// // Copyright (c) 2002--2010 // Toon Knapen, Karl Meerbergen, Kresimir Fresl, // Thomas Klimpel and Rutger ter Borg // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // THIS FILE IS AUTOMATICALLY GENERATED // PLEASE DO NOT EDIT! // #ifndef BOOST_NUMERIC_BINDINGS_LAPACK_DRIVER_GELSD_HPP #define BOOST_NUMERIC_BINDINGS_LAPACK_DRIVER_GELSD_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // // The LAPACK-backend for gelsd is the netlib-compatible backend. // #include #include namespace boost { namespace numeric { namespace bindings { namespace lapack { // // The detail namespace contains value-type-overloaded functions that // dispatch to the appropriate back-end LAPACK-routine. // namespace detail { // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * float value-type. // inline std::ptrdiff_t gelsd( const fortran_int_t m, const fortran_int_t n, const fortran_int_t nrhs, float* a, const fortran_int_t lda, float* b, const fortran_int_t ldb, float* s, const float rcond, fortran_int_t& rank, float* work, const fortran_int_t lwork, fortran_int_t* iwork ) { fortran_int_t info(0); LAPACK_SGELSD( &m, &n, &nrhs, a, &lda, b, &ldb, s, &rcond, &rank, work, &lwork, iwork, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * double value-type. // inline std::ptrdiff_t gelsd( const fortran_int_t m, const fortran_int_t n, const fortran_int_t nrhs, double* a, const fortran_int_t lda, double* b, const fortran_int_t ldb, double* s, const double rcond, fortran_int_t& rank, double* work, const fortran_int_t lwork, fortran_int_t* iwork ) { fortran_int_t info(0); LAPACK_DGELSD( &m, &n, &nrhs, a, &lda, b, &ldb, s, &rcond, &rank, work, &lwork, iwork, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * complex value-type. // inline std::ptrdiff_t gelsd( const fortran_int_t m, const fortran_int_t n, const fortran_int_t nrhs, std::complex* a, const fortran_int_t lda, std::complex* b, const fortran_int_t ldb, float* s, const float rcond, fortran_int_t& rank, std::complex* work, const fortran_int_t lwork, float* rwork, fortran_int_t* iwork ) { fortran_int_t info(0); LAPACK_CGELSD( &m, &n, &nrhs, a, &lda, b, &ldb, s, &rcond, &rank, work, &lwork, rwork, iwork, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * complex value-type. // inline std::ptrdiff_t gelsd( const fortran_int_t m, const fortran_int_t n, const fortran_int_t nrhs, const std::complex* a, const fortran_int_t lda, std::complex* b, const fortran_int_t ldb, double* s, const double rcond, fortran_int_t& rank, std::complex* work, const fortran_int_t lwork, double* rwork, fortran_int_t* iwork ) { fortran_int_t info(0); LAPACK_ZGELSD( &m, &n, &nrhs, a, &lda, b, &ldb, s, &rcond, &rank, work, &lwork, rwork, iwork, &info ); return info; } } // namespace detail // // Value-type based template class. Use this class if you need a type // for dispatching to gelsd. // template< typename Value, typename Enable = void > struct gelsd_impl {}; // // This implementation is enabled if Value is a real type. // template< typename Value > struct gelsd_impl< Value, typename boost::enable_if< is_real< Value > >::type > { typedef Value value_type; typedef typename remove_imaginary< Value >::type real_type; // // Static member function for user-defined workspaces, that // * Deduces the required arguments for dispatching to LAPACK, and // * Asserts that most arguments make sense. // template< typename MatrixA, typename MatrixB, typename VectorS, typename WORK, typename IWORK > static std::ptrdiff_t invoke( MatrixA& a, MatrixB& b, VectorS& s, const real_type rcond, fortran_int_t& rank, detail::workspace2< WORK, IWORK > work ) { namespace bindings = ::boost::numeric::bindings; BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixB >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixB >::type >::type >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< VectorS >::type >::type >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixB >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< VectorS >::value) ); std::ptrdiff_t minmn = std::min< std::ptrdiff_t >( size_row(a), size_column(a) ); std::ptrdiff_t smlsiz = ilaenv(9, "GELSD", ""); std::ptrdiff_t nlvl = std::max< std::ptrdiff_t >( static_cast(std::log( static_cast(minmn)/static_cast(smlsiz+ 1))/std::log(2.0)) + 1, 0 ); BOOST_ASSERT( bindings::size(s) >= std::min< std::ptrdiff_t >(bindings::size_row(a), bindings::size_column(a)) ); BOOST_ASSERT( bindings::size(work.select(fortran_int_t())) >= min_size_iwork( minmn, nlvl )); BOOST_ASSERT( bindings::size(work.select(real_type())) >= min_size_work( minmn, smlsiz, nlvl, bindings::size_column(b) )); BOOST_ASSERT( bindings::size_column(a) >= 0 ); BOOST_ASSERT( bindings::size_column(b) >= 0 ); BOOST_ASSERT( bindings::size_minor(a) == 1 || bindings::stride_minor(a) == 1 ); BOOST_ASSERT( bindings::size_minor(b) == 1 || bindings::stride_minor(b) == 1 ); BOOST_ASSERT( bindings::size_row(a) >= 0 ); BOOST_ASSERT( bindings::stride_major(a) >= std::max< std::ptrdiff_t >(1, bindings::size_row(a)) ); BOOST_ASSERT( bindings::stride_major(b) >= std::max< std::ptrdiff_t >(1, std::max< std::ptrdiff_t >(bindings::size_row(a), bindings::size_column(a))) ); return detail::gelsd( bindings::size_row(a), bindings::size_column(a), bindings::size_column(b), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(b), bindings::stride_major(b), bindings::begin_value(s), rcond, rank, bindings::begin_value(work.select(real_type())), bindings::size(work.select(real_type())), bindings::begin_value(work.select(fortran_int_t())) ); } // // Static member function that // * Figures out the minimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member function // * Enables the unblocked algorithm (BLAS level 2) // template< typename MatrixA, typename MatrixB, typename VectorS > static std::ptrdiff_t invoke( MatrixA& a, MatrixB& b, VectorS& s, const real_type rcond, fortran_int_t& rank, minimal_workspace ) { namespace bindings = ::boost::numeric::bindings; std::ptrdiff_t minmn = std::min< std::ptrdiff_t >( size_row(a), size_column(a) ); std::ptrdiff_t smlsiz = ilaenv(9, "GELSD", ""); std::ptrdiff_t nlvl = std::max< std::ptrdiff_t >( static_cast(std::log( static_cast(minmn)/static_cast(smlsiz+ 1))/std::log(2.0)) + 1, 0 ); bindings::detail::array< real_type > tmp_work( min_size_work( minmn, smlsiz, nlvl, bindings::size_column(b) ) ); bindings::detail::array< fortran_int_t > tmp_iwork( min_size_iwork( minmn, nlvl ) ); return invoke( a, b, s, rcond, rank, workspace( tmp_work, tmp_iwork ) ); } // // Static member function that // * Figures out the optimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member // * Enables the blocked algorithm (BLAS level 3) // template< typename MatrixA, typename MatrixB, typename VectorS > static std::ptrdiff_t invoke( MatrixA& a, MatrixB& b, VectorS& s, const real_type rcond, fortran_int_t& rank, optimal_workspace ) { namespace bindings = ::boost::numeric::bindings; std::ptrdiff_t minmn = std::min< std::ptrdiff_t >( size_row(a), size_column(a) ); std::ptrdiff_t smlsiz = ilaenv(9, "GELSD", ""); std::ptrdiff_t nlvl = std::max< std::ptrdiff_t >( static_cast(std::log( static_cast(minmn)/static_cast(smlsiz+ 1))/std::log(2.0)) + 1, 0 ); real_type opt_size_work; bindings::detail::array< fortran_int_t > tmp_iwork( min_size_iwork( minmn, nlvl ) ); detail::gelsd( bindings::size_row(a), bindings::size_column(a), bindings::size_column(b), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(b), bindings::stride_major(b), bindings::begin_value(s), rcond, rank, &opt_size_work, -1, bindings::begin_value(tmp_iwork) ); bindings::detail::array< real_type > tmp_work( traits::detail::to_int( opt_size_work ) ); return invoke( a, b, s, rcond, rank, workspace( tmp_work, tmp_iwork ) ); } // // Static member function that returns the minimum size of // workspace-array work. // static std::ptrdiff_t min_size_work( const std::ptrdiff_t minmn, const std::ptrdiff_t smlsiz, const std::ptrdiff_t nlvl, const std::ptrdiff_t nrhs ) { std::ptrdiff_t smlsiz_plus_one = smlsiz + 1; return std::max< std::ptrdiff_t >( 1, 12*minmn + 2*minmn*smlsiz + 8*minmn*nlvl + minmn*nrhs + smlsiz_plus_one * smlsiz_plus_one ); } // // Static member function that returns the minimum size of // workspace-array iwork. // static std::ptrdiff_t min_size_iwork( const std::ptrdiff_t minmn, const std::ptrdiff_t nlvl ) { return std::max< std::ptrdiff_t >( 1, 3*minmn*nlvl + 11*minmn ); } }; // // This implementation is enabled if Value is a complex type. // template< typename Value > struct gelsd_impl< Value, typename boost::enable_if< is_complex< Value > >::type > { typedef Value value_type; typedef typename remove_imaginary< Value >::type real_type; // // Static member function for user-defined workspaces, that // * Deduces the required arguments for dispatching to LAPACK, and // * Asserts that most arguments make sense. // template< typename MatrixA, typename MatrixB, typename VectorS, typename WORK, typename RWORK, typename IWORK > static std::ptrdiff_t invoke( MatrixA& a, MatrixB& b, VectorS& s, const real_type rcond, fortran_int_t& rank, detail::workspace3< WORK, RWORK, IWORK > work ) { namespace bindings = ::boost::numeric::bindings; BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixB >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixB >::type >::type >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixB >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< VectorS >::value) ); std::ptrdiff_t minmn = std::min< std::ptrdiff_t >( size_row(a), size_column(a) ); std::ptrdiff_t smlsiz = ilaenv(9, "GELSD", ""); std::ptrdiff_t nlvl = std::max< std::ptrdiff_t >( static_cast(std::log( static_cast(minmn)/static_cast(smlsiz+ 1))/std::log(2.0)) + 1, 0 ); BOOST_ASSERT( bindings::size(s) >= std::min< std::ptrdiff_t >(bindings::size_row(a), bindings::size_column(a)) ); BOOST_ASSERT( bindings::size(work.select(fortran_int_t())) >= min_size_iwork( minmn, nlvl )); BOOST_ASSERT( bindings::size(work.select(real_type())) >= min_size_rwork( minmn, smlsiz, nlvl, bindings::size_column(b) )); BOOST_ASSERT( bindings::size(work.select(value_type())) >= min_size_work( bindings::size_column(a), minmn, bindings::size_column(b) )); BOOST_ASSERT( bindings::size_column(a) >= 0 ); BOOST_ASSERT( bindings::size_column(b) >= 0 ); BOOST_ASSERT( bindings::size_minor(a) == 1 || bindings::stride_minor(a) == 1 ); BOOST_ASSERT( bindings::size_minor(b) == 1 || bindings::stride_minor(b) == 1 ); BOOST_ASSERT( bindings::size_row(a) >= 0 ); BOOST_ASSERT( bindings::stride_major(a) >= std::max< std::ptrdiff_t >(1, bindings::size_row(a)) ); BOOST_ASSERT( bindings::stride_major(b) >= std::max< std::ptrdiff_t >(1, std::max< std::ptrdiff_t >(bindings::size_row(a), bindings::size_column(a))) ); return detail::gelsd( bindings::size_row(a), bindings::size_column(a), bindings::size_column(b), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(b), bindings::stride_major(b), bindings::begin_value(s), rcond, rank, bindings::begin_value(work.select(value_type())), bindings::size(work.select(value_type())), bindings::begin_value(work.select(real_type())), bindings::begin_value(work.select(fortran_int_t())) ); } // // Static member function that // * Figures out the minimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member function // * Enables the unblocked algorithm (BLAS level 2) // template< typename MatrixA, typename MatrixB, typename VectorS > static std::ptrdiff_t invoke( MatrixA& a, MatrixB& b, VectorS& s, const real_type rcond, fortran_int_t& rank, minimal_workspace ) { namespace bindings = ::boost::numeric::bindings; std::ptrdiff_t minmn = std::min< std::ptrdiff_t >( size_row(a), size_column(a) ); std::ptrdiff_t smlsiz = ilaenv(9, "GELSD", ""); std::ptrdiff_t nlvl = std::max< std::ptrdiff_t >( static_cast(std::log( static_cast(minmn)/static_cast(smlsiz+ 1))/std::log(2.0)) + 1, 0 ); bindings::detail::array< value_type > tmp_work( min_size_work( bindings::size_column(a), minmn, bindings::size_column(b) ) ); bindings::detail::array< real_type > tmp_rwork( min_size_rwork( minmn, smlsiz, nlvl, bindings::size_column(b) ) ); bindings::detail::array< fortran_int_t > tmp_iwork( min_size_iwork( minmn, nlvl ) ); return invoke( a, b, s, rcond, rank, workspace( tmp_work, tmp_rwork, tmp_iwork ) ); } // // Static member function that // * Figures out the optimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member // * Enables the blocked algorithm (BLAS level 3) // template< typename MatrixA, typename MatrixB, typename VectorS > static std::ptrdiff_t invoke( MatrixA& a, MatrixB& b, VectorS& s, const real_type rcond, fortran_int_t& rank, optimal_workspace ) { namespace bindings = ::boost::numeric::bindings; std::ptrdiff_t minmn = std::min< std::ptrdiff_t >( size_row(a), size_column(a) ); std::ptrdiff_t smlsiz = ilaenv(9, "GELSD", ""); std::ptrdiff_t nlvl = std::max< std::ptrdiff_t >( static_cast(std::log( static_cast(minmn)/static_cast(smlsiz+ 1))/std::log(2.0)) + 1, 0 ); value_type opt_size_work; bindings::detail::array< real_type > tmp_rwork( min_size_rwork( minmn, smlsiz, nlvl, bindings::size_column(b) ) ); bindings::detail::array< fortran_int_t > tmp_iwork( min_size_iwork( minmn, nlvl ) ); detail::gelsd( bindings::size_row(a), bindings::size_column(a), bindings::size_column(b), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(b), bindings::stride_major(b), bindings::begin_value(s), rcond, rank, &opt_size_work, -1, bindings::begin_value(tmp_rwork), bindings::begin_value(tmp_iwork) ); bindings::detail::array< value_type > tmp_work( traits::detail::to_int( opt_size_work ) ); return invoke( a, b, s, rcond, rank, workspace( tmp_work, tmp_rwork, tmp_iwork ) ); } // // Static member function that returns the minimum size of // workspace-array work. // static std::ptrdiff_t min_size_work( const std::ptrdiff_t n, const std::ptrdiff_t minmn, const std::ptrdiff_t nrhs ) { return std::max< std::ptrdiff_t >( 1, 2*minmn + std::max< std::ptrdiff_t >( n, minmn*nrhs ) ); } // // Static member function that returns the minimum size of // workspace-array rwork. // static std::ptrdiff_t min_size_rwork( const std::ptrdiff_t minmn, const std::ptrdiff_t smlsiz, const std::ptrdiff_t nlvl, const std::ptrdiff_t nrhs ) { std::ptrdiff_t smlsiz_plus_one = smlsiz + 1; return std::max< std::ptrdiff_t >( 1, 10*minmn + 2*minmn*smlsiz + 8*minmn*nlvl + 3*smlsiz*nrhs + smlsiz_plus_one * smlsiz_plus_one ); } // // Static member function that returns the minimum size of // workspace-array iwork. // static std::ptrdiff_t min_size_iwork( const std::ptrdiff_t minmn, const std::ptrdiff_t nlvl ) { return std::max< std::ptrdiff_t >( 1, 3*minmn*nlvl + 11*minmn ); } }; // // Functions for direct use. These functions are overloaded for temporaries, // so that wrapped types can still be passed and used for write-access. In // addition, if applicable, they are overloaded for user-defined workspaces. // Calls to these functions are passed to the gelsd_impl classes. In the // documentation, most overloads are collapsed to avoid a large number of // prototypes which are very similar. // // // Overloaded function for gelsd. Its overload differs for // * User-defined workspace // template< typename MatrixA, typename MatrixB, typename VectorS, typename Workspace > inline typename boost::enable_if< detail::is_workspace< Workspace >, std::ptrdiff_t >::type gelsd( MatrixA& a, MatrixB& b, VectorS& s, const typename remove_imaginary< typename bindings::value_type< MatrixA >::type >::type rcond, fortran_int_t& rank, Workspace work ) { return gelsd_impl< typename bindings::value_type< MatrixA >::type >::invoke( a, b, s, rcond, rank, work ); } // // Overloaded function for gelsd. Its overload differs for // * Default workspace-type (optimal) // template< typename MatrixA, typename MatrixB, typename VectorS > inline typename boost::disable_if< detail::is_workspace< VectorS >, std::ptrdiff_t >::type gelsd( MatrixA& a, MatrixB& b, VectorS& s, const typename remove_imaginary< typename bindings::value_type< MatrixA >::type >::type rcond, fortran_int_t& rank ) { return gelsd_impl< typename bindings::value_type< MatrixA >::type >::invoke( a, b, s, rcond, rank, optimal_workspace() ); } } // namespace lapack } // namespace bindings } // namespace numeric } // namespace boost #endif