This project is a demonstrator tool, made by the MOISE project, that translates timed Altarica models into Fiacre models. Such translation allows to use model checkers such as Tina to prove properties. The project contains the translator tool.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

326 lines
12 KiB

6 years ago
//
// Copyright (c) 2002--2010
// Toon Knapen, Karl Meerbergen, Kresimir Fresl,
// Thomas Klimpel and Rutger ter Borg
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// THIS FILE IS AUTOMATICALLY GENERATED
// PLEASE DO NOT EDIT!
//
#ifndef BOOST_NUMERIC_BINDINGS_LAPACK_COMPUTATIONAL_HETRF_HPP
#define BOOST_NUMERIC_BINDINGS_LAPACK_COMPUTATIONAL_HETRF_HPP
#include <boost/assert.hpp>
#include <boost/numeric/bindings/begin.hpp>
#include <boost/numeric/bindings/detail/array.hpp>
#include <boost/numeric/bindings/is_column_major.hpp>
#include <boost/numeric/bindings/is_complex.hpp>
#include <boost/numeric/bindings/is_mutable.hpp>
#include <boost/numeric/bindings/is_real.hpp>
#include <boost/numeric/bindings/lapack/workspace.hpp>
#include <boost/numeric/bindings/remove_imaginary.hpp>
#include <boost/numeric/bindings/size.hpp>
#include <boost/numeric/bindings/stride.hpp>
#include <boost/numeric/bindings/traits/detail/utils.hpp>
#include <boost/numeric/bindings/uplo_tag.hpp>
#include <boost/numeric/bindings/value_type.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/remove_const.hpp>
#include <boost/utility/enable_if.hpp>
//
// The LAPACK-backend for hetrf is the netlib-compatible backend.
//
#include <boost/numeric/bindings/lapack/detail/lapack.h>
#include <boost/numeric/bindings/lapack/detail/lapack_option.hpp>
namespace boost {
namespace numeric {
namespace bindings {
namespace lapack {
//
// The detail namespace contains value-type-overloaded functions that
// dispatch to the appropriate back-end LAPACK-routine.
//
namespace detail {
//
// Overloaded function for dispatching to
// * netlib-compatible LAPACK backend (the default), and
// * float value-type.
//
template< typename UpLo >
inline std::ptrdiff_t hetrf( const UpLo, const fortran_int_t n, float* a,
const fortran_int_t lda, fortran_int_t* ipiv, float* work,
const fortran_int_t lwork ) {
fortran_int_t info(0);
LAPACK_SSYTRF( &lapack_option< UpLo >::value, &n, a, &lda, ipiv, work,
&lwork, &info );
return info;
}
//
// Overloaded function for dispatching to
// * netlib-compatible LAPACK backend (the default), and
// * double value-type.
//
template< typename UpLo >
inline std::ptrdiff_t hetrf( const UpLo, const fortran_int_t n, double* a,
const fortran_int_t lda, fortran_int_t* ipiv, double* work,
const fortran_int_t lwork ) {
fortran_int_t info(0);
LAPACK_DSYTRF( &lapack_option< UpLo >::value, &n, a, &lda, ipiv, work,
&lwork, &info );
return info;
}
//
// Overloaded function for dispatching to
// * netlib-compatible LAPACK backend (the default), and
// * complex<float> value-type.
//
template< typename UpLo >
inline std::ptrdiff_t hetrf( const UpLo, const fortran_int_t n,
std::complex<float>* a, const fortran_int_t lda, fortran_int_t* ipiv,
std::complex<float>* work, const fortran_int_t lwork ) {
fortran_int_t info(0);
LAPACK_CHETRF( &lapack_option< UpLo >::value, &n, a, &lda, ipiv, work,
&lwork, &info );
return info;
}
//
// Overloaded function for dispatching to
// * netlib-compatible LAPACK backend (the default), and
// * complex<double> value-type.
//
template< typename UpLo >
inline std::ptrdiff_t hetrf( const UpLo, const fortran_int_t n,
std::complex<double>* a, const fortran_int_t lda, fortran_int_t* ipiv,
std::complex<double>* work, const fortran_int_t lwork ) {
fortran_int_t info(0);
LAPACK_ZHETRF( &lapack_option< UpLo >::value, &n, a, &lda, ipiv, work,
&lwork, &info );
return info;
}
} // namespace detail
//
// Value-type based template class. Use this class if you need a type
// for dispatching to hetrf.
//
template< typename Value, typename Enable = void >
struct hetrf_impl {};
//
// This implementation is enabled if Value is a real type.
//
template< typename Value >
struct hetrf_impl< Value, typename boost::enable_if< is_real< Value > >::type > {
typedef Value value_type;
typedef typename remove_imaginary< Value >::type real_type;
//
// Static member function for user-defined workspaces, that
// * Deduces the required arguments for dispatching to LAPACK, and
// * Asserts that most arguments make sense.
//
template< typename MatrixA, typename VectorIPIV, typename WORK >
static std::ptrdiff_t invoke( MatrixA& a, VectorIPIV& ipiv,
detail::workspace1< WORK > work ) {
namespace bindings = ::boost::numeric::bindings;
typedef typename result_of::uplo_tag< MatrixA >::type uplo;
BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixA >::value) );
BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixA >::value) );
BOOST_STATIC_ASSERT( (bindings::is_mutable< VectorIPIV >::value) );
BOOST_ASSERT( bindings::size(work.select(real_type())) >=
min_size_work());
BOOST_ASSERT( bindings::size_column(a) >= 0 );
BOOST_ASSERT( bindings::size_minor(a) == 1 ||
bindings::stride_minor(a) == 1 );
BOOST_ASSERT( bindings::stride_major(a) >= std::max< std::ptrdiff_t >(1,
bindings::size_column(a)) );
return detail::hetrf( uplo(), bindings::size_column(a),
bindings::begin_value(a), bindings::stride_major(a),
bindings::begin_value(ipiv),
bindings::begin_value(work.select(real_type())),
bindings::size(work.select(real_type())) );
}
//
// Static member function that
// * Figures out the minimal workspace requirements, and passes
// the results to the user-defined workspace overload of the
// invoke static member function
// * Enables the unblocked algorithm (BLAS level 2)
//
template< typename MatrixA, typename VectorIPIV >
static std::ptrdiff_t invoke( MatrixA& a, VectorIPIV& ipiv,
minimal_workspace ) {
namespace bindings = ::boost::numeric::bindings;
typedef typename result_of::uplo_tag< MatrixA >::type uplo;
bindings::detail::array< real_type > tmp_work( min_size_work() );
return invoke( a, ipiv, workspace( tmp_work ) );
}
//
// Static member function that
// * Figures out the optimal workspace requirements, and passes
// the results to the user-defined workspace overload of the
// invoke static member
// * Enables the blocked algorithm (BLAS level 3)
//
template< typename MatrixA, typename VectorIPIV >
static std::ptrdiff_t invoke( MatrixA& a, VectorIPIV& ipiv,
optimal_workspace ) {
namespace bindings = ::boost::numeric::bindings;
typedef typename result_of::uplo_tag< MatrixA >::type uplo;
real_type opt_size_work;
detail::hetrf( uplo(), bindings::size_column(a),
bindings::begin_value(a), bindings::stride_major(a),
bindings::begin_value(ipiv), &opt_size_work, -1 );
bindings::detail::array< real_type > tmp_work(
traits::detail::to_int( opt_size_work ) );
return invoke( a, ipiv, workspace( tmp_work ) );
}
//
// Static member function that returns the minimum size of
// workspace-array work.
//
static std::ptrdiff_t min_size_work() {
return 1;
}
};
//
// This implementation is enabled if Value is a complex type.
//
template< typename Value >
struct hetrf_impl< Value, typename boost::enable_if< is_complex< Value > >::type > {
typedef Value value_type;
typedef typename remove_imaginary< Value >::type real_type;
//
// Static member function for user-defined workspaces, that
// * Deduces the required arguments for dispatching to LAPACK, and
// * Asserts that most arguments make sense.
//
template< typename MatrixA, typename VectorIPIV, typename WORK >
static std::ptrdiff_t invoke( MatrixA& a, VectorIPIV& ipiv,
detail::workspace1< WORK > work ) {
namespace bindings = ::boost::numeric::bindings;
typedef typename result_of::uplo_tag< MatrixA >::type uplo;
BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixA >::value) );
BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixA >::value) );
BOOST_STATIC_ASSERT( (bindings::is_mutable< VectorIPIV >::value) );
BOOST_ASSERT( bindings::size(work.select(value_type())) >=
min_size_work());
BOOST_ASSERT( bindings::size_column(a) >= 0 );
BOOST_ASSERT( bindings::size_minor(a) == 1 ||
bindings::stride_minor(a) == 1 );
BOOST_ASSERT( bindings::stride_major(a) >= std::max< std::ptrdiff_t >(1,
bindings::size_column(a)) );
return detail::hetrf( uplo(), bindings::size_column(a),
bindings::begin_value(a), bindings::stride_major(a),
bindings::begin_value(ipiv),
bindings::begin_value(work.select(value_type())),
bindings::size(work.select(value_type())) );
}
//
// Static member function that
// * Figures out the minimal workspace requirements, and passes
// the results to the user-defined workspace overload of the
// invoke static member function
// * Enables the unblocked algorithm (BLAS level 2)
//
template< typename MatrixA, typename VectorIPIV >
static std::ptrdiff_t invoke( MatrixA& a, VectorIPIV& ipiv,
minimal_workspace ) {
namespace bindings = ::boost::numeric::bindings;
typedef typename result_of::uplo_tag< MatrixA >::type uplo;
bindings::detail::array< value_type > tmp_work( min_size_work() );
return invoke( a, ipiv, workspace( tmp_work ) );
}
//
// Static member function that
// * Figures out the optimal workspace requirements, and passes
// the results to the user-defined workspace overload of the
// invoke static member
// * Enables the blocked algorithm (BLAS level 3)
//
template< typename MatrixA, typename VectorIPIV >
static std::ptrdiff_t invoke( MatrixA& a, VectorIPIV& ipiv,
optimal_workspace ) {
namespace bindings = ::boost::numeric::bindings;
typedef typename result_of::uplo_tag< MatrixA >::type uplo;
value_type opt_size_work;
detail::hetrf( uplo(), bindings::size_column(a),
bindings::begin_value(a), bindings::stride_major(a),
bindings::begin_value(ipiv), &opt_size_work, -1 );
bindings::detail::array< value_type > tmp_work(
traits::detail::to_int( opt_size_work ) );
return invoke( a, ipiv, workspace( tmp_work ) );
}
//
// Static member function that returns the minimum size of
// workspace-array work.
//
static std::ptrdiff_t min_size_work() {
return 1;
}
};
//
// Functions for direct use. These functions are overloaded for temporaries,
// so that wrapped types can still be passed and used for write-access. In
// addition, if applicable, they are overloaded for user-defined workspaces.
// Calls to these functions are passed to the hetrf_impl classes. In the
// documentation, most overloads are collapsed to avoid a large number of
// prototypes which are very similar.
//
//
// Overloaded function for hetrf. Its overload differs for
// * User-defined workspace
//
template< typename MatrixA, typename VectorIPIV, typename Workspace >
inline typename boost::enable_if< detail::is_workspace< Workspace >,
std::ptrdiff_t >::type
hetrf( MatrixA& a, VectorIPIV& ipiv, Workspace work ) {
return hetrf_impl< typename bindings::value_type<
MatrixA >::type >::invoke( a, ipiv, work );
}
//
// Overloaded function for hetrf. Its overload differs for
// * Default workspace-type (optimal)
//
template< typename MatrixA, typename VectorIPIV >
inline typename boost::disable_if< detail::is_workspace< VectorIPIV >,
std::ptrdiff_t >::type
hetrf( MatrixA& a, VectorIPIV& ipiv ) {
return hetrf_impl< typename bindings::value_type<
MatrixA >::type >::invoke( a, ipiv, optimal_workspace() );
}
} // namespace lapack
} // namespace bindings
} // namespace numeric
} // namespace boost
#endif