKnWyp5sEFCnRp++52EDDlOroOsFIGPfJYZ6YDlj52 8X9IMd7sIiDiwEhWx8oox4GA0E0CG4bF69soAebtxb1NIv+Dh/KJOl1RIq/ujQAkw8D4AarKsHyZ CRweMd4kCsAjZUCOPp03DGahP7y18HQf4JCm8e8YiTR+vUApGfc9FuoJFPymb34nxQEEKDAAQvkI zhFTVFGEvsqxcN+pqpTrBQvGIwWRT8/2/zk0I1kuLe5tD16Yad99flVHIgpynG0LGvOC5HhIUfzY sWNtdXXVRp98HyegftTujMa8srxHqdvhduXJVUUfAJCxGNDwRrpKf5ZF5IRRFlhwXhwLQPwmYyDd wwbKSGYFEHZoH1Wa+eQTG+2Fyyvqc6qdOjknoDNu6ejuzR3Bc88tt7jPkmH6Kr2hZ415oea92Jl0 KcJWKAvQPU+TDNGtnYdkmugT5+ylaWwC+9BY2RsHULCVOFf+m3ocnW1I53aUaqNS+kwZkE3K2BZU HuBU1LQ8dJ0j92PHslsRS9606W8Y2PNXARtGBA+l4TRCBxgTIMAb5x9fBViUpVMvGogBDBkFo8xQ oo0n9fod8EiZajcTU6FZDIFoexLVhXnuJ8QCIHkMGzl80a+8c18F5NrJk/d6f9qLFy8qyry9LQEA XWcFiaO9DHWlOANQY40B4sHTvoEkAyZv9uoO4xYf9k6MSXXwikmpxpY7rUAUovIAqIMJOSwv7WsX HzvUXry63B44t1syZG6YFGZW/ZNyARwM2ukRbahe5B75z87saQ8/tNKev7zVHrpPk/85GRkyAETq p8qW97SMGGenWqxBbqPogxPz3BDZUw+5xh7m56fb+uq+du70dLvy9Ep74dmtdvmp1Xbq+B5Ftz3t cx/been68+99n/vO+JKF2DD7mEg55xdwSPDNtRA8WccdcMg2VNEHR8qr2PwfHwENfQB63R8tSVMP eci2cMTozbrDPpCjCPCM2jSAwlddQ5e8rcqcjHux4cgQfMTuBUjV6f9WMQaOIBMd4mFioDEcvCvp Shopw8aYMRp1NAViE65BuT2mOinmnauaOdAtoep6tT1QyiW/RDAYA+X7Mrj76x7KwqZv6k21u+8+ 4fnNt7717QDX7euewFDL6ESximBldBC5sJdC8Tg2OvHdx2jPrj4yGY1BMy4LUefwAICoH4+VtAPw UI9odmh9f3v64nz7znNb7eypFYGFe+JLBobzAYiOAJJ7GRO8u39kYq950OnTs1eOtmcurmjelNcK kk7DJ/pIpEa+BpCMMzrEkQVAMVra632ofcYP7xBtYQMAmSixuDjfDh9ZbI88stZeel703Hx7+IHl 9pm71182feMVZyJrgaKck/sAHBpLFizQD/ooPtE9dcSHxpPf8BoZYDuApP79IvZBdEb/tUzteZPq AC4DtsvG0UvEEZ3GKaO72BF9QPymnfpHw2RCg7xi/7FrgYfGE+4Jk6yyLMtTJhVLlOGeDIy5SG+I BmgsRMcIhNUTDCirZka6DS/GGkMC3XmwFXDhBWLkMeRc47kTfHndH0HRpih9Mej0E4rnTxvphz69 08Bthlcvoduo4EfXdG9EFlo3OPEKD1wr5XkMVsbQPoQCvKKEQsVDVnWy9y4rlchnsm1tTWu+Mp/d Bcem29IC42ePlZQt2TniE80dBdKv2+hys3GL79mZO9qjj6xoLnK4XTg7qd+JqCkf+SH3gK0bpJWd 9nB6cwIExxhBZOM5n+TD+LnGbgTS8eVlAV2gXlicbWuHptqZ0/PtyceXNB863C4/s9TWj++8dH36 zW9WioczQN/RGU7Wk3g7GWylR3XLOU4MYsxEH6f9Y7KwvMVfnJxIMkcm2Al10J8BhA5IGwFB1zc6 tgxldya14+07tq0CUOwU0Llt9Eo/drw8wFZbBznG1sDGLi/9mUEij/LgRaUQKzwLWFYBPFXAE5Ti 8QnFgIiBh4JIzsdTlzKyfs39SEAGDKkB/QU8KAxmbOxEHR0p7y+PivG0oT7VToxqHEAMNJGI6xiT I6INKIqJ8eieBBbD0u+ZT4joC+HHiNyH+UnUQFnVTzxkefj0QXnueYLcjQJ+LBe1Q/o3M32wnTg6 265e2miXlPYcFpDm5+O5AjhSS/UrXuJMBodCO/CAYvOAcH/b3LjD0edfsMFzPc+jvFkU5zdKw2JQ BZCMP+BZXFry6iHyLkI2lX6jE6LgimwAYhGCyDgvQC0JUGtrs+3s6dn2zFMz7b+4+tmXjT7/VMa2 uJQ0kXHAQ40HuWUnOHIifZaN4TBxWuLd+lP9+tZBtQFZ5oCdSCYg2NZ0n98AM8+bcgQEgCP6TQBw 5mPQQEMZ/xZvfp1B17z4RR+iTBVoh/4SJODJ4IEBG5KISRETyQKPUxgG1A3Je7Z05M1FVmgCHAkd 42cJVWUNFFFNAiuPDcV4AWQZCcd4wyEKwDSGBXgQGmWGNjAovErSpCIbssrzkC2gotxwv9qBhv4R bIzNZTyeADzRtgw4oKgoGmeQcVIP4bsvrvdrJvFy7tRuzVVWNAFfb2uaR3jHgupSPg6CFAz+Iovw RBvVNwYjh6Hf8/O3t4uPr7VnLx9WCrhPOuINUjmjnj1EhnjirLIh1/FI47mPUjJAk3mQzg2mfhQt jMBDisnzo8U263I8o6OtvW19bX+7cN982zq9tiN47rnljX5+9Zm77myfvvNOzYXeayog2Bnh0CRn 7zkDPKSt3XEmtSudlaw7mCQ/t1H2pHHRno0dENiZMW8JMMgY7JQ7gBIIoJR3HX53ObMvrh6VcA9e ygFBBBDswW+S0rE9j5WaiZFXFnR0JVEtfUKAZ5L8Up0xCMqwdFodMFDX0b1xA982YAYrxtIGv4sq 78z7QBaiynIPQ/ZAK/T3tnOfe/Hk2aGceQ7ehbb8ySydRwDjgEFRAJP2RfCn604hnAIN4y4+XJc2 RF696TxDVrIMuAxgQUZ639llpWzr7dGHFtvKMjwIiKpLGcZgwItqMYS+kEs5CwOIazqfmploR498 qL3w/AmBaKUd3mCfHLoSCTz1TYPil7kHQCkA5XcivzMLGS3fHMg5DlD3Daqk8ESdumdnKrnYW4sW 5g+0jTNLLxt9Xo4Wd+/2WL2TgvF2AFXkybiRZdklNii5SraxtfBfztZRW9e4T9043n1t78ReLy7w +gC6jZ7RVY9AHRzj4En93B8AJkfU++Z+7If/DCfG+ZHcOOcx1DTEbyoVMOoY8MR4HfZFCWtBak1W Y3Chql/9FBDoB8Ow8WF05KcYvjxICY9+PDDX4aFXwDEOII4oJTyED+6TB7MlJC9AiV95IANDgLFH F2UxAMNAiFKs+kLYCDRzmXjyEfhGMgM8SWv9bonKG1gATDwsL9yep/dXN9rDFxQ5PJHWWHSfqB+H QORKbg2/RPfhPADK+EUC3vLirUoBN5y+nT9zQPOSpMAACKP3wgAgEGhq4h/QsGTNNX53sEgXqVvp IgBL+scc2FHHaVUZbACPLJHJ7Oxk++V/9ts7guTlKA9U0W+9noJcMX5kg/6lg27YWViAsAMAVM66 8wyApAOWkP08TvzTHk6Tt5h3793r/6a9T7rxErcdJGPAxgocpGvci4y9lE2E6rK389KYY2P8xp6V tiG8QZARIIWZfGHYNoZu/FAYZwLWDaVft8HiTXSdB44wzu8ABrAESFFqlJfr8dy1UhRBRonFsJ82 l/GIEDiRBBpFKAYNLx2gblP8RUB4GSJQVmTwOLX6AjnnJX/GkF1OqVQfe4Enxp1+PBaoAxsguo+u COo5TdC9tdUD7cnHVtp3nj/cHjg/qTlE0lAroSsmziCOwGkxD2xFyA8l2bB0BHT0vbCwv505sbd9 9/mTbntT0YeUGR16zrq65nQL8DD5T+qFsZG2BVBZCIqcoTpHJ6RyzHuIqnxKmfIVuawXycDzBctj yqnZTiD5+8h61Ljr9RQckMGj9i0b6w1bkjxUdqRfy07nKlcAItLzCCGREccmW1IbrGZiI3v3Tvhz vgYRkQhQWKaMJc7LKRv9uq8BJBwpl2u5h86gEXgCoAgIBoPIACQNjDHej1xnkh8QRLCpy/bwvTY4 fkfoiSb8ph8UhEdbXT2kieiqrueprQ2vt0n7RAGEQRSJ0NI3Brd79x6Tl8c7X/SVMcSgvYtXhllG zTl1a1yEcQD0MXkmr8a5bIwZfh2FHClqzOmnnEH4iqDjkdI3PPAs5vDmVLv81FJ76fmNdvrEiuSc ukkHVcdjgaeAJ5/qImoCnPQ1UBwRz0k21j6kec9We+Hq0Xbm9H5dS588NF5b4+XGTc9DkXVFH6IG ZbgGZQyAM8S9ilYAro7+jvkYgDxuy+KAP4a4Ezj+IVqRUdOOHQdzPp0HvHLi2JL4Gs1jJAvrQYRM co4tBEC2P8ZhB4NOVFd8GkDSIfNKnt3wgJV/UQIBIP8Pnp7GAR47s64T2kn2IbnIiSSw9PZ1H152 ccLFEgyUQgGD5wSiDGwQXMpMy0Ot2Nt5l4BBVB1gBJTDoKmP8tMp99MXn7hiWXxJ1xMBSiiE47ya HaF5pUz1eTUAoTJAoki+RRbw0DeEF06qh3LwPsyDEnHiFLo3M58J444ceCWVc4RRf/ZIKg+/XhAR T5yH/wDcYLaRR2ZWvu/NeL/Y6RNT7dlLq6K5duKojHxOc56ZgJBx2TjUX6JiPZUfxhJZRi6Mh37Q 1fLyQaVsE+2lFzX3eWy5bRzqr6dLdkSLtXWckqKHZFGLA9FxpV/bdck9Ujt2XEMAhkWDtbW1tr6+ 7t+0U3Mo2tl8z87/WeEfQ5/92G63gcNM9hCHlsxB7YtH0jSn3ujKMsDBSDf9GsZtuTNujYXVWMqh V887JQvazLxXevVK25RAtF/pnObB6Fz9+xsKXl0j+nRw9nbsENUOiyXJliI3pge7au4QowggAhx5 LU1AK2WwUdrgQwgbWltb95uoc/JM5MWj1bcxpbF/a3mZvUr0EUFEaWpHuSp92HBl6GUgMFzgSQSM USG48jwQqyKEZsbBGGxA8Kj+UQ7gQDlJ8wBQxhuApC8EVKCibCITv+lDbUoeCC7ziWxzqejotA3H QL/ieXRd5zylf+A8u6k325NPyAjXJiQXJvGRH/2N88N59V1jiV4wivDKEaWyaXXz0AfaC88eVvtH 2qkTk2ozY8CoeG7E/sPIIf2hi0QhjaPry7zTns75YhKRpohlalLAgGfF9ROZIoudQPGPpfPv+Pm2 sozupU9N7vftU6YiA6+dGpEl442uM35sBl5xjji9yMXAUrlEnsiI+nWObh3dPSfFptipMNnu2LPH 6Vw2j6J7dKCy2AI2pnYrIjGfwtEzfvMlXnbFYMg7o7AwmVDlrS+eWPdrI6PkPADBIyFgljenrYwo nA7oiIdsR48eaSdOHFdZ9qEFubULACUAlDAOiAcjhBJl8AABDZR8GzCFX+qV1w54AF8HkQjhxjDj gQIMvFiUwv0CIO2kLQw6iit58Mr6slJMVqEACC9jOZyrD5P4pWzGt68dWtvXnnp8vn332eX24H0Y JkuefJtt+14zyAagY4GX39FHjmk3BoNCed6wuDgpcO5X9DneHnlwXrLmQ4G9vuqw/3B2HoCHJ/pL KpZHEXz0hYjKfY7MjyDmRZkbZRtSzZvK89IGQNsJFP9YeuSDv9CeuTjfTp/c15YWbpesSb+lA0cI DLeo9BUZYX/0DZAjnwCFe1l8UBYh+QQAXAsAkkVgRxh+QLVXgL1j9+62Z6/6tn1kidpRCt27/9Qn oLAggwzi1ASemqDSeS6mYUDDcwM6o2M6xEC8vYPviMlj4AVqAoqiKsz6FWA6FMLZ6nPk8JF24cKF duTIEXs4+kEJ7OsihaDdeAcxi6eXMGoyiHEWTya1vy1kixBueeyEbPjgftoqAI0rgXsAo64FOPH8 2dQY8MBTIpDGrxx5Sd54Rc6C5V3madmZUQsu2bJD30TZw1sz7dkrx9sLV5baudMTksWE2qg0iRQo Xix85lhRiPPwiEzK81Z6mSjFQ9ON9du87+zK04fa4Y09knulfuJBhoa+IGQA4Om3QAF4EoF0T5TX IJjb4AyIkJmEQ45WPfUj8iwpk/jiL96+IzD+sfSM0s4Xrq60py5uthPHBMiF/W12OmMACHFwEHqQ UUsvRKJEvzgfZGJHpmN0p7KSUf3PHxYJWAVlQci2LHCx0pnIRMq4T6n/HkWefQJJZG1H7jrSRQeQ 07exevCxK2nUkCYExTEsjvxOBY5iFOO3Z48nQ6A8Mfd29Wk6714TZYsAEV6LLfcnTpzwoKuvKFRt q63qE4PFQEooMUqEE2OqiFKePvxSL0LmHOMtCv8xTPqo9mOU26naiAeLTLhWEQuCL/LffIpLxiTi VQsv6dorwetBTdwn2vmzB9uLz622py+ut62NbPpkGdTjF//x+owfuYfon/sYKUZSPKC8klHSDBmY DIuv7Dx432T7zvNH2oPnFT30GxnQlhcM0I3TRKWekmVAi7PLLvd5FhIELnio1M5eXc5xBL4OOKJV otOCUvGltqi50db7btsRGP8YOv7J3e3C+ZX29JOH2ovPrrdnnlyQk9nrvYBzc7HL6CZ2kZUzPsFb z+sir3HbiQMMgPj3mv6nWSwU8L9HAZDBgw5i6wFdng36WZvbqemAdA6AsAldr7qxLYOHzmN0MEM6 VoYG0QHGOyPwkGbZ4CXkongnDJx6GbDBg4GIuAaR3pE7s8WDNtIX7YmZ3jdEnzHULEFzrYyo2kWh KH0cWAgx0SP1CLkMsgyTMggKQkAFBgRe7Wbyn36ogzFxXuBh4cHPiiwXjZ+J7bT4ENkwxSc7eumT JekHL/DFzuX2+MMH/MnbqWkmu9SN4uyIZKDj/QYo7BqIY6Is/CKX8M72EYwhy/RkAEcPf6B954XD 7fJTRB8Aztyxf1AS3agPInb6Td9+FUV9MMZ6U5Y+C7T8hi/AnesBEEvYSduSznF9ac9/+FI1xCet 5uam2+bGVHvovn3tuSvL7bsvHm5PXlxtZ89kEWR+dp8cDoatCKH0ijRrt8jOQ7KCPvaxQTdZHAIo GDzP+LJLmuXqvK0cWRbFdtBv5MmUICCk3qT67ItNOF0AhA1JhlCPPBKslZrJbIw7qDShaIFn9O4P wrRHGn6PUww17dWH360Ucmk8nc5RotvhvNcrMDBAh0wNhHa4R/lqlzpOFfH0zDn6PcBT/70hHklj 6+OrulCAFi9FH75vQxFPGhfH4g9CuPBjj2bqSpBssheNCBTwsADCStHW5ky7+MSqPOphRSDmGRqD ZJhUT1TLnziPEU8YQZQITzXu8B+j54hRYDwQ91ZXJttjj0y1775w1F8FJepRhgUR+KMvzwUwgBrv mDwSBcWTdaF+0BcAgk/dq3Ild4hz9AXB138MgPivC04/D044Yh47Ot8eeWhTqe5hRWxFoovTkt2U IpF0MQsQ9vrb1Hfcwfep97quHaYXHPI8Jw/DdU2RxuNFVvq9e/feAKhAsI3Qbea6BpDaRE5xmCHq 4TQdtaQTZDb651YxFrx8PE8ZcnL4RATKWaEq55AuAZZwUX61M05ps3tRvJl+Y6jVlvuyoob8utp0 X2qjzg20UbsFtvDJNQSB50GACIR6GEoBCUcRQSXqlPAQFJEKvsyLDSnASdRLG2mHsda8oy9wGBDx 8qSwLCOfO72/PX9Fc55Ly+34UQwuZQIa2qaPOA74pG0UV+AfN/IaL0ZaAPKiiR0MIJvWnOFD7SV5 bVKgjbWM3yDXJJn5ax7kBqBD2yKOyBR5atwGcpcF40EfyN1lRYyPVw5I3XI9uoR4drMTSP4+2rsX AGgc4pf/srG2Pq+xHGyPPHiwXX1mqT2ndI5Xw8+dmdX8jn2BtwksijyKRNFfHIJ3K3THNnzDjXtZ PNgjm/jQHbttG9mZnfQsDiVyqehje0DfXcZ+PYFzySopn+QpPYw950GhGGY3VAnOO6ploAg3Ya5H KZQpwQVkEWApOoYRoy+lUyYg6cYyBh57L91zdJNxUbYIwHGs9miD8/TXwarftbERw0IQzAm4X3UH /gKe0SRRyo7nkrfRdR6G2ojG+gylv4CHdmizIoLG4XHGE/MNgbW1+fbwgxvynstS/FRbX53QWPDm Se8ifGSoMXeiHZRWkacUSP/IgXTJy/fd+6EPz90EDvhYXt7XHlN6yOsC506Ll5m9MRJRLf8W6MfB k4wD8MAfz0amDEwABF/0TaSpHQpz87y8pznPKptHeUYXZ1ey+vWPfWxHkLwcfeIDH/a8BJ6QAc6b N1mXl5XObS60+86ttstPK4JfnW/PPDGrOdJc29wSHwvhOQ4A3WhMGh/Rtr55EHBITn3cPBPcs4c9 b3JS1nuiiwHXz/O7O5gCEDal+waQeMz8X+BBQQy+DNOIE3mFRQpjh3UAFINH6AgJQfNxjHHhccTw qq26VuTfZTD6PUdZwCOqyX/VH+5tN+TiAWF5cULCoz0ARP0YVSJEDDpRiXohBJr0DgCVoJzmoIji UX1SvgAT8MSguZ4ImbaTlmrM6mt+fqod2ZpqTz0xrxx+rZ3XhHhRKRsyZGHBsjFPAZCNljGqT2Ts 5dGuAwg+mGuwRE4bgGdE9rwBEYs1x47c1r7zPM+U1tvqMl8DIt2AAhjai2wCHINHfWYcMQj0Cg/I A95YgQt4ST0VcZbyghzP7fhoCTuvE52SvsHvuvraCSg7ETut2aaDHtAZdlDRjn91s7gw2TYP7W4P nZ9oly8utivPbLRnFF0ffXihnT5xR1tbvsOOInN3bEOOBblIJhm3rrE8rXsApOZF7Hm7Q2DCDqBx ECGjkr9X/caBhfxwXhqrI48NGYMVYQxcYwA8pT60uWUQUQYqQ7RgJVSo6mXAMX4bRK9T9VA23hPv zjUAMt8FPxjids9f9att+oY/GzwGIUXXHjMElCVFgBZjCAV41RZGkzBdy7qJqKQsGHCV5VgACnBi gFDxk3LxmI48C1Pt+DE+47Tcnrs0206f5HsB+8zfXI+sgKeOAV6MFgCNdlCojxhUdFFvmsZAQgFP CHCvLO9V9DnYntc86/RJ5Cmj6ACqpV/aK3nAd2UayMlykx6SuklXHTyJPESgeQGIZW70Pufz1dW8 OFngQV6097lf/uUdwXIt3fumNzn65QORcUzYgp2M+scpsNAyPcMH66fbqZML7fFH5trVp3n4vNCe FqDOneEBtBzTLGNjjN3wpa84jdjFkJ7lP29/iMUHASjR/lrwxCZYnOG+/1WOzrlPWwZPGQrMIqAy CAQCeDYPH2mra+sWDtchBlhCKgBVPY60NU51Lw+cMjAETZvsb6v71S4E4yVMeKQM/VCOewwEwfi+ wVPRJVEg/MajUr7aqX4KfGVMGMyIevkifkcJ4R3iGm25rsvrt85ZGDh/bqm9cHVLE968/Maugurb BFhGcgJIgGcAEF/RJNWoVaOkCaz8JcpcC6CaAM/IeE4e+4Cjz+OPrrXlJU2qFZ3zfhNzvKSzBViO taBTsnI6KnKbah+AZ3EmegyAksbBO//aMZ+7ii6JjtHtbPvsxz++I2CuJcoy96p/wVmy4ohc/WxP tP8AK28faitLt7YTR/doXrSglG6jPXd5099ZePjCfkX9OzTu/jlj74lL5Ii+s4oGUJj7sMPgQ7tJ 3ymDjoe0tsCDrivFB0j8dvSWjHYNTNYEMSBhQMsrq22VPVI9NFd0KIPiSNlxgHDkdzxVPJbBpWsY eDqPIdIW5atutVtMV7nqp8pxH+8Bcc41PDvl0ib999W4Dh6Ie8V/hBkh1TUMh8gYoxxAAqV8rnGe qNDBBR0EyBNtbXWyPfHoRHvphfX2yEO8lZvU0g+N3QdgB0DbwWMDBvTiGa/GpsZ6o7FWeuA13hE+ aI/xMO7wzLOZ9bV96n/Km0ZPncAxSeHin6gZALH8H8DUseRXqTPt0n7GG9mnTPSFXr3rgOVqgKVr fu0dAHm1MQ+LGd8/BkCfuSubROFnSCejk9JBZMf40TtRYELtH/Cq5gP3zbVLT0y3F67wivqh9tgj fNKYRyOafszuFTDYeZHIwZiYE3untQC0W6BgSXr/RBxTOfcCMucVrcoeKYdcFHmiUIRq72kBRbAs Ky8sKyz3jZ+E9BqUByTC285aAVmpK/Ag4NojxblXsWQk1C8DhCKUGD3EtWLag+iCq/tV3iFZxP0C YBY2Ur4ATR2u1fWiCKUAwf26FxC6f93zJFT3qO9ynfekQvAHeBK5Zmb2t60tPhy43F54dqmdObVf IN6te0m/qh94GqVuNto+PsnXn+DSNYNH7ePtoCi1wBO+ye/reVMZ/ZzmXGdP3dG++/yG0ptDbfXT gFc8S1ZekRLfRJ/8byCMVH13YIxHn5p7WR86+qE3tiI+4RuHiG6Z86Df0o3bED9+8Qx+ZBPMl069 6ZYdgQOxzB3ZxP7grXQ2shP6F1n2LPBIBgc1lumpPQLwnra1MdHOnp7XXOhQu3Jpqz1/da09/cTB dv7sZDu0PikQ4YSjA4y/HJOPgIaFBSKP+4us6yF/ZJeoE5mE/JwHQqD14T/OLWAAQeTA+J0GxUOW srPKNIAHoVbUwTPxYBTysqaEiIGV8bo/e8IMqkBsZVlwA3BiYANofa7ytMd5KZNy3GegqRfAcY1+ 0u4AIvqqXNfCsizSR+5pTiSBOiK5Ts5Jf0gFYozil3viZ25+Xzt9akJef1VpxEY7clggYKuJxuL6 UkbGK95I1cR38cc1DLc+fcyyKP8i0UvSkpPBqt/Ot1GqCb5oo4g2p+WNJ/0vGZ9VOnNS869Zgbpk UNEn8uXYU1/xUcQ4sYMql7HHQRDFaAtZG0DLfCAkW3wCrvDmOYZkCjDZyvPJw4de9o1TXo5DZ1Dx QLT2eG0n4ZF+KeM5iCgGjT10x6H0eHVluh0/st+fJr76zJyc2Kq/tnrhPI8MZvw5LbZJsWeOVC3/ 83U2/7NHACKqA6iRYzQh94C4bANy5AnDCAYFMYkGRBhg/mcjQgIUlENoKN1AkaJDST2cAytaOaR7 WzueacngGe19U+elLCtJTNFPFBRGi8rQ6GscQOZXbVlZ+o23Kx65FmNTSud2u2PoAx/Vl8ARfLx4 Tw99P8bB7yi0gIVh0OcARtfTOUZFX4vKtR9+cKq9qKjz1BOLbXOTrTJKGxijlOA21D5jqcjIOdcD BJ3La/Muf0WeWinD6GkHXlCogSal1zOcfNgkhre0NNseuo/U8ZDmBSttSaAel2mBwl9IlZyig/Dn dvsYhzQPeRPZ61lR5MV1nOLcAlmF+tf8idQxny2GZ/o4aN2zs2Ty6/fsCKC7b7zR7UUXaRc5M8+J fCV/dK1rtEu6xbJzAMR4kAk8S46y3ZmpvX7ourE+rWjE3rl1/3Pj5y8vt4uPznopf+NQ0k07HyKl 9JD3f4g+6HesTXgQwWNkhKz5YqgGXWBwuFSKUdGH3/WAEwJgBRKUz5zC+7qkbHYfMIkEKJUTc86S JkdHL9WL8bFaBQiJFFFqKQ8mMbAAK9fHDS33e1mVwXCJitk6wjsXARCGRiQFmNkmFIOgHgYC4Lhm BaufEpDb7gLDaAFQTZ7tVelT9xAu9VBu/h3GZFtbm26PP77e+L83jzy41A4dgmcMrctUdVlNY9yZ cMch0Wcpy29TircoEyMEwKQpSbncp8tqHE4xWUiQoclrcp22eBZz/OhBRT/+Oda6l84BcUAT/ovi IJLKWe6M0+1GNhhrjBdgs4yNd07Epj/4d4QHOCqXZW5AGSJ6IDfr/jdW2l3/2/t3BBDfNYihRleO JtgK+ujAoQ8AxZ41ttyw5FwPQol0bPz0ErWuwSMym52eVLTZ206f/IDSuGkBaEMRaVPObUMOZq4d PTzhr7HOzjJOeB4Dj/WivuWc/LqD+YvzgwSeAgMAQhAYF0LhOCgaQkhJz4bJO6AhfUOIiTzblzYB TgHKW+RVhnarHQRe4MEwMFiuVf+0W+CmvzI2BoHhRjF5/ZhnIYtLK/rNth0iiwSC51T5fMMtfMa7 xkAKONW/f2OEXVD2+lzXedKW8Ihh8HDV0eDgPjmROzTXuL1997kl5dybSt94jwnQ9zRPhkh/Ne7I OzzRd4HUcwWu6R792RBlqBM2lBg6bZWRFfHbBsR1yWRledZ76og+D9zHt7Pz3Af+a7wlR8bDuA0e 9NENhjbdp8coeTN+iJTMTmdop4h2HEFUp2g8ekwe39wRQJ/68EdUv0fTPp4AKCCq9ssuODdIZOi8 n5O3kCVrORLPaTSfyVad3bq+V7KekA3ul0NbFGjW2uUn19vzV+ZFi5on8b1wnC+OF/1HHvBgO0Mv lpn46LxcBx6Td0hHyQFSDL1e4CrUDYZMwxKSwj/ntFGRqpY1Sd1I47hmoxHRZoQwKBMQoaykCmFw W586r9+DIDFGwEMfPJBkZZDt6ighbQKe7MuLt6/5G/fLcCKkAIMJMm8lpn5AaiPgvqiMmLV/9lWx EZMU4bGHFpyyPf7ItCapezVelkwjI4wWwYf/AnGo+Ig3V58Yj65jqIDUOT6GYMqermvBU1QKR1+n T0y35y4vtMtPrWkeRLvk+teDp8bPb2TqV8R7Gsj1AgEgGjkS91NUxpXfAGs0XxFxLOcDgADPtQBi n1vAiF5CRNZyctUPfcQeidrsgwxg/LpBB5Llp2uJkFmZY4wZJ2/z7m1bh/a0+85MOr2+Kmd3RdHo iUeXvat7Y/29bWGON13TX+pyjr4Gh+c5zziAKsLEMMNohIohx/BKUdyfEjPQxD6e1gdAiVREoaRx gIf5D9cxpmw+ZYAMJlEnhgSjpBZ5FhHwBDgIxDxg/OKTfsr4MEhvr+dVgQUeJmaJOoNkRRDwBIiO gD1dgjDaAhBk8EhJqd8VqaMNoZdjsQCAZbv6hNqfaKdkqJefXvNKz5lT8IBsJL8exQd+OUfZ1xsx oEhUiXESiQAPO6h51mDaLTkLZNwfVsdiYFCMLG2urs61Jx+bcvS5cJ6X2bLyhiGXTqkzRJHI2G3I CN1m/13zD4PCVAAaczo6Z4zoajQO9TMONt9fW7oOQPVFnYEP6ahHISjRLvcYb+0T9GsCjpLqU2Xy BaOMI29CR9bYFUQfpNjoBVtcUIq7uTXXHntQKe5TS+25S0vS44LldXiLaQdOl+dLPBbBqZddeM6j HzLUACieOYCJgDHcEB4TgLGGX8qHSIsknDEBZp7EthKWKdnKMYDH0Uw0gDICLZDEwAKcOh8pFOHD h0DA9eIPUMBXwM2qGwAvg0r71SbRj/K0VUaQYxntYEQWkshRTPUxApfFMDAeGSLA4T9NP/zAwfb8 Vf6zwHI7doR+AhrvHeuydJvigXMrscuL3xzH+YAHeKz0kOhTW0kq8hSP5tNjTZ0ybHRw5vSMU5NL ij78Uy3+kbAjgcGBHLssep8BJAAIeOA3448Do2x4DdXvik6em6isgSbeHeloCyMnKqg8cvnY1377 OgCVHKBEnejR6ajBw310AqiwCd1jiZn7Pfo4jQNkKlNfIh3tmpBsS+7Fl53iAaLMre3oxh3tgfPz ikaH2tXLW4raq5onzSpC7Wmbh+5oi84k4Cv2v4t/s5cPc2N4Q1pUBsfvRIzcgywcozgpFp6dVbd8 9jUgpE6Bh5SNZwJsxakvo9BHEW0WcKuP8BDQlGE4n7dCy+Pym8g58IWiHXkQGEYg3kpIKKX6YvB5 gh8DLkPOuNWOw3MMBkUVLzGaGANt8iT7yNZSe+bJbKPnG22H1hmT2upjoE2PQcr2Mxldh6fq81pi TNRBBvQRAOVBHSAar8c4IofwDY8VSXBuK6szMoap9t3n19qDF/j/PYwx9ZhfAQqvglZkVJ9xbGkX HvyA3BkH/HQDt0w5DuAn7STds4OQ3EdL7I5CGX9kN9V+eXWIPr/w6L9sn12Yap++864+hpIDOmaF L4DI/Ebt+BWLAMdLy9KjX0PwA2WNjb6IWgaf9NjBH90lujF+xhJiEUK8al5JRDq0PtvOnlnww2aW u79zdU3HDQFrvR0/xn8VJ7va3Xadv+98O3HypIS82ucU40acdM6rZR1AZeQI2pFHzOBd+adKC06d hvlOKKnbkoilQQNMx8x/0mbVqWsBDsCtvVwIIwQ4imKUQ3S08tW+lU300bUCT81ZKEc/1PPEVood jcUKoz34TE6N0EffE+s8hB9+8x22fe2+s1PtO8+ut0tPb7bjJ+SM5DAG4ASE5lX1/H6NlRnwXAsg +qdsjYdrlAFApEycD4ABzNdHK68OGjxyFnMHlUYqKl5ZaJeeJPpI5oo+6S+ygRcIEFW/AQ+RtfYw 8gGX6AOZOX0DODI211c7GPK+fYwnAKJtwJNtLSrXwUM5eJ5Q9AE4u+7/sY97ls6o72HcMfJQ6Sq7 pHFcgApeAlqntorK3mpDX075MicyoNGdx4yTYKyq7zHofpcbMs5HSPbKhvYo7d3bjhyeaOfPrbQn H1ckuioH+TxL3wd1bbLtuvDAhfbgww+3raNHNV9YbHk9V0YssHDMahmbAROdIAvTk34xIQHNykAW 51itYDdBFgZClAccoTmnZgKFGHcfHTzVZrWPAss4GFR5VYh7AXaolB2Fl+El+uAMMvGWAjo4uF99 VR84iYTj/AYY+e5zDD19iHq7jmrii8/mbhw60B5/eF4p22J7/NFphXfl0172TFsjvhm7+e3g0T2U lxRsZ/BwbiObmPBkvbz8CDzi1wCwjFKPNsrgcv1AW16Z8kNTos8FGcL8HLLAgPHkSWFoy/xJXzH8 yIzrvGmaxwC8Qs/cgiggQ6YNb9wkykZHgAeARF4Bcgw/4MGQ612bX/q1RQNnnG7dfKi99/MP97Fk rHYefT5I214kMIA4AsY8OAVAbL2hr0RV9KQyAplff7d8+94+jbMWZby62WVnB9Vl4jRd0xLsnMcQ J48faI88dKA9e1n6fvZQ23Xs+PF25vz5dvT4CQl5rQOAZWUZtVMvokdfava8AmPvYPAKHE92BR6B jtQMIY8DIUbOIkEIgWKkBYI6jgNnMJyE6yHiYIicZ45UdcpoyoAgopZTDZ0nn4+BVRn6HJ1rPDiJ AEhlReFLBGDcL8aQ1wMwolrOPnl80ZsTr17eaGfO8LUg9e90A6UNPHlHgfoxX2qTazH0AIHfxV+R lSnDMXh0rNW6KlupUzmXks8IQAZWos/5s+z9WmhPPb4qwMMfRj4OHngMeGq3AACqdA45o1dHdMaG YdMPIBMfOBS+4bewuKz7kRUPTTOGABXwOGJ3AL3rc1+/DjxF79v6Z+4nAAJ8gEK8AgzV9yIBR9rq 4IGIQtiMFxLUV6KT5KnyRJ/sqEC/cVDwx/iKAphEVmSe3dQ8YyOl2yMbn2ybm9Pt9JmVtovvrm0d OSI62lbWBB4DgO0WeGSENqRVZezQJwQcgwdQqBw7a71RUHWHFC91MMJ5zX8AHMDB62X1KYxTpgDH b9rHOOJ145m5FsPB0EJcM+BkOGVw1OfIPQwKA7MBmZ+AE6VEMXhnPNFB8Z15WhY0hv44ep7WhUsb HtP0vra2ckd79KFpv37w5BMr7cgRgKX2D3aPhwGPgaOiD3yN8zveV/FPPfjjGK8b8OAQAF+MKobJ OW2WjmiD65XqYDB4zstPzYjXlXb21FKbmZpo0x5/ZOCohkExNuSgI/1BlCmZDk5JY5AOIMDDb5zv kSPHGx9LRPdEI4xxBB5AxRzE6dSUwPPQjsAZpz1Lh90/cqiUFcCQknneo3Pax8GwGsmCivszuPkf SLqHHNRfxgMvSZWxwWobmY3LvqKdX5T0Ujd2hCwgovFU20WkYff0+saGjgrpzE0EGMJbjKgb9wgI ISJTttGj/ACNVK5SNZdxnYo+GE6MJpM2BjA8zynPRtkyIgZWAuM31+FnAE/3iPTTI1PqDoZJGxBt +/tyihxJm3IPPvDCREWi7NB2GTTGSHkUL3kYSBjqVDt+RBPKK4fbd59jO/xegYm9WYCFceIZ8XoB j/mBd/OXyWsMGwcSviOnGL+NpPPOOYTy8fBVH3B4xzWGof5Yrq8MgfFZ+XjO/fwrkoPtwnmBR+kl zzPWV1XnYE8ZxZv76ecAhz2N2QkfWcFr+GUc6J4oFF4rAnJtfX1DnnlLzijvgFGeevDqusixy3An sFxL7974umVXPIZoJyBM9Kk++IIs33/LHMt968hboH6JTYafxZLarRHbwsZol7GUzRR4ynHRB7zT Bn1RbxfGx8Y+9h4RdbIJFOWjLCaMAoaEkP1roq5kdlzzzWQeqCaCALQYNECKMQypGExZCCMBlAcI MNxmjz7jdSgLo/zOPRSmgdjAMfiF/s+4Mi8r4ythlOFynf/7yeeTspyNUcAP4IGHbAPKtYAnpPZs JL1f88VHN6bag+cX/NrzM09utmNHSVcLlPSpvnWs8ZoP8QNPHpvuFyhyH15zv/iuehxTLu0ywQ34 UH7qwifyzpwzD4m5l1SGZxTsLuabCnPthavL7fSJBY0FA5LxjPVDGoeh5t+MkIFk4WQbWJGPrpcM mUsk/QuAkHF4KGc5ziu6iwzes/nwjoAZJ7y+5SDZJ5VEBmkjcip5hzwe9xV5wSsAyj5BHARtUCZj L4L/avfaduA7Y1Bbk7RFJNuf5zxEDOY3RRja4OExQgkL7ygyeCCVwdjoDAMMCBhAolUEFIWWkK0c dVxGgdEe8M6EGGsBJ95zO+gKXI5Oas9bbtQPoNnYWPcrwV4O534H0DhxjXYh+Em7AXFSSMoNyi6F eEz9HsQO8qX5/e3Y1u721BOkQavt8Ydnszyte0SAMpIAgnFHGYzbnp2xsvBgxZcCq1zVjbzMp3jI /XjyKlcGGV7FOzqyzDM+6if6JGdfULR8+IFZR5/HHuaD8AARoxdvyEJ9ZkeA+tXcxu/meI6TNLSi TyIdfG2PoNTDOOGl5FUy9X2Nk3Pbk2T1Syc+71W2WnG7lt7xGw8okuQrqNRHD/QRHpAT8mUM6hMd dbuLPLc7G+r4n12x0qc2aK/IbVLethunWfyWXiCv7O1jDtrBwyBYBcOjc05FhF+NWHkIV40xcAx3 FIW6koYIArMdbG4r4Ena0weOhxJTlIGGCdwASAx8PApVX1zzcrhTBgQ1pbKkCko71/m3GlmsqPLF f42l2ve8g3tqo8ATpaZ8hFbC5Vw86tzgkayWlxfahbPL7bkrLBSstVPHd7fFhXxDzQ8DkRVjg1Ce rtFmlB4DykIEckFJUkY3iPSJXOo8vOUaukhblU5QLySgSNHsDLYRu80xYgxTmuxu8NB0XhFooZ04 waeO8+Q8PA9AZaUKAHnFinSlpyxZbgcQEKlh5qU2ZvRMefMYfh2xa5FBZTL+OIV6zlPPem74+r/a Bp7di5viPeAvOVCf/iD6LoDkVXx0qHOVi2Op+3E6fhakOsgLwEWmyCtOAxlhF9gJ/aWN6IPxOIIJ OAaP7mVXtToGQESUGNxgdIkcYQjiWhm1y8K4OhoAE6PmWAZPDp6VD0KnlG5Fpk4+P5t2y7ipU+Cp Y7VV0YPfxRP3a0c11zOG9F/n40fA47RDR7yNPa/HQJkh+iB8hJTVlgCI/4Z25PCU5g1r7bnLG+3h B9fayrLG5zbED6T6NSYMkrZZJar2DEbGbWCVkgKsMhJo/B7naT91xvNxy1VGwf+eATw2hFqd6u0m uuz3auBjD88rYs63Rx7kP9XBF8YpoxbPo9QIWYyiDsansbBiNY2McVA4xTzA5CPppEQBHB99pE43 To0xqZ+iVOcbvnjGMw4e6JdWF71UXeBBX8gxso1cXFdgyoc8aIvr9IFOZYuMocuuxm5wdfvzUjbO oV8L0FWW8iIiEP3SxiD3tOXnQJIrsiZ91ZwHIyONSESBYkAYGgabKDBukGXcnE+r8+zhIrVKWwUg znnHnXSKwZmBrvQMikEEPLS1E1Vf9F+/AQ9AKSFxNCg61eALLPV7VFbtJGePR0SoJWTKV1muxTiT 9rC/aWlxfzt3el+7+sx6u/r0ijcSAigMkHoBD8oceIkh5Zj2GH+8PX1AdV48lhEgnxhPKXIAdn5z DsiiUG+MdJneLr9tHDpXmsyeu6OH+bf2ij7PzLWjRxZUnvd9WLzBe0tWyEvkt3+JjoCHFa4CjwBC 2sk9xsVcwP8wSsZYW2psnBpDjcdy0FgY/0eP/sZ1wPn48c2xMU+1uz5zxPJD5+M6ZEyAB/JqosZW vGJnlPc46E990x/yKZvOwgV2qrHBq8ZEVKEMTgM5jWSn+rQTmwBYRC52eHB/SmkbS9Jeds6qFe/m MJ+gIpUw1GsfknIegxajoFcNEUGyUDBQVuAEnsUl1UukGGcMKi9cgiqq3+ZLfREVqV/XM6DwWe3x uwZb9zmW4Kt8rkG0k2VTPE6MntQjhl68mjThnpHxra0tymMva9K92Z7QvOHwBm8m8t5QN/rOQ40j fUJDm4kK2wFUAEHZ8fwhznEuaT9AKZ6oW2Pj3MDUWBhH2pWM+Y3xw4Pqs4K6sjzTLj7GDvC59tAD /CsS+uJh4CA7QITzYwzpQ/IEPIpE/sSwAAQRZfzvIXUfOqj7jlbwIL7szcUXbUCTv7VxHXAmf2vT /FUZqORX/Rcx1kRaxioZSDZ8TJO5Om8tZ0GoZ0Uqb5kgU7U/ArWOPKsjMGQXQtpEXpF7ZE1fZe/I wuCXzkpHmvNgYGHWXl00Dh6Aw3vqMBbQDOCByfoHsnQU4XOsNjsoXRYhpF0GVYPDgKBcG0ADcT5e Hw86XjcG0g1urN0yAn4XRWgRfurGyIaUAt50j3oir2ipzYokrDwyrzl1bNLbXF58drNdODfTlvxB 8uH1YajGAO/0V2QDVpvhO+NGSYAmgBhSRBSVOVMUypjC93bw1Hg45jrt6bf6imxUDucmI09EUVuz BxRxZtt3X1hoV56ZaUePLuoa+T7yGGRfdlFeOw6H6/Ha2S2hMeoa/6aQyOOHkwZr5IcnZzzwAp/X AgeCZ/Op8pEdfQx8cJ02to21ywH5EOV5dIJdYqfInXIlL+qmfeqnbf59jp9FAR4i59hcyHXNR6YD 9eC/2rOcNa7RB0AQKswCnnroSGEqZWNnGhn2rCUSVf7rQSNsG26AUwZESI03j+HQbpQzCIYj7URB UVrVL2EUT9TjWHVJA92u+s0zpig+hlkGVopP3VKAjYLoY2NDDrTfAWVDVB3n+TPeZPnwfQfa85dI 2VbbiaO3tdmpD7T9k3x0rww8PBb/XL+WuD8eTbgGcIhGgKfGU8buiGG+wj/lAzj4q3aRBwaiCCqe IYwhcwyiKvqQrjAYOTf+a93Fx1m2nm0PXOC1EYGECbf7wGgDmqICD7Kx07TOexl4En/D4giyZUwB T0C836nZtcDZf7fSNY8/aTzjQ4fonPYZH3VZch/pGblQp7eNjIg8g5MGuAFjZBVwRg7oJvwDIIPf 8oL3yBEywMRDBQ/svfiEH455JQFFisJ4GWuUxLUCDMwl8gRQlINZrrsuxo7RWPgBD5RUKB1DNSjK MNBKU0oZ3ON6tR1BpizHUT21g0DJf512IUQJPjsc+rhkeBbwSPnwNW6EIXs/wNMFB40AJe8EH0eO LLcnH1/3QsGjD6155YqPa/CKAmQg9HGOK9kG3UFSlDGEP8qhEB5oTkzUKwc4gxhltWfeR7KIjOC3 +E8/eHjuZxNnJrniUedEWR5e+hnd/HQ7fnS2fe+FxXbp4nQ7dpiHmvBf4KGNyChU8kOnki98SNbw YD4Yt3gMcZ7fjqCqv1O69nGlayya0FcROi8bBOyMKwsEeV6FnMp+GG+lv+i0bAVe2IxKHWQ34rGP hXOPw/sXeaCcSFn2UeXL/rLtLP8ihv5H4Mn+NCplEMU859UZv4ux3Odj5pnHVCeuK5qzcEv4adMe 1G1p0PYI6TwDoR8xS7Ry+9ujTPVNm+krPHBOG6NUR8d46AAIYi8ZIR1hW5EWeniqMmlnPLTDC/Xi QKgDQPjqykMXJmRsh9pzVzbbfed5czWrfkyms5oWxdJWPH4JOjQoPYCBIpcAjn8tmOcavJ3a52Yi jK/qWAeMiyjnSAePMs5KOyTfyJ6UUdFH7Ro8tCHZ5OE2WcNMW1Uk5Z8Nv6jowwNf5kIGtHkLXwX6 8BvwmDRu5sqJtpG7x45OdIxD1Ph0/+Dap68DzuRvfU62oHZVDn7RcaYDSaeQq2XrsXV5SoajOYdl ST8am9PmYdEJuVCO/6jAdh3453rZNXVpF1sIcJJlcD44jgEP8FZbt9BT9b8rz3gKQCEqVAN0fK0B Q7UNZ1y443vAIvhcp6OARWXxjqIyqJRTXfMRYFQ/3ON8/DrCBUDci2EObRGquV5j8EZM1bUBWmDF RwCPsmirvBvEfYwEBVrYs9NtaYHPGc35ny997/n19vQTfMl/0qlPIpzaN4DgJf3AW3lMFB8eE0GK SlY1VsoCHkDEfetABL/VrnVEnzZake9H+fXcowy86sXoYtQVDTD6eY3r1Mn59v0Xl9rTj/Ofu8nr pRO1Gx67zkY6Tl8+ouvOA/cyNwyAqg8iAPxdCxyI7zoQJfPAPeCxh/eD7vzfn9hg5qPjgOSTXOyK yG5o9Vl9IQ9TeEHu9fIgbdEHOuVe7KYIfTHekh39pi3shCPXkAPlR+CBeToLpYIV1InKdFgGXAJC +N4EqQYJnVyj7jhjXKvfZZiDMqKc6jfGTp/X91882Dt58paP7I33U0R/sxI4dTnPZsdBGPRJHc4z pp7eSMBl6AazcmEANL843w4dWmgPnOc/Wm+1q5cP+/2OQ+s8bwpflI+hCtBSBAZG3wh5e7oRcDuS QN3gwmuWUcNDHgpiODFY8a12PVZkxzhUrx5YVhkiD4ZQ8xIbHvMP1wVEMZCSGca7sjLdrjy93J6/ PN3OnZ7xy3KsNtFPgaeMMXUw2N5nvw5wvJijc4PZ/FF2qn1cc5prgUMKl3QrEQOdB0CaEjCv9uos QM64II9Thg35v1yrD7+Lo6P5oB3ZCTwyvsiVlbTB2JFzbCBlimo+FNlhbwHuuP1VPfgegYeXnSwA C2swQAqPG22hthoJc9SFkXhVrnEPA8RgOBbznHMsZUQhOQ+jGCzXe9sS0NB/wvkCCxdKF5lzca/6 g+iHI+OpeRf3ofGx0E8ptgTEOfXhGU+VscDPQUWXyXby+P52+eJUe+n51XbxsY22dZjt98gkbW6f JA+ggJ/xsZfhA+gYGPILqCH6rYfI2XnR+act3asIS10MpYyLI32WEdBWjSu8oLOcV5+RGcvT+xV9 8h/snnz0QNs8hI73e/l3u64BIjyoPfXn/ulDZdwPMlP7lEPWHFkM2Ak44QteZR8i7KD6ADTszyvw wzNy5dxRgesivi6Ulx07DwYPAJMcxTP1EkWS+kWnwzjQB0fGF1mEkE1lN9Vnjaf4Lpnsqh0C/AiV NxsMblgwSKpGQ9xPeTofGuSIseBBMcTy5uPMUm47gGgP6syNKSL9s8qXl+3Y+c1GVnijzmAYMhq1 Na/oFcMOUMbHkWVHgNd5H40hvNAG/7oPA3Z7As/a6rRfX37+ylp77tJcO3dqUvO9fWojKQcKoz7j qw+DULeUxXghfjutVJ9WhPsO7/AIoXSAwwfKncsbRLQTGcfrxdjyblBSsxpDAbX6dp/dIEpWSbvi WALGCcl0WvM4Pgo43c6empHDIF2O3ErPHOG10hu3xT3rMSCrRwnU+5X+jbZx+tjXTponylIu+ld9 ETYYWQA+dJexcQ3wcIwh6x6EHcIfttj1XADimOie8boNyyKOZZBNqGwSJ0if6YfFhPBBP2XzUNnV LueqEIPwDQqmcBkdwGG1YaEbJdcgG4EUGQDE2MeZqy++jKctvLbt7TxiMsKLoqNcBjB4BdpL/6RI eVCbSSUAoP8MLkaR/tfXVtrm5iGlIzxtHo9eyamX/QVTpTUSPoJPepI0lLYQNODB0OfnDrZjR2f9 /274dO0jDx1qG4fU3yyKKaMMGLxsCujEN9cBATyFtzKCKClyijFzPeVEyM5E+wELKVxklEhRewEZ 27Dgsd0Q6tyAttwHAOXbDGWYGHz+ee65s4vthy8psj7C27GkffkKUuZ0kS/HRDf6QE46p0/dq345 Um7ywXuuA0/GEL5oD92UzQCg1I8t8HgAY+Y3RL/wjI6o57oig6fzZx7Ro4El+eq8xjnIYbDTcZ5z j/LRzWBfikAqj05KBtW/wIMh5yIGlBsIbQAQhofX9sZLR6CBgkIYYjeB6qlOLUDAGMAp8IxW2hiI 7iXihfkoN0JAUOMvwZXx1yoM1wrk8OrNhx4wn1Fda8eOHW6bnz/UP2wygAcHwBdMl1cAIgCScMSn l7nVf8bN54zE6/REO7S2uz1ygc/W8gGIuXb6FCtsKCVAwKvDI31DgxIAQmQaQxUd1P0+/whgolio 6rkudTQOUhK+RMrKW0UgZJcjHjQyd0qnegUUZO7+Lcdrr4WfOJw4qzg+dk7M+AMmjj6nWU1V+jsf XUbHcRIZJ23nvziwxwx9wQP90N/Hjn3uOuCQwo2X4Rx9oRvrVO3WsxZ2rfgbEiU3XaPeEEXDC/Ui 44G47v8pRHaitrnGOFN/AK37VNnIYKC0MwAIcqqosna0oup7lz/goYGgjFIIhh9BDUza+Hi20yMP QKk0rurOqe6c6tQKHtfCdMiKsvdR+jFK5TKgUmoGNC2j4d4AnpGQt/HF9QJVyhBxjhzZbIcPb+ic p80oCP7DL1EU8PAfzhxRNYciLcgeKbWvcI3hLyzyzjofzVht331+vV3UfODw5h61oXEwoZbMSFMK CAib47gSEh3CW8AzTOpTL2Mpo4JsPMhBYwVIRLAsIAQ0EHJ0PyMeQqRslbbRLmXqXvEVgt9Blswz 5xcOtPPnF9oPXlppTzyyv21swEM+2ljzUOSPjKlfBk1aji6rn52Ac+DklvraPs4CAttkIO9U6WAp 8MzO8BAzz2GqjuUjnuEd2j6mwVbrA/REosgs/GKT6B3dhAYgRRYh2ivnbNK47XS4h72rXYNnilUP pwYYMgSYInw6ixHEezvXBmAARYL1dwlUJopVXdG0zrlGOyXUUjptEW0ATuZC2dqyjVGMTQIjbHO9 gDMMLqF3AE7yU8qhpLXV5XZofdXPopJ6REAlsKShHTxyCBiqt/PTp4xqdm6qHTp0sD34wEp79tJm u/zUuv/fC//1rXjwwoCUiUI9iZawizIe+MtyeFYHlRJ6ORuvXUYQAygjiJxoi2tJSfB0mefESAZ5 FoBynT65VnLlnGuOZJ0ohwFV3eIzZSbb2qGZ9t0XlKJeOthOHee7b7GJ6Dbt2dDQIToXb5k3ZXsV dC1wPvbgSfVBvQE88FhOhHEiHwAEYBylNX6OAVB0i1yTKg/jtex0RAbIDYodsaCTLTXwWZGONrhH 9kEWhS3QBtfKxqKPyB65MFbIzyC7I+S3weNUijV3C4gBRRgRcgyeBmk8HcAwTAIqngFJaJpYp27A wAtuEVC1E6EBGgRJ3RhFyiAMGB8Hj3PNqRwLJFFQj46KbHWdwZYQaIv7iX7FMwpPmRhADLsiEm3w LyYOED00lvlFvgB6m78c+fzl9fbYw7NtU4bFPCDKwxACoIBHY9cYawk6fcQDQlk9ytKrH8h1RdNO lBW+qm2TytY15BflxxBqJZPflKnna6X8qsM1zwFK+bo/9DMYYYjvOMhhXFhuf/Tdlfbog/yjLsDL bvLYRcpHzmVc6BHd0wYLAteCh4WDjA+esl0oTjMAQo7eNjSLgwl4cDKZvFOP1CvgKac+Toy9Uj7r QnLlOjyie87L/uAdoPKvIA8dUlrvhafYQuwAe6NPUQeQZYcD5p7aLPukjP8n6TiVcvKN36w62RhV 2ZFHjeX3dFuS915RClTPe2AQ8AwUcNTvCDlRg2PKxytwLV5jDDwSGt5nAA/1YnAZ9PiAI8wYBUIO iOp62g/vdZ45V5TkJU/1z7/L2NhcbA8/vNReeHZNUWexnTk52VaX94kXyUgKwtP5XRzma37CXeCR /HQOD7QfmUH11JwxyTjobwSggKL4LIrhZFzhM4aLweVdlmw9oR8MBSLK4XFLJiPq4EF/pN1Vh3Ic +R2e97dNpWvf/w7/qnCqnT5Bm/QdR4qe4KE8s8m8Tu24b+3gPV/s46YPyiWKDnZBm4xL9wskOBey AKKzIzp9JBo50nVZFNG/H7QiV7WVLCDXGddIhtKXy4oXFo7W13n7mG9aYFuRX8lh9J056smOyLby H9fH5SXwlBdAMFREISimvkSCx6FwPGgm4Bgun3Jd1rxhdZVJNAKKcKhfkWsQEsxA8V60B9Fnysfg GCgGNhhaB5CAFEDhOSMQ6jOQGgyCCcUga8tIfueIAuGdOpRl0SL70nAcErburazma5FPP3moXb68 0c6d4XPB6ttRB8XqSNmuFMgpDKR+/DR/TJ5Q+hx3CgEQbaVsjT/8u01+My7xTFsxMpSWeRMLKtSl bEVRjOLIkSNyaCseo+Wsvu1BuwEwDyhwUaYMIn3zXOtge/iBpfbH31v1v6bfWCeyx+nF+dFejJm2 8ca8Tn0tcH7pxJb1iOOI001WgA3EHmILcSAxRs95dAQ0fuVA44zRI2uVEY8V3QOU2I9lLJ6wj7pe 8oKSmYgAqY7ogWwAeSWtjgxoB5nm+2/1UD86RE52PpYdZZW28W8YiDQURIAoit8Ap7Y2cJ2KySPp KJGHJ+wAh8m3/7uCFBJFh2izwFMGAkVRQflQbjAG+oJqwPZMOo8HihexYYwofUdYMegCzkAYfDyP UxjVMW9WEorkRbF97fDWRLv42IHm/3bw2ELb2pzQde7D56BQK8E8qS8iHP3rSBRC+LTJ2DgmxS2g D2NBwdwvQ6KtRKKQc3xdK4PBqw714nQYm52ZIiYfODl37lw7ceKEDaOAU+ToY2NBtoP8wpfKqI+Z aUWfQ1PtBy9tOvqcOsHzMZXzwkF4DJ+cp+9rgQMxxoCHlc18W4J6pWuOtFH9xx6iW4jxASA7K/02 CCin8jgr6tIGskPO/K52AqCAMoDB4BkzPMSBASAvfhGJkVOXc77Vpsyr7/IoGW0HT8obPKQBUUQu 1gArKsEYleoZS9IhBK3GIX/jbahbgyHEUr/Aw/0i7ttAVIY6rChlWRYjziQSQ6mIA8PUGffSGQRU RpmBcq+eh3jXwogAj8iemj1t/aGieMTrsjx79uxKu3Jpvb1wdbFdODcpw/mQ2sleM6i2ztAfvCV9 Sy6OEni24F0CajN1ysALPOERBaLceE/KCmQYkBQfuUgHul5zKQwmekmkLO8aWUg/cl58d/zMmTPt 4sWLbWtry/3VpNdyskFfn+oOPOEQptvK0sH26EOLij5rmvscaOur6DyLPUl7B5CzknYtcKY++xnL JuDZHn3or+pyHl1Xajfw5LYZ/wgE8AwfxXvkhNPjPHU4xsFaPpo7UYcPmWRRKeDh9XJWVe1EZQvo DDlb1gDPREquMUsmGUMFD9qJLe4KwpN7lhBhpowaoiDXtws+hpzFgfzbPgbiAWM4HljaCYACwtTN QD1nwEh0DyNmQ2QiHd6IgUqgEioDLIVFoAFitcWTZBTPeV2PdwuAAAaLG8P/HdI4rUi8FDxMNj5B y799f/yR1fb81c325OOf12+WSQGd+pECUcoAjCiVFMO/iycMFV7H+KNPp1Yj4xvGRxuRU3cK9rKD /A0WnafN9JWog7IDHsbJfVYOtw4f1nzt4Xby5ElHn5IJYy3Ao8MyZMj9WuaJFovzvKo90/7kjw63 q88caMf5rw9zU+29n+dTuN/wGOBxp+03+zX3YXxlK0U1IYcKKOlvu0evqOKj9JbfKi+jr6XrgWco oC7nbSchQlek4oBlbo55IKuqfVFCcgdABrXmPNhCRZ2KdKU7eBz/Bjt8Vv+7MjlDcT2lEYWJQYEF IK5Xo/zGYPY7YvC/eeSdmdfYuHpY7uU4rwelaYPr8a6DkWAU/WGqmcdrRggGkIh6BbbiB6KNOk/7 SR8LPNTz57UMwuKfshI6dWZYELhD85vJ9vwVXrFeVN6/7N0EbPeZscJj7F4c6AA2wbfSi4l9WR6m /aQX4SMyjXKJevDCOUbq/yyhcVKu5FRthEd0ED04aooXnJJ3SFNW953W6b7raXxsX9raOtyOHj1q T0k73KOt8IMxJRrAG3KII4jMubegKLaxPtOefGK1/fH319rDF5DPbLt180F/mOPm3/6v/DHCa4Hz yye/aJnSJ20XUGpONg6UyCXX5mTAMWLGl/FmzDi8gD6vfyOv6IE+QgFRPcytMdp+GFtFHwEHquiT hSgepuYlzwJFdECbtCc9iUf/EwNlXWm3A1xlBR4iQyr4hpinEY6lvFLqcG0AFQ/IJhQx9u69Q4ak CNQBxL140SiPRQgiS3bSFnAGUKZt+ggQwksUG4HECGuA4zxxhLhXdaG672uq61RQ7YwMTveYBy0s zLSjR+baxcfX20svbrUrT8+3c6cPtkNrrDZJ0RIsgCjQZ7UtY3BqJfmRJ49Arb7p0wYpRXsyayNg LAFPebLitcYxOI/tIOc3MgBEWd2DxAuKVF2TzuGTcfIuP0Cotks2aSteF+Phd4EnwMLLLrRlzXNO nphvf/bHR/3c58Sx+dFXbYr4XNQ4ePydt25gGWc5PZzFkP6MA8jg8dxDBq4j4yt9RpbimTH0h8wG kEGEPCIXwFNyzXX6BTBJjak3il7jAJIcDKC+eACIqD/IXPypDSIPZZCn5SXd841up23jhliGGYHD 2KDYopoLQRjOpAxn3749Os8zgWwZkUJ4WtzrU2fvXva51X9mTlsRYIARz1FAisLryKBCuea+O59F VaYM5drfDB4gWEESuOcqMwfa2sqBdv7sokCz2Z5/9nC779yhtrm50lZW+HchfFBCRiv+HI1JNVXP zxfUNv1ixMiRMbpNlYO4l9ShjIhz5j9J4zCiXO/tWPYVLWm/xkUZFI3ySTt6tKZ8BxLlPE7q2XjS bo297teRdgBJeehcQxcYdqLP1uZse+apdUeff/LVl/8oOyDi1QP31fsP/9uJ8WKgWbXdHn1YyPBb ruKpMo7Yn2RgWXJNvwGBZVFATDvhP+U5Z1y0ZXn5GVDXhepnVS/HOAza6QBRm8Uv7fIBm0Xzxjc8 8rwO54vMdyHMARikRFkoGAw7zygGEGVyT4pFGa4BoGzRyOStOvdgLYBEi/HnE4kwBxU2+Tfjfbez Qm+MbgAq7ZfCC1wQbeQafUX51S/nVZffJdzyJE6rxBf/p2Zubnc7tnVre+qxmfbClY321BML3gzK P+Ot/VFOP3v+DXgqbeNhcfHLEUADHsoxNq4lcvM7fJhXgQJFD54z/MOz2+hyHNoO79RPG8hWAOoO rJyZ5USbY+XG2+d+yZXf4+0V1TXuLy5MtTOnF9uP/82xHUFzLe35zBc8dtpxRBGN90+74+AZ+g2Q AQ8vw40bMFQ24FRLxlsRg10C7BYARJRLP7FRMqptABIYHaltk4yPaxqrU7o4Je8gEF84V8YBv/AK z4sL4m1hRe0FQABxVw0sHaKIrHrxe27uE640/mYfSuP7VaRfUayYcZQpJQ+CK+DUxJjv/E56z1o8 JZ51foFvSPPpVz6ywIAC4hIYVEKBCjw5TzpQRlhEHfrAEVQdjhaI7pNGIYBF9be+Ptsu3DfXnrvE Kwfr7YHzpGt71C7jjyHRXngCGOFvcjLfOvM1yyHGmfPwRl0UyL45iJQmckz0iaeM/Ks+fJd86nrG PBg57TKGbA8SLxqnHzcAIMoDzM47RBsAhrKl5/AeAxn62S7D2RneLp1py49d3BEs1xIrfrWqif4r PaPtGk9FnzL4IviwoQoQ3K89lFznfpwPbVI3gKA8r8KzU4Ay5TAtE14PkV0aFJa5xoQd0F8Hj6OQ AdnnMwBTx0QW2hrGAS3ML4mWFY2WDGS/z+MlUnlU9qVhcPVwFOXCIOv026NPDAZCqbTheYA6ZbB0 CGXQCE5HQmXPW5PKIDTKa86h6LO2vqIIRA4eQx3qDkZUQIjXjmFEwCo7SnHgEQPPjuS0lTo2qk4A Y211vp06wf8RFXCubLZHH15vh7eWpYzwXkS7NV6IqJKtSHxrYIi28FLjBZwomnCP8wA8eEPOiX70 H94H43WEow/xzO8CjHlHznZGOccDAyDkjrF4o62o5kGsLJZ8aAOdVVRDNn5oPeoH2UieHXD8zjgO tuWlqbbxu3fvCJZxevfG11QPY428aKOMLm1Fj/BT0af64jgy0PL0AEhlS0aDLLiWNrnHDgHq1Djp J2NlnPDR6yJDtZPnOiLAYxBFlu6fdgRMA0g6BDz0F7Cmf8+RBCJW70bv8/iztz0lwYsRgRBe5ebF cDwXRlQCiaCH1xoijCKu2fgEHIPH+WcHnZScf8mxX4xL2IpC4ytSJQyI83jgKKgEG6FhfPBEezF0 DIQxxAnUHANjQoC8MHewbW7sa489MOE3RK8+s9bOnBWI16TcvmVjxPuo3WGM9Ml/wh7/NywxiBg4 u4QR8vKy5k1yPsiLpVCUikLilOq5GeBHuZ0Yo35HYZFjxhmFe+KrdANF4kWTGkovat+pHJEFZyg5 hNfI0SCjDEeVSQRK1GSyng+DxFiLFqWXY0fn2wvPbrXP/8E/3xE40Ds/91X1k2Vj2nOb5jtyLIfL OX0UOIq/kkfJhOP4/QJPORDaqXrjy+AQ96KrgK3qQqRlTgvFG7KudqhHmk7qyGvg/i+JsvmaCxWA AibA38Hj/VoI2gbYUwHPa0jPhvCOUjHKLDJgoN2YIEewCK0YgjhHcJQn9+ejeHjhEgBfPtm3b3fb N7FbCud5BUBJffqkb2gQ5HAvPJW3ibHEyDmHR6LDhOqWF9TAAZHStbW1hXb29FK7/NRKe+m5lXbx sel2+PA+pQ0HPFmmLG2H93hoiD7hJbzpugyG9rlWfYRP2kAZywJQXo1INBTg5NX8dVaXT2oTpWLA tKM+pFiupy/453pWiuI1RU47xIdkiS7gFTl43qpxc+TaIKOMpQBU5DIaj3cfyHGUXHOcbqsrM+2B +5ba3/zkVHvm4r5218lHrgMPY0MW8E69cRuILqCkueioDJ77lOW8IlJkknai/9Spsjii0kXJnHOo 6sE3dcJH2uG8+vKzQ5VLe7n3CV0zgJby5VHPwUScLy8zrQjg0QPA2uVBIWQNzJ5DxktDCBQATSr1 Gc0d5MH5cia/85X68lzjnjIGVwMs5qLckHcVd4YR6N69u9uHPnS72uRJftIg6pTwoTKy+l3C8uTO 7Q/g4dw7HzQWFMe55xjUE7Hd5MiRBX977dlLG+3SU5v+94gry0QLIk/SAdovg6MPfsOHH5qRH3t8 vAuT8vAXCn8uK4FnGRSBY0iRDR6MMknhQuT7SysoCyXFELhOOZSN0mrCCoBoh0iOcZTOGDvEnKx2 bGzXQ9K3WmCoa1DSmvRJeeTMfR6QHjsy256/uuEd1/edmWgf/t/8Xrvl1PMGDv9D1HKWLvzCpMZN 3erTtqN7ziakB0Bmm+meP2WYD2GYyKLGzrgCnuIVGhwoZcsuejtuG91Tpij9RJcl/4CH6EO9khu/ o7OAJ1EnoIYK4AaPvRRRxmlaBxCDVIdRQu6l4QycaJH9b+y8zryiGI7xRhmlAAgGa1l19D9g+oAA zR13fMDK5ncGkyN1y7gYcLVpg6rBW3CUL8AELAYByjBwqEeUmNRcZ087d2af/0P0i88uC0T8n07S LkDKES8Yj1Y8wgv9jYS4sKw2uR8vyrUAPEq3IfR8HIF7E6IBlLmjn/306FuOh/K8nMd7SAFvjZ2x Uka/Pe6cI2+cEelc0pMyRowEHcXxbdOBwDQOnqozkjey6u2nrRg/33J46IGl9tf/7kR76vG9bWuD Mc609249bB1U2TLW6qscD2NIWiS5Oj2nbNqmLhT7ydHykDw5Ur+IdNSrlay4aaLvuZ/KpP/YAPaY cfcoY5lRpjbjwhP9RG5VH14Yd+ZRSc3QV8qkXEXnHnlIbQCQvJRCPQCioWqQyODIJIYsGA060Scp yD52F3h7jpTRvT1MMIi0E+8As7RFru3/rKX2LAwNBoDW1hyuDUYQwY4bUAYdY7Ohykjxyn6Y5vII ln4BT167XlomWjB4PON0O35stj31xFp78bm1duXpmXb25N62skR6FyUHDEM0gYfiIwBBcRKqhF+8 DOAJr9TlN1QAMnj0Ozl4qNoGSB4TfatcgQcwY6Q1/noRkfOKcMiYPugbfmKEMV5AUXxzj9/jRu2+ XUf3MD7pEFnWteJveZnd5svtpRePtO9/Z7mdPz0hmak/yRTwlL1Yp+pjez9JbYm+Xh1bQi5qH1vS PfqhvnnodWkLvhlbpfgh+MPIkTPGnWdVyWoyXtrE1pBB9AEFBLQVG0KucWZDmVDAE31CxVvxafCI krapIww4YT5L0DROQVbgABVlAEbAMQjHwPN96hGdslUCxhlsgacGGPBQJ6s9tAFovNSq89QZFFG/ bTiiCJLz5J4LCqkIMIKRcFGUysMDQliSwlblyVd4JiCvt7mxoPxd6drlI6KtduHcUttYE89S5ryV IYFJgAFQBJv+aTPC5dyCxPv13yVoflMXQ4EcgTplpSd14RVA1HntxigF2TEYyCiL+uFh1LfBE7mU ISAD7hW5XdE4f2XcHMfL1DkrdZCdUb9HWeR57OhSe/rJrfbXPz7ZnnxsT48+KmMwi9/efwAQcA46 zFeNLBcBKN+8o8+hTPVV/BXfHDH4tJO2LGfpCyKN9X/rMIBob2iHOsinbDB2jTzhoVKw6JAjvws4 XCseqozLIUuVMXgYaACUuc8AHgwSQRB5QDLMxDvBXDFIXTM6E/CUYEqx0Lhg/FxCYOWY+gHQOHiu VWyMKcZavHkyx78vVwqVuQD1YpRM+okeAc+idwZvbhxo952daFefXmo/+O6x9vQTy+3IlpQpA2DC nvxWghsDUAlunIq3EizlSujxWrwDJMBq/sL5SNldITWuAkhdK5nSPteqv/SRdvmdcaYMbacsZQZD KKq+IsMhiqbO0FZdNw8FoP4bHaHztdVZOZ7V9oPvHVP0WWrnTk96nujoQ/vSSfUZG8r18JoomuhT c8DwTx8BUWwhvwf5Ft8lG+tXsohceA65pGt8iL3GkT4pH/vGXlO/0lXaRF81h6GvouqTNooP5MvR 4+G3+vebpDRWjDOIDBZBqAEGJeAAICIL5Zx3uhyCSl3a4DxCGowuDEgBquO0wH0RgQQgRazqv0DE eQ1iYH4wPo7FG/OO5aVVAWS5RyCMTYNHuBi0jghnbVXRZX25nfAzHZZdV9uzzyy186f2tNXFO9rc zH5FEfhOnmuluB+UNJaOdeMo4lqBhTFjEAUizlfXmHQGPDUG6jEmxka78Fftc71kEB1sV2i17VS1 X6dc2hoModpDPxhNybjKloyrXLVD/9xDn448In5THwfLJ6qOHJ5rT11cV/Q50S4+ulvRBxn08Uk+ 28co3UkH6Te/M58sj88Yhn6xjzji2FfZU8ZSIBuAD6H3RTlQVjUx8IAkAKJsTS84Ilt2uOCouVfy LxqXJ20XX7RXQWBEGuuuKgxROBWDtAhfgpOhF3hqQ6QHprLk31wrAFXHUDHDde9KMOjSB56Ma7TF 7yrHTgWUgPFWG1AZD8cCT65BnFOeclCMmpVDzgHP4c319uADW+3ZK4fbs1e32iMPrSrqAEA8pEgR c54HYD36MH4rpxusr8GL+CzlDf2rrKLXwuK4RwwP8BPPPDgBZFDKqw2JMSZW0OItuV9jv04G7m+Q LwR/tFXtUZb2RnKVfpAP7Zaeqr0qV2UBi1MxG3cZkfSrue7K8lQ7d2ahfe87h9v3XqzoAz+D3qHi rc6xF9pABsWbgSPZ84iC9J/UnwzH82ecrWyDOrRTMiga7wvw4ETzPI1FgYo29DlEHwjgZBNAZEz9 neRQ/VCmpgoBJeNCpwIPFShUlShUDSK4vLMvA5exY4wck751ryBiHoTHgOhsEE4JDg8w6flO1cOY EBAP9VxHZf2/gcQDwOEcqrYYXHmIapt7GGd9X4x8eBR1BKg5Ush5PiF7sD1wjn9ku9z+5PtH2tMX j7ajx/IPuzJOGbfBQ5sSovtM3/TrlTIdrWwLcLvQ3Yb65+3amptEAQEMbddCSsk59wdAFNFuGTD3 qx+OdR7wlIxLwfBU/EZOBrXKpL84LcoZHH0MlKcs7RTfBpf4Bjz0EwDlOosqW5vT7YnH1trf/PRU e+KROzRnhM84iBrXtUTd8v78RhYhjJyFpGHenN0iQxSi3Rp/tVe/PQZFH9J30nju0U9NA+gXKhlx TiSCSg7wTDvIdjR+rjF294kMh10HgIdrBg8Fi8q4rSTCIBMwERHGBmojGAOPvROTtazAwYzrygjj wdO+Q7IEk6VQlMRgEKgEpvYBD6tjZSgB0GBUpWQMucrYszO/AkAo22NgcAxenlbHRYHn2JGDSjEW 2h99Z7W9cGVWnnN/W12dUKTIOG3gHh+RI167FES/+Xd9XGcs13rugMxjArye72V88BEAcZ56GAUy onzkcC2Iws+1SoV2OudI2QEQiX5FVaZ0xXn4yBjos5xDyhXv6TsET0PEJPqcPb3Qvv/dI/7vcqeP 75Oc4XnIPmin2oOiayJM5sclC+tKzoWdJnnQmjGEj9gk5+PjZixuV+d1nRSe1I1z2gY42x7k97Yg +i9wQfzmOm0721J5yLs+GD+2zMKEX2VgnLQzm7SthJKBijF70TRmj2PwRPhO0yQkBFyDSLkht+Z3 gBOhB7lqB2MaeeaAx6FZ9fLSUUCSCXuEwu+KOKEYWAwhKdpIqIRTBk5EU5pJlFxenmn3nVtX1NEk 98UjBtGRrUm1wWdmA4ByBvBE+/AeWURpgIcPKNYkl7FmnEP/NcakjRkfY4Mio1wbV9Yg+zgi2slY amwZf67FEDkWVXnaKUOIHqOrUPii72qTduCffrlWMi6dUTblh75KHhgNy8y8dXvx8dX21z852R55 4ANtTXLm2Y1lSf0ycB2rf8YNj8P3rhl3eEKOVXa8X4j7pX94TTmMOzyG/1o8SmYSuTKOyIB+6hr9 DsRvrtMm/HabV7nR/zt1+9K/AFpL49PTM+3/D8i/C3OsoLzjAAAAAElFTkSuQmCC", extent={{-63.7,-100},{63.7,100}})}), experiment( StopTime=1, StartTime=0, Interval=0.002, MaxInterval="0.001")); end TrajectoryManagement;