// // Copyright (c) 2002--2010 // Toon Knapen, Karl Meerbergen, Kresimir Fresl, // Thomas Klimpel and Rutger ter Borg // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // THIS FILE IS AUTOMATICALLY GENERATED // PLEASE DO NOT EDIT! // #ifndef BOOST_NUMERIC_BINDINGS_LAPACK_DRIVER_GELSY_HPP #define BOOST_NUMERIC_BINDINGS_LAPACK_DRIVER_GELSY_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // // The LAPACK-backend for gelsy is the netlib-compatible backend. // #include #include namespace boost { namespace numeric { namespace bindings { namespace lapack { // // The detail namespace contains value-type-overloaded functions that // dispatch to the appropriate back-end LAPACK-routine. // namespace detail { // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * float value-type. // inline std::ptrdiff_t gelsy( const fortran_int_t m, const fortran_int_t n, const fortran_int_t nrhs, float* a, const fortran_int_t lda, float* b, const fortran_int_t ldb, fortran_int_t* jpvt, const float rcond, fortran_int_t& rank, float* work, const fortran_int_t lwork ) { fortran_int_t info(0); LAPACK_SGELSY( &m, &n, &nrhs, a, &lda, b, &ldb, jpvt, &rcond, &rank, work, &lwork, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * double value-type. // inline std::ptrdiff_t gelsy( const fortran_int_t m, const fortran_int_t n, const fortran_int_t nrhs, double* a, const fortran_int_t lda, double* b, const fortran_int_t ldb, fortran_int_t* jpvt, const double rcond, fortran_int_t& rank, double* work, const fortran_int_t lwork ) { fortran_int_t info(0); LAPACK_DGELSY( &m, &n, &nrhs, a, &lda, b, &ldb, jpvt, &rcond, &rank, work, &lwork, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * complex value-type. // inline std::ptrdiff_t gelsy( const fortran_int_t m, const fortran_int_t n, const fortran_int_t nrhs, std::complex* a, const fortran_int_t lda, std::complex* b, const fortran_int_t ldb, fortran_int_t* jpvt, const float rcond, fortran_int_t& rank, std::complex* work, const fortran_int_t lwork, float* rwork ) { fortran_int_t info(0); LAPACK_CGELSY( &m, &n, &nrhs, a, &lda, b, &ldb, jpvt, &rcond, &rank, work, &lwork, rwork, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * complex value-type. // inline std::ptrdiff_t gelsy( const fortran_int_t m, const fortran_int_t n, const fortran_int_t nrhs, std::complex* a, const fortran_int_t lda, std::complex* b, const fortran_int_t ldb, fortran_int_t* jpvt, const double rcond, fortran_int_t& rank, std::complex* work, const fortran_int_t lwork, double* rwork ) { fortran_int_t info(0); LAPACK_ZGELSY( &m, &n, &nrhs, a, &lda, b, &ldb, jpvt, &rcond, &rank, work, &lwork, rwork, &info ); return info; } } // namespace detail // // Value-type based template class. Use this class if you need a type // for dispatching to gelsy. // template< typename Value, typename Enable = void > struct gelsy_impl {}; // // This implementation is enabled if Value is a real type. // template< typename Value > struct gelsy_impl< Value, typename boost::enable_if< is_real< Value > >::type > { typedef Value value_type; typedef typename remove_imaginary< Value >::type real_type; // // Static member function for user-defined workspaces, that // * Deduces the required arguments for dispatching to LAPACK, and // * Asserts that most arguments make sense. // template< typename MatrixA, typename MatrixB, typename VectorJPVT, typename WORK > static std::ptrdiff_t invoke( MatrixA& a, MatrixB& b, VectorJPVT& jpvt, const real_type rcond, fortran_int_t& rank, detail::workspace1< WORK > work ) { namespace bindings = ::boost::numeric::bindings; BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixB >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixB >::type >::type >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixB >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< VectorJPVT >::value) ); BOOST_ASSERT( bindings::size(work.select(real_type())) >= min_size_work( bindings::size_row(a), bindings::size_column(a), bindings::size_column(b) )); BOOST_ASSERT( bindings::size_column(a) >= 0 ); BOOST_ASSERT( bindings::size_column(b) >= 0 ); BOOST_ASSERT( bindings::size_minor(a) == 1 || bindings::stride_minor(a) == 1 ); BOOST_ASSERT( bindings::size_minor(b) == 1 || bindings::stride_minor(b) == 1 ); BOOST_ASSERT( bindings::size_row(a) >= 0 ); BOOST_ASSERT( bindings::stride_major(a) >= std::max< std::ptrdiff_t >(1, bindings::size_row(a)) ); BOOST_ASSERT( bindings::stride_major(b) >= std::max< std::ptrdiff_t >(1, std::max< std::ptrdiff_t >(bindings::size_row(a), bindings::size_column(a))) ); return detail::gelsy( bindings::size_row(a), bindings::size_column(a), bindings::size_column(b), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(b), bindings::stride_major(b), bindings::begin_value(jpvt), rcond, rank, bindings::begin_value(work.select(real_type())), bindings::size(work.select(real_type())) ); } // // Static member function that // * Figures out the minimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member function // * Enables the unblocked algorithm (BLAS level 2) // template< typename MatrixA, typename MatrixB, typename VectorJPVT > static std::ptrdiff_t invoke( MatrixA& a, MatrixB& b, VectorJPVT& jpvt, const real_type rcond, fortran_int_t& rank, minimal_workspace ) { namespace bindings = ::boost::numeric::bindings; bindings::detail::array< real_type > tmp_work( min_size_work( bindings::size_row(a), bindings::size_column(a), bindings::size_column(b) ) ); return invoke( a, b, jpvt, rcond, rank, workspace( tmp_work ) ); } // // Static member function that // * Figures out the optimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member // * Enables the blocked algorithm (BLAS level 3) // template< typename MatrixA, typename MatrixB, typename VectorJPVT > static std::ptrdiff_t invoke( MatrixA& a, MatrixB& b, VectorJPVT& jpvt, const real_type rcond, fortran_int_t& rank, optimal_workspace ) { namespace bindings = ::boost::numeric::bindings; real_type opt_size_work; detail::gelsy( bindings::size_row(a), bindings::size_column(a), bindings::size_column(b), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(b), bindings::stride_major(b), bindings::begin_value(jpvt), rcond, rank, &opt_size_work, -1 ); bindings::detail::array< real_type > tmp_work( traits::detail::to_int( opt_size_work ) ); return invoke( a, b, jpvt, rcond, rank, workspace( tmp_work ) ); } // // Static member function that returns the minimum size of // workspace-array work. // static std::ptrdiff_t min_size_work( const std::ptrdiff_t m, const std::ptrdiff_t n, const std::ptrdiff_t nrhs ) { std::ptrdiff_t minmn = std::min< std::ptrdiff_t >( m, n ); return std::max< std::ptrdiff_t >( 1, std::max< std::ptrdiff_t >( minmn+ 3*n+1, 2*minmn+nrhs )); } }; // // This implementation is enabled if Value is a complex type. // template< typename Value > struct gelsy_impl< Value, typename boost::enable_if< is_complex< Value > >::type > { typedef Value value_type; typedef typename remove_imaginary< Value >::type real_type; // // Static member function for user-defined workspaces, that // * Deduces the required arguments for dispatching to LAPACK, and // * Asserts that most arguments make sense. // template< typename MatrixA, typename MatrixB, typename VectorJPVT, typename WORK, typename RWORK > static std::ptrdiff_t invoke( MatrixA& a, MatrixB& b, VectorJPVT& jpvt, const real_type rcond, fortran_int_t& rank, detail::workspace2< WORK, RWORK > work ) { namespace bindings = ::boost::numeric::bindings; BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixB >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixB >::type >::type >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixB >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< VectorJPVT >::value) ); BOOST_ASSERT( bindings::size(work.select(real_type())) >= min_size_rwork( bindings::size_column(a) )); BOOST_ASSERT( bindings::size(work.select(value_type())) >= min_size_work( bindings::size_row(a), bindings::size_column(a), bindings::size_column(b) )); BOOST_ASSERT( bindings::size_column(a) >= 0 ); BOOST_ASSERT( bindings::size_column(b) >= 0 ); BOOST_ASSERT( bindings::size_minor(a) == 1 || bindings::stride_minor(a) == 1 ); BOOST_ASSERT( bindings::size_minor(b) == 1 || bindings::stride_minor(b) == 1 ); BOOST_ASSERT( bindings::size_row(a) >= 0 ); BOOST_ASSERT( bindings::stride_major(a) >= std::max< std::ptrdiff_t >(1, bindings::size_row(a)) ); BOOST_ASSERT( bindings::stride_major(b) >= std::max< std::ptrdiff_t >(1, std::max< std::ptrdiff_t >(bindings::size_row(a), bindings::size_column(a))) ); return detail::gelsy( bindings::size_row(a), bindings::size_column(a), bindings::size_column(b), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(b), bindings::stride_major(b), bindings::begin_value(jpvt), rcond, rank, bindings::begin_value(work.select(value_type())), bindings::size(work.select(value_type())), bindings::begin_value(work.select(real_type())) ); } // // Static member function that // * Figures out the minimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member function // * Enables the unblocked algorithm (BLAS level 2) // template< typename MatrixA, typename MatrixB, typename VectorJPVT > static std::ptrdiff_t invoke( MatrixA& a, MatrixB& b, VectorJPVT& jpvt, const real_type rcond, fortran_int_t& rank, minimal_workspace ) { namespace bindings = ::boost::numeric::bindings; bindings::detail::array< value_type > tmp_work( min_size_work( bindings::size_row(a), bindings::size_column(a), bindings::size_column(b) ) ); bindings::detail::array< real_type > tmp_rwork( min_size_rwork( bindings::size_column(a) ) ); return invoke( a, b, jpvt, rcond, rank, workspace( tmp_work, tmp_rwork ) ); } // // Static member function that // * Figures out the optimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member // * Enables the blocked algorithm (BLAS level 3) // template< typename MatrixA, typename MatrixB, typename VectorJPVT > static std::ptrdiff_t invoke( MatrixA& a, MatrixB& b, VectorJPVT& jpvt, const real_type rcond, fortran_int_t& rank, optimal_workspace ) { namespace bindings = ::boost::numeric::bindings; value_type opt_size_work; bindings::detail::array< real_type > tmp_rwork( min_size_rwork( bindings::size_column(a) ) ); detail::gelsy( bindings::size_row(a), bindings::size_column(a), bindings::size_column(b), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(b), bindings::stride_major(b), bindings::begin_value(jpvt), rcond, rank, &opt_size_work, -1, bindings::begin_value(tmp_rwork) ); bindings::detail::array< value_type > tmp_work( traits::detail::to_int( opt_size_work ) ); return invoke( a, b, jpvt, rcond, rank, workspace( tmp_work, tmp_rwork ) ); } // // Static member function that returns the minimum size of // workspace-array work. // static std::ptrdiff_t min_size_work( const std::ptrdiff_t m, const std::ptrdiff_t n, const std::ptrdiff_t nrhs ) { std::ptrdiff_t minmn = std::min< std::ptrdiff_t >( m, n ); return std::max< std::ptrdiff_t >( 1, std::max< std::ptrdiff_t >( std::max< std::ptrdiff_t >( 2*minmn, n+1 ), minmn+nrhs ) ); } // // Static member function that returns the minimum size of // workspace-array rwork. // static std::ptrdiff_t min_size_rwork( const std::ptrdiff_t n ) { return 2*n; } }; // // Functions for direct use. These functions are overloaded for temporaries, // so that wrapped types can still be passed and used for write-access. In // addition, if applicable, they are overloaded for user-defined workspaces. // Calls to these functions are passed to the gelsy_impl classes. In the // documentation, most overloads are collapsed to avoid a large number of // prototypes which are very similar. // // // Overloaded function for gelsy. Its overload differs for // * User-defined workspace // template< typename MatrixA, typename MatrixB, typename VectorJPVT, typename Workspace > inline typename boost::enable_if< detail::is_workspace< Workspace >, std::ptrdiff_t >::type gelsy( MatrixA& a, MatrixB& b, VectorJPVT& jpvt, const typename remove_imaginary< typename bindings::value_type< MatrixA >::type >::type rcond, fortran_int_t& rank, Workspace work ) { return gelsy_impl< typename bindings::value_type< MatrixA >::type >::invoke( a, b, jpvt, rcond, rank, work ); } // // Overloaded function for gelsy. Its overload differs for // * Default workspace-type (optimal) // template< typename MatrixA, typename MatrixB, typename VectorJPVT > inline typename boost::disable_if< detail::is_workspace< VectorJPVT >, std::ptrdiff_t >::type gelsy( MatrixA& a, MatrixB& b, VectorJPVT& jpvt, const typename remove_imaginary< typename bindings::value_type< MatrixA >::type >::type rcond, fortran_int_t& rank ) { return gelsy_impl< typename bindings::value_type< MatrixA >::type >::invoke( a, b, jpvt, rcond, rank, optimal_workspace() ); } } // namespace lapack } // namespace bindings } // namespace numeric } // namespace boost #endif