// // Copyright (c) 2002--2010 // Toon Knapen, Karl Meerbergen, Kresimir Fresl, // Thomas Klimpel and Rutger ter Borg // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // THIS FILE IS AUTOMATICALLY GENERATED // PLEASE DO NOT EDIT! // #ifndef BOOST_NUMERIC_BINDINGS_LAPACK_COMPUTATIONAL_TGEXC_HPP #define BOOST_NUMERIC_BINDINGS_LAPACK_COMPUTATIONAL_TGEXC_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // // The LAPACK-backend for tgexc is the netlib-compatible backend. // #include #include namespace boost { namespace numeric { namespace bindings { namespace lapack { // // The detail namespace contains value-type-overloaded functions that // dispatch to the appropriate back-end LAPACK-routine. // namespace detail { // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * float value-type. // inline std::ptrdiff_t tgexc( const fortran_bool_t wantq, const fortran_bool_t wantz, const fortran_int_t n, float* a, const fortran_int_t lda, float* b, const fortran_int_t ldb, float* q, const fortran_int_t ldq, float* z, const fortran_int_t ldz, fortran_int_t& ifst, fortran_int_t& ilst, float* work, const fortran_int_t lwork ) { fortran_int_t info(0); LAPACK_STGEXC( &wantq, &wantz, &n, a, &lda, b, &ldb, q, &ldq, z, &ldz, &ifst, &ilst, work, &lwork, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * double value-type. // inline std::ptrdiff_t tgexc( const fortran_bool_t wantq, const fortran_bool_t wantz, const fortran_int_t n, double* a, const fortran_int_t lda, double* b, const fortran_int_t ldb, double* q, const fortran_int_t ldq, double* z, const fortran_int_t ldz, fortran_int_t& ifst, fortran_int_t& ilst, double* work, const fortran_int_t lwork ) { fortran_int_t info(0); LAPACK_DTGEXC( &wantq, &wantz, &n, a, &lda, b, &ldb, q, &ldq, z, &ldz, &ifst, &ilst, work, &lwork, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * complex value-type. // inline std::ptrdiff_t tgexc( const fortran_bool_t wantq, const fortran_bool_t wantz, const fortran_int_t n, std::complex* a, const fortran_int_t lda, std::complex* b, const fortran_int_t ldb, std::complex* q, const fortran_int_t ldq, std::complex* z, const fortran_int_t ldz, const fortran_int_t ifst, fortran_int_t& ilst ) { fortran_int_t info(0); LAPACK_CTGEXC( &wantq, &wantz, &n, a, &lda, b, &ldb, q, &ldq, z, &ldz, &ifst, &ilst, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * complex value-type. // inline std::ptrdiff_t tgexc( const fortran_bool_t wantq, const fortran_bool_t wantz, const fortran_int_t n, std::complex* a, const fortran_int_t lda, std::complex* b, const fortran_int_t ldb, std::complex* q, const fortran_int_t ldq, std::complex* z, const fortran_int_t ldz, const fortran_int_t ifst, fortran_int_t& ilst ) { fortran_int_t info(0); LAPACK_ZTGEXC( &wantq, &wantz, &n, a, &lda, b, &ldb, q, &ldq, z, &ldz, &ifst, &ilst, &info ); return info; } } // namespace detail // // Value-type based template class. Use this class if you need a type // for dispatching to tgexc. // template< typename Value, typename Enable = void > struct tgexc_impl {}; // // This implementation is enabled if Value is a real type. // template< typename Value > struct tgexc_impl< Value, typename boost::enable_if< is_real< Value > >::type > { typedef Value value_type; typedef typename remove_imaginary< Value >::type real_type; // // Static member function for user-defined workspaces, that // * Deduces the required arguments for dispatching to LAPACK, and // * Asserts that most arguments make sense. // template< typename MatrixA, typename MatrixB, typename MatrixQ, typename MatrixZ, typename WORK > static std::ptrdiff_t invoke( const fortran_bool_t wantq, const fortran_bool_t wantz, MatrixA& a, MatrixB& b, MatrixQ& q, MatrixZ& z, fortran_int_t& ifst, fortran_int_t& ilst, detail::workspace1< WORK > work ) { namespace bindings = ::boost::numeric::bindings; BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixB >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixQ >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixZ >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixB >::type >::type >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixQ >::type >::type >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixZ >::type >::type >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixB >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixQ >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixZ >::value) ); BOOST_ASSERT( bindings::size(work.select(real_type())) >= min_size_work( bindings::size_column(a) )); BOOST_ASSERT( bindings::size_column(a) >= 0 ); BOOST_ASSERT( bindings::size_minor(a) == 1 || bindings::stride_minor(a) == 1 ); BOOST_ASSERT( bindings::size_minor(b) == 1 || bindings::stride_minor(b) == 1 ); BOOST_ASSERT( bindings::size_minor(q) == 1 || bindings::stride_minor(q) == 1 ); BOOST_ASSERT( bindings::size_minor(z) == 1 || bindings::stride_minor(z) == 1 ); BOOST_ASSERT( bindings::stride_major(a) >= std::max< std::ptrdiff_t >(1, bindings::size_column(a)) ); BOOST_ASSERT( bindings::stride_major(b) >= std::max< std::ptrdiff_t >(1, bindings::size_column(a)) ); return detail::tgexc( wantq, wantz, bindings::size_column(a), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(b), bindings::stride_major(b), bindings::begin_value(q), bindings::stride_major(q), bindings::begin_value(z), bindings::stride_major(z), ifst, ilst, bindings::begin_value(work.select(real_type())), bindings::size(work.select(real_type())) ); } // // Static member function that // * Figures out the minimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member function // * Enables the unblocked algorithm (BLAS level 2) // template< typename MatrixA, typename MatrixB, typename MatrixQ, typename MatrixZ > static std::ptrdiff_t invoke( const fortran_bool_t wantq, const fortran_bool_t wantz, MatrixA& a, MatrixB& b, MatrixQ& q, MatrixZ& z, fortran_int_t& ifst, fortran_int_t& ilst, minimal_workspace ) { namespace bindings = ::boost::numeric::bindings; bindings::detail::array< real_type > tmp_work( min_size_work( bindings::size_column(a) ) ); return invoke( wantq, wantz, a, b, q, z, ifst, ilst, workspace( tmp_work ) ); } // // Static member function that // * Figures out the optimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member // * Enables the blocked algorithm (BLAS level 3) // template< typename MatrixA, typename MatrixB, typename MatrixQ, typename MatrixZ > static std::ptrdiff_t invoke( const fortran_bool_t wantq, const fortran_bool_t wantz, MatrixA& a, MatrixB& b, MatrixQ& q, MatrixZ& z, fortran_int_t& ifst, fortran_int_t& ilst, optimal_workspace ) { namespace bindings = ::boost::numeric::bindings; real_type opt_size_work; detail::tgexc( wantq, wantz, bindings::size_column(a), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(b), bindings::stride_major(b), bindings::begin_value(q), bindings::stride_major(q), bindings::begin_value(z), bindings::stride_major(z), ifst, ilst, &opt_size_work, -1 ); bindings::detail::array< real_type > tmp_work( traits::detail::to_int( opt_size_work ) ); return invoke( wantq, wantz, a, b, q, z, ifst, ilst, workspace( tmp_work ) ); } // // Static member function that returns the minimum size of // workspace-array work. // static std::ptrdiff_t min_size_work( const std::ptrdiff_t n ) { if (n <= 1) return 1; else return 4*n + 16; } }; // // This implementation is enabled if Value is a complex type. // template< typename Value > struct tgexc_impl< Value, typename boost::enable_if< is_complex< Value > >::type > { typedef Value value_type; typedef typename remove_imaginary< Value >::type real_type; // // Static member function, that // * Deduces the required arguments for dispatching to LAPACK, and // * Asserts that most arguments make sense. // template< typename MatrixA, typename MatrixB, typename MatrixQ, typename MatrixZ > static std::ptrdiff_t invoke( const fortran_bool_t wantq, const fortran_bool_t wantz, MatrixA& a, MatrixB& b, MatrixQ& q, MatrixZ& z, const fortran_int_t ifst, fortran_int_t& ilst ) { namespace bindings = ::boost::numeric::bindings; BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixB >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixQ >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixZ >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixB >::type >::type >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixQ >::type >::type >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixZ >::type >::type >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixB >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixQ >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixZ >::value) ); BOOST_ASSERT( bindings::size_column(a) >= 0 ); BOOST_ASSERT( bindings::size_minor(a) == 1 || bindings::stride_minor(a) == 1 ); BOOST_ASSERT( bindings::size_minor(b) == 1 || bindings::stride_minor(b) == 1 ); BOOST_ASSERT( bindings::size_minor(q) == 1 || bindings::stride_minor(q) == 1 ); BOOST_ASSERT( bindings::size_minor(z) == 1 || bindings::stride_minor(z) == 1 ); BOOST_ASSERT( bindings::stride_major(a) >= std::max< std::ptrdiff_t >(1, bindings::size_column(a)) ); BOOST_ASSERT( bindings::stride_major(b) >= std::max< std::ptrdiff_t >(1, bindings::size_column(a)) ); return detail::tgexc( wantq, wantz, bindings::size_column(a), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(b), bindings::stride_major(b), bindings::begin_value(q), bindings::stride_major(q), bindings::begin_value(z), bindings::stride_major(z), ifst, ilst ); } }; // // Functions for direct use. These functions are overloaded for temporaries, // so that wrapped types can still be passed and used for write-access. In // addition, if applicable, they are overloaded for user-defined workspaces. // Calls to these functions are passed to the tgexc_impl classes. In the // documentation, most overloads are collapsed to avoid a large number of // prototypes which are very similar. // // // Overloaded function for tgexc. Its overload differs for // * User-defined workspace // template< typename MatrixA, typename MatrixB, typename MatrixQ, typename MatrixZ, typename Workspace > inline typename boost::enable_if< detail::is_workspace< Workspace >, std::ptrdiff_t >::type tgexc( const fortran_bool_t wantq, const fortran_bool_t wantz, MatrixA& a, MatrixB& b, MatrixQ& q, MatrixZ& z, fortran_int_t& ifst, fortran_int_t& ilst, Workspace work ) { return tgexc_impl< typename bindings::value_type< MatrixA >::type >::invoke( wantq, wantz, a, b, q, z, ifst, ilst, work ); } // // Overloaded function for tgexc. Its overload differs for // * Default workspace-type (optimal) // template< typename MatrixA, typename MatrixB, typename MatrixQ, typename MatrixZ > inline typename boost::disable_if< detail::is_workspace< MatrixZ >, std::ptrdiff_t >::type tgexc( const fortran_bool_t wantq, const fortran_bool_t wantz, MatrixA& a, MatrixB& b, MatrixQ& q, MatrixZ& z, fortran_int_t& ifst, fortran_int_t& ilst ) { return tgexc_impl< typename bindings::value_type< MatrixA >::type >::invoke( wantq, wantz, a, b, q, z, ifst, ilst, optimal_workspace() ); } // // Overloaded function for tgexc. Its overload differs for // template< typename MatrixA, typename MatrixB, typename MatrixQ, typename MatrixZ > inline std::ptrdiff_t tgexc( const fortran_bool_t wantq, const fortran_bool_t wantz, MatrixA& a, MatrixB& b, MatrixQ& q, MatrixZ& z, const fortran_int_t ifst, fortran_int_t& ilst ) { return tgexc_impl< typename bindings::value_type< MatrixA >::type >::invoke( wantq, wantz, a, b, q, z, ifst, ilst ); } } // namespace lapack } // namespace bindings } // namespace numeric } // namespace boost #endif