// // Copyright (c) 2002--2010 // Toon Knapen, Karl Meerbergen, Kresimir Fresl, // Thomas Klimpel and Rutger ter Borg // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // THIS FILE IS AUTOMATICALLY GENERATED // PLEASE DO NOT EDIT! // #ifndef BOOST_NUMERIC_BINDINGS_LAPACK_COMPUTATIONAL_TGSJA_HPP #define BOOST_NUMERIC_BINDINGS_LAPACK_COMPUTATIONAL_TGSJA_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // // The LAPACK-backend for tgsja is the netlib-compatible backend. // #include #include namespace boost { namespace numeric { namespace bindings { namespace lapack { // // The detail namespace contains value-type-overloaded functions that // dispatch to the appropriate back-end LAPACK-routine. // namespace detail { // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * float value-type. // inline std::ptrdiff_t tgsja( const char jobu, const char jobv, const char jobq, const fortran_int_t m, const fortran_int_t p, const fortran_int_t n, const fortran_int_t k, const fortran_int_t l, float* a, const fortran_int_t lda, float* b, const fortran_int_t ldb, const float tola, const float tolb, float* alpha, float* beta, float* u, const fortran_int_t ldu, float* v, const fortran_int_t ldv, float* q, const fortran_int_t ldq, float* work, fortran_int_t& ncycle ) { fortran_int_t info(0); LAPACK_STGSJA( &jobu, &jobv, &jobq, &m, &p, &n, &k, &l, a, &lda, b, &ldb, &tola, &tolb, alpha, beta, u, &ldu, v, &ldv, q, &ldq, work, &ncycle, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * double value-type. // inline std::ptrdiff_t tgsja( const char jobu, const char jobv, const char jobq, const fortran_int_t m, const fortran_int_t p, const fortran_int_t n, const fortran_int_t k, const fortran_int_t l, double* a, const fortran_int_t lda, double* b, const fortran_int_t ldb, const double tola, const double tolb, double* alpha, double* beta, double* u, const fortran_int_t ldu, double* v, const fortran_int_t ldv, double* q, const fortran_int_t ldq, double* work, fortran_int_t& ncycle ) { fortran_int_t info(0); LAPACK_DTGSJA( &jobu, &jobv, &jobq, &m, &p, &n, &k, &l, a, &lda, b, &ldb, &tola, &tolb, alpha, beta, u, &ldu, v, &ldv, q, &ldq, work, &ncycle, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * complex value-type. // inline std::ptrdiff_t tgsja( const char jobu, const char jobv, const char jobq, const fortran_int_t m, const fortran_int_t p, const fortran_int_t n, const fortran_int_t k, const fortran_int_t l, std::complex* a, const fortran_int_t lda, std::complex* b, const fortran_int_t ldb, const float tola, const float tolb, float* alpha, float* beta, std::complex* u, const fortran_int_t ldu, std::complex* v, const fortran_int_t ldv, std::complex* q, const fortran_int_t ldq, std::complex* work, fortran_int_t& ncycle ) { fortran_int_t info(0); LAPACK_CTGSJA( &jobu, &jobv, &jobq, &m, &p, &n, &k, &l, a, &lda, b, &ldb, &tola, &tolb, alpha, beta, u, &ldu, v, &ldv, q, &ldq, work, &ncycle, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * complex value-type. // inline std::ptrdiff_t tgsja( const char jobu, const char jobv, const char jobq, const fortran_int_t m, const fortran_int_t p, const fortran_int_t n, const fortran_int_t k, const fortran_int_t l, std::complex* a, const fortran_int_t lda, std::complex* b, const fortran_int_t ldb, const double tola, const double tolb, double* alpha, double* beta, std::complex* u, const fortran_int_t ldu, std::complex* v, const fortran_int_t ldv, std::complex* q, const fortran_int_t ldq, std::complex* work, fortran_int_t& ncycle ) { fortran_int_t info(0); LAPACK_ZTGSJA( &jobu, &jobv, &jobq, &m, &p, &n, &k, &l, a, &lda, b, &ldb, &tola, &tolb, alpha, beta, u, &ldu, v, &ldv, q, &ldq, work, &ncycle, &info ); return info; } } // namespace detail // // Value-type based template class. Use this class if you need a type // for dispatching to tgsja. // template< typename Value, typename Enable = void > struct tgsja_impl {}; // // This implementation is enabled if Value is a real type. // template< typename Value > struct tgsja_impl< Value, typename boost::enable_if< is_real< Value > >::type > { typedef Value value_type; typedef typename remove_imaginary< Value >::type real_type; // // Static member function for user-defined workspaces, that // * Deduces the required arguments for dispatching to LAPACK, and // * Asserts that most arguments make sense. // template< typename MatrixA, typename MatrixB, typename VectorALPHA, typename VectorBETA, typename MatrixU, typename MatrixV, typename MatrixQ, typename WORK > static std::ptrdiff_t invoke( const char jobu, const char jobv, const char jobq, const fortran_int_t k, const fortran_int_t l, MatrixA& a, MatrixB& b, const real_type tola, const real_type tolb, VectorALPHA& alpha, VectorBETA& beta, MatrixU& u, MatrixV& v, MatrixQ& q, fortran_int_t& ncycle, detail::workspace1< WORK > work ) { namespace bindings = ::boost::numeric::bindings; BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixB >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixU >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixV >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixQ >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixB >::type >::type >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< VectorALPHA >::type >::type >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< VectorBETA >::type >::type >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixU >::type >::type >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixV >::type >::type >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixQ >::type >::type >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixB >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< VectorALPHA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< VectorBETA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixU >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixV >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixQ >::value) ); BOOST_ASSERT( bindings::size(alpha) >= bindings::size_column(a) ); BOOST_ASSERT( bindings::size(work.select(real_type())) >= min_size_work( bindings::size_column(a) )); BOOST_ASSERT( bindings::size_column(a) >= 0 ); BOOST_ASSERT( bindings::size_minor(a) == 1 || bindings::stride_minor(a) == 1 ); BOOST_ASSERT( bindings::size_minor(b) == 1 || bindings::stride_minor(b) == 1 ); BOOST_ASSERT( bindings::size_minor(q) == 1 || bindings::stride_minor(q) == 1 ); BOOST_ASSERT( bindings::size_minor(u) == 1 || bindings::stride_minor(u) == 1 ); BOOST_ASSERT( bindings::size_minor(v) == 1 || bindings::stride_minor(v) == 1 ); BOOST_ASSERT( bindings::size_row(a) >= 0 ); BOOST_ASSERT( bindings::size_row(b) >= 0 ); BOOST_ASSERT( bindings::stride_major(a) >= std::max< std::ptrdiff_t >(1, bindings::size_row(a)) ); BOOST_ASSERT( bindings::stride_major(b) >= std::max< std::ptrdiff_t >(1, bindings::size_row(b)) ); BOOST_ASSERT( jobq == 'Q' || jobq == 'I' || jobq == 'N' ); BOOST_ASSERT( jobu == 'U' || jobu == 'I' || jobu == 'N' ); BOOST_ASSERT( jobv == 'V' || jobv == 'I' || jobv == 'N' ); return detail::tgsja( jobu, jobv, jobq, bindings::size_row(a), bindings::size_row(b), bindings::size_column(a), k, l, bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(b), bindings::stride_major(b), tola, tolb, bindings::begin_value(alpha), bindings::begin_value(beta), bindings::begin_value(u), bindings::stride_major(u), bindings::begin_value(v), bindings::stride_major(v), bindings::begin_value(q), bindings::stride_major(q), bindings::begin_value(work.select(real_type())), ncycle ); } // // Static member function that // * Figures out the minimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member function // * Enables the unblocked algorithm (BLAS level 2) // template< typename MatrixA, typename MatrixB, typename VectorALPHA, typename VectorBETA, typename MatrixU, typename MatrixV, typename MatrixQ > static std::ptrdiff_t invoke( const char jobu, const char jobv, const char jobq, const fortran_int_t k, const fortran_int_t l, MatrixA& a, MatrixB& b, const real_type tola, const real_type tolb, VectorALPHA& alpha, VectorBETA& beta, MatrixU& u, MatrixV& v, MatrixQ& q, fortran_int_t& ncycle, minimal_workspace ) { namespace bindings = ::boost::numeric::bindings; bindings::detail::array< real_type > tmp_work( min_size_work( bindings::size_column(a) ) ); return invoke( jobu, jobv, jobq, k, l, a, b, tola, tolb, alpha, beta, u, v, q, ncycle, workspace( tmp_work ) ); } // // Static member function that // * Figures out the optimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member // * Enables the blocked algorithm (BLAS level 3) // template< typename MatrixA, typename MatrixB, typename VectorALPHA, typename VectorBETA, typename MatrixU, typename MatrixV, typename MatrixQ > static std::ptrdiff_t invoke( const char jobu, const char jobv, const char jobq, const fortran_int_t k, const fortran_int_t l, MatrixA& a, MatrixB& b, const real_type tola, const real_type tolb, VectorALPHA& alpha, VectorBETA& beta, MatrixU& u, MatrixV& v, MatrixQ& q, fortran_int_t& ncycle, optimal_workspace ) { namespace bindings = ::boost::numeric::bindings; return invoke( jobu, jobv, jobq, k, l, a, b, tola, tolb, alpha, beta, u, v, q, ncycle, minimal_workspace() ); } // // Static member function that returns the minimum size of // workspace-array work. // static std::ptrdiff_t min_size_work( const std::ptrdiff_t n ) { return 2*n; } }; // // This implementation is enabled if Value is a complex type. // template< typename Value > struct tgsja_impl< Value, typename boost::enable_if< is_complex< Value > >::type > { typedef Value value_type; typedef typename remove_imaginary< Value >::type real_type; // // Static member function for user-defined workspaces, that // * Deduces the required arguments for dispatching to LAPACK, and // * Asserts that most arguments make sense. // template< typename MatrixA, typename MatrixB, typename VectorALPHA, typename VectorBETA, typename MatrixU, typename MatrixV, typename MatrixQ, typename WORK > static std::ptrdiff_t invoke( const char jobu, const char jobv, const char jobq, const fortran_int_t k, const fortran_int_t l, MatrixA& a, MatrixB& b, const real_type tola, const real_type tolb, VectorALPHA& alpha, VectorBETA& beta, MatrixU& u, MatrixV& v, MatrixQ& q, fortran_int_t& ncycle, detail::workspace1< WORK > work ) { namespace bindings = ::boost::numeric::bindings; BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixB >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixU >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixV >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixQ >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< VectorALPHA >::type >::type, typename remove_const< typename bindings::value_type< VectorBETA >::type >::type >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixB >::type >::type >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixU >::type >::type >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixV >::type >::type >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixQ >::type >::type >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixB >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< VectorALPHA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< VectorBETA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixU >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixV >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixQ >::value) ); BOOST_ASSERT( bindings::size(alpha) >= bindings::size_column(a) ); BOOST_ASSERT( bindings::size(work.select(value_type())) >= min_size_work( bindings::size_column(a) )); BOOST_ASSERT( bindings::size_column(a) >= 0 ); BOOST_ASSERT( bindings::size_minor(a) == 1 || bindings::stride_minor(a) == 1 ); BOOST_ASSERT( bindings::size_minor(b) == 1 || bindings::stride_minor(b) == 1 ); BOOST_ASSERT( bindings::size_minor(q) == 1 || bindings::stride_minor(q) == 1 ); BOOST_ASSERT( bindings::size_minor(u) == 1 || bindings::stride_minor(u) == 1 ); BOOST_ASSERT( bindings::size_minor(v) == 1 || bindings::stride_minor(v) == 1 ); BOOST_ASSERT( bindings::size_row(a) >= 0 ); BOOST_ASSERT( bindings::size_row(b) >= 0 ); BOOST_ASSERT( bindings::stride_major(a) >= std::max< std::ptrdiff_t >(1, bindings::size_row(a)) ); BOOST_ASSERT( bindings::stride_major(b) >= std::max< std::ptrdiff_t >(1, bindings::size_row(b)) ); BOOST_ASSERT( jobq == 'Q' || jobq == 'I' || jobq == 'N' ); BOOST_ASSERT( jobu == 'U' || jobu == 'I' || jobu == 'N' ); BOOST_ASSERT( jobv == 'V' || jobv == 'I' || jobv == 'N' ); return detail::tgsja( jobu, jobv, jobq, bindings::size_row(a), bindings::size_row(b), bindings::size_column(a), k, l, bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(b), bindings::stride_major(b), tola, tolb, bindings::begin_value(alpha), bindings::begin_value(beta), bindings::begin_value(u), bindings::stride_major(u), bindings::begin_value(v), bindings::stride_major(v), bindings::begin_value(q), bindings::stride_major(q), bindings::begin_value(work.select(value_type())), ncycle ); } // // Static member function that // * Figures out the minimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member function // * Enables the unblocked algorithm (BLAS level 2) // template< typename MatrixA, typename MatrixB, typename VectorALPHA, typename VectorBETA, typename MatrixU, typename MatrixV, typename MatrixQ > static std::ptrdiff_t invoke( const char jobu, const char jobv, const char jobq, const fortran_int_t k, const fortran_int_t l, MatrixA& a, MatrixB& b, const real_type tola, const real_type tolb, VectorALPHA& alpha, VectorBETA& beta, MatrixU& u, MatrixV& v, MatrixQ& q, fortran_int_t& ncycle, minimal_workspace ) { namespace bindings = ::boost::numeric::bindings; bindings::detail::array< value_type > tmp_work( min_size_work( bindings::size_column(a) ) ); return invoke( jobu, jobv, jobq, k, l, a, b, tola, tolb, alpha, beta, u, v, q, ncycle, workspace( tmp_work ) ); } // // Static member function that // * Figures out the optimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member // * Enables the blocked algorithm (BLAS level 3) // template< typename MatrixA, typename MatrixB, typename VectorALPHA, typename VectorBETA, typename MatrixU, typename MatrixV, typename MatrixQ > static std::ptrdiff_t invoke( const char jobu, const char jobv, const char jobq, const fortran_int_t k, const fortran_int_t l, MatrixA& a, MatrixB& b, const real_type tola, const real_type tolb, VectorALPHA& alpha, VectorBETA& beta, MatrixU& u, MatrixV& v, MatrixQ& q, fortran_int_t& ncycle, optimal_workspace ) { namespace bindings = ::boost::numeric::bindings; return invoke( jobu, jobv, jobq, k, l, a, b, tola, tolb, alpha, beta, u, v, q, ncycle, minimal_workspace() ); } // // Static member function that returns the minimum size of // workspace-array work. // static std::ptrdiff_t min_size_work( const std::ptrdiff_t n ) { return 2*n; } }; // // Functions for direct use. These functions are overloaded for temporaries, // so that wrapped types can still be passed and used for write-access. In // addition, if applicable, they are overloaded for user-defined workspaces. // Calls to these functions are passed to the tgsja_impl classes. In the // documentation, most overloads are collapsed to avoid a large number of // prototypes which are very similar. // // // Overloaded function for tgsja. Its overload differs for // * User-defined workspace // template< typename MatrixA, typename MatrixB, typename VectorALPHA, typename VectorBETA, typename MatrixU, typename MatrixV, typename MatrixQ, typename Workspace > inline typename boost::enable_if< detail::is_workspace< Workspace >, std::ptrdiff_t >::type tgsja( const char jobu, const char jobv, const char jobq, const fortran_int_t k, const fortran_int_t l, MatrixA& a, MatrixB& b, const typename remove_imaginary< typename bindings::value_type< MatrixA >::type >::type tola, const typename remove_imaginary< typename bindings::value_type< MatrixA >::type >::type tolb, VectorALPHA& alpha, VectorBETA& beta, MatrixU& u, MatrixV& v, MatrixQ& q, fortran_int_t& ncycle, Workspace work ) { return tgsja_impl< typename bindings::value_type< MatrixA >::type >::invoke( jobu, jobv, jobq, k, l, a, b, tola, tolb, alpha, beta, u, v, q, ncycle, work ); } // // Overloaded function for tgsja. Its overload differs for // * Default workspace-type (optimal) // template< typename MatrixA, typename MatrixB, typename VectorALPHA, typename VectorBETA, typename MatrixU, typename MatrixV, typename MatrixQ > inline typename boost::disable_if< detail::is_workspace< MatrixQ >, std::ptrdiff_t >::type tgsja( const char jobu, const char jobv, const char jobq, const fortran_int_t k, const fortran_int_t l, MatrixA& a, MatrixB& b, const typename remove_imaginary< typename bindings::value_type< MatrixA >::type >::type tola, const typename remove_imaginary< typename bindings::value_type< MatrixA >::type >::type tolb, VectorALPHA& alpha, VectorBETA& beta, MatrixU& u, MatrixV& v, MatrixQ& q, fortran_int_t& ncycle ) { return tgsja_impl< typename bindings::value_type< MatrixA >::type >::invoke( jobu, jobv, jobq, k, l, a, b, tola, tolb, alpha, beta, u, v, q, ncycle, optimal_workspace() ); } } // namespace lapack } // namespace bindings } // namespace numeric } // namespace boost #endif