// // Copyright (c) 2002--2010 // Toon Knapen, Karl Meerbergen, Kresimir Fresl, // Thomas Klimpel and Rutger ter Borg // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // THIS FILE IS AUTOMATICALLY GENERATED // PLEASE DO NOT EDIT! // #ifndef BOOST_NUMERIC_BINDINGS_LAPACK_DRIVER_HESV_HPP #define BOOST_NUMERIC_BINDINGS_LAPACK_DRIVER_HESV_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // // The LAPACK-backend for hesv is the netlib-compatible backend. // #include #include namespace boost { namespace numeric { namespace bindings { namespace lapack { // // The detail namespace contains value-type-overloaded functions that // dispatch to the appropriate back-end LAPACK-routine. // namespace detail { // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * float value-type. // template< typename UpLo > inline std::ptrdiff_t hesv( const UpLo, const fortran_int_t n, const fortran_int_t nrhs, float* a, const fortran_int_t lda, fortran_int_t* ipiv, float* b, const fortran_int_t ldb, float* work, const fortran_int_t lwork ) { fortran_int_t info(0); LAPACK_SSYSV( &lapack_option< UpLo >::value, &n, &nrhs, a, &lda, ipiv, b, &ldb, work, &lwork, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * double value-type. // template< typename UpLo > inline std::ptrdiff_t hesv( const UpLo, const fortran_int_t n, const fortran_int_t nrhs, double* a, const fortran_int_t lda, fortran_int_t* ipiv, double* b, const fortran_int_t ldb, double* work, const fortran_int_t lwork ) { fortran_int_t info(0); LAPACK_DSYSV( &lapack_option< UpLo >::value, &n, &nrhs, a, &lda, ipiv, b, &ldb, work, &lwork, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * complex value-type. // template< typename UpLo > inline std::ptrdiff_t hesv( const UpLo, const fortran_int_t n, const fortran_int_t nrhs, std::complex* a, const fortran_int_t lda, fortran_int_t* ipiv, std::complex* b, const fortran_int_t ldb, std::complex* work, const fortran_int_t lwork ) { fortran_int_t info(0); LAPACK_CHESV( &lapack_option< UpLo >::value, &n, &nrhs, a, &lda, ipiv, b, &ldb, work, &lwork, &info ); return info; } // // Overloaded function for dispatching to // * netlib-compatible LAPACK backend (the default), and // * complex value-type. // template< typename UpLo > inline std::ptrdiff_t hesv( const UpLo, const fortran_int_t n, const fortran_int_t nrhs, std::complex* a, const fortran_int_t lda, fortran_int_t* ipiv, std::complex* b, const fortran_int_t ldb, std::complex* work, const fortran_int_t lwork ) { fortran_int_t info(0); LAPACK_ZHESV( &lapack_option< UpLo >::value, &n, &nrhs, a, &lda, ipiv, b, &ldb, work, &lwork, &info ); return info; } } // namespace detail // // Value-type based template class. Use this class if you need a type // for dispatching to hesv. // template< typename Value, typename Enable = void > struct hesv_impl {}; // // This implementation is enabled if Value is a real type. // template< typename Value > struct hesv_impl< Value, typename boost::enable_if< is_real< Value > >::type > { typedef Value value_type; typedef typename remove_imaginary< Value >::type real_type; // // Static member function for user-defined workspaces, that // * Deduces the required arguments for dispatching to LAPACK, and // * Asserts that most arguments make sense. // template< typename MatrixA, typename VectorIPIV, typename MatrixB, typename WORK > static std::ptrdiff_t invoke( MatrixA& a, VectorIPIV& ipiv, MatrixB& b, detail::workspace1< WORK > work ) { namespace bindings = ::boost::numeric::bindings; typedef typename result_of::uplo_tag< MatrixA >::type uplo; BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixB >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixB >::type >::type >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< VectorIPIV >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixB >::value) ); BOOST_ASSERT( bindings::size(work.select(real_type())) >= min_size_work()); BOOST_ASSERT( bindings::size_column(a) >= 0 ); BOOST_ASSERT( bindings::size_column(b) >= 0 ); BOOST_ASSERT( bindings::size_minor(a) == 1 || bindings::stride_minor(a) == 1 ); BOOST_ASSERT( bindings::size_minor(b) == 1 || bindings::stride_minor(b) == 1 ); BOOST_ASSERT( bindings::stride_major(a) >= std::max< std::ptrdiff_t >(1, bindings::size_column(a)) ); BOOST_ASSERT( bindings::stride_major(b) >= std::max< std::ptrdiff_t >(1, bindings::size_column(a)) ); return detail::hesv( uplo(), bindings::size_column(a), bindings::size_column(b), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(ipiv), bindings::begin_value(b), bindings::stride_major(b), bindings::begin_value(work.select(real_type())), bindings::size(work.select(real_type())) ); } // // Static member function that // * Figures out the minimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member function // * Enables the unblocked algorithm (BLAS level 2) // template< typename MatrixA, typename VectorIPIV, typename MatrixB > static std::ptrdiff_t invoke( MatrixA& a, VectorIPIV& ipiv, MatrixB& b, minimal_workspace ) { namespace bindings = ::boost::numeric::bindings; typedef typename result_of::uplo_tag< MatrixA >::type uplo; bindings::detail::array< real_type > tmp_work( min_size_work() ); return invoke( a, ipiv, b, workspace( tmp_work ) ); } // // Static member function that // * Figures out the optimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member // * Enables the blocked algorithm (BLAS level 3) // template< typename MatrixA, typename VectorIPIV, typename MatrixB > static std::ptrdiff_t invoke( MatrixA& a, VectorIPIV& ipiv, MatrixB& b, optimal_workspace ) { namespace bindings = ::boost::numeric::bindings; typedef typename result_of::uplo_tag< MatrixA >::type uplo; real_type opt_size_work; detail::hesv( uplo(), bindings::size_column(a), bindings::size_column(b), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(ipiv), bindings::begin_value(b), bindings::stride_major(b), &opt_size_work, -1 ); bindings::detail::array< real_type > tmp_work( traits::detail::to_int( opt_size_work ) ); return invoke( a, ipiv, b, workspace( tmp_work ) ); } // // Static member function that returns the minimum size of // workspace-array work. // static std::ptrdiff_t min_size_work() { return 1; } }; // // This implementation is enabled if Value is a complex type. // template< typename Value > struct hesv_impl< Value, typename boost::enable_if< is_complex< Value > >::type > { typedef Value value_type; typedef typename remove_imaginary< Value >::type real_type; // // Static member function for user-defined workspaces, that // * Deduces the required arguments for dispatching to LAPACK, and // * Asserts that most arguments make sense. // template< typename MatrixA, typename VectorIPIV, typename MatrixB, typename WORK > static std::ptrdiff_t invoke( MatrixA& a, VectorIPIV& ipiv, MatrixB& b, detail::workspace1< WORK > work ) { namespace bindings = ::boost::numeric::bindings; typedef typename result_of::uplo_tag< MatrixA >::type uplo; BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_column_major< MatrixB >::value) ); BOOST_STATIC_ASSERT( (boost::is_same< typename remove_const< typename bindings::value_type< MatrixA >::type >::type, typename remove_const< typename bindings::value_type< MatrixB >::type >::type >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixA >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< VectorIPIV >::value) ); BOOST_STATIC_ASSERT( (bindings::is_mutable< MatrixB >::value) ); BOOST_ASSERT( bindings::size(work.select(value_type())) >= min_size_work()); BOOST_ASSERT( bindings::size_column(a) >= 0 ); BOOST_ASSERT( bindings::size_column(b) >= 0 ); BOOST_ASSERT( bindings::size_minor(a) == 1 || bindings::stride_minor(a) == 1 ); BOOST_ASSERT( bindings::size_minor(b) == 1 || bindings::stride_minor(b) == 1 ); BOOST_ASSERT( bindings::stride_major(a) >= std::max< std::ptrdiff_t >(1, bindings::size_column(a)) ); BOOST_ASSERT( bindings::stride_major(b) >= std::max< std::ptrdiff_t >(1, bindings::size_column(a)) ); return detail::hesv( uplo(), bindings::size_column(a), bindings::size_column(b), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(ipiv), bindings::begin_value(b), bindings::stride_major(b), bindings::begin_value(work.select(value_type())), bindings::size(work.select(value_type())) ); } // // Static member function that // * Figures out the minimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member function // * Enables the unblocked algorithm (BLAS level 2) // template< typename MatrixA, typename VectorIPIV, typename MatrixB > static std::ptrdiff_t invoke( MatrixA& a, VectorIPIV& ipiv, MatrixB& b, minimal_workspace ) { namespace bindings = ::boost::numeric::bindings; typedef typename result_of::uplo_tag< MatrixA >::type uplo; bindings::detail::array< value_type > tmp_work( min_size_work() ); return invoke( a, ipiv, b, workspace( tmp_work ) ); } // // Static member function that // * Figures out the optimal workspace requirements, and passes // the results to the user-defined workspace overload of the // invoke static member // * Enables the blocked algorithm (BLAS level 3) // template< typename MatrixA, typename VectorIPIV, typename MatrixB > static std::ptrdiff_t invoke( MatrixA& a, VectorIPIV& ipiv, MatrixB& b, optimal_workspace ) { namespace bindings = ::boost::numeric::bindings; typedef typename result_of::uplo_tag< MatrixA >::type uplo; value_type opt_size_work; detail::hesv( uplo(), bindings::size_column(a), bindings::size_column(b), bindings::begin_value(a), bindings::stride_major(a), bindings::begin_value(ipiv), bindings::begin_value(b), bindings::stride_major(b), &opt_size_work, -1 ); bindings::detail::array< value_type > tmp_work( traits::detail::to_int( opt_size_work ) ); return invoke( a, ipiv, b, workspace( tmp_work ) ); } // // Static member function that returns the minimum size of // workspace-array work. // static std::ptrdiff_t min_size_work() { return 1; } }; // // Functions for direct use. These functions are overloaded for temporaries, // so that wrapped types can still be passed and used for write-access. In // addition, if applicable, they are overloaded for user-defined workspaces. // Calls to these functions are passed to the hesv_impl classes. In the // documentation, most overloads are collapsed to avoid a large number of // prototypes which are very similar. // // // Overloaded function for hesv. Its overload differs for // * User-defined workspace // template< typename MatrixA, typename VectorIPIV, typename MatrixB, typename Workspace > inline typename boost::enable_if< detail::is_workspace< Workspace >, std::ptrdiff_t >::type hesv( MatrixA& a, VectorIPIV& ipiv, MatrixB& b, Workspace work ) { return hesv_impl< typename bindings::value_type< MatrixA >::type >::invoke( a, ipiv, b, work ); } // // Overloaded function for hesv. Its overload differs for // * Default workspace-type (optimal) // template< typename MatrixA, typename VectorIPIV, typename MatrixB > inline typename boost::disable_if< detail::is_workspace< MatrixB >, std::ptrdiff_t >::type hesv( MatrixA& a, VectorIPIV& ipiv, MatrixB& b ) { return hesv_impl< typename bindings::value_type< MatrixA >::type >::invoke( a, ipiv, b, optimal_workspace() ); } } // namespace lapack } // namespace bindings } // namespace numeric } // namespace boost #endif