This project is a demonstrator tool, made by the MOISE project, that translates timed Altarica models into Fiacre models. Such translation allows to use model checkers such as Tina to prove properties. The project contains the translator tool.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

291 lines
8.2 KiB

//
// Copyright (c) 2002--2010
// Toon Knapen, Karl Meerbergen, Kresimir Fresl,
// Thomas Klimpel and Rutger ter Borg
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// THIS FILE IS AUTOMATICALLY GENERATED
// PLEASE DO NOT EDIT!
//
#ifndef BOOST_NUMERIC_BINDINGS_BLAS_LEVEL1_SCAL_HPP
#define BOOST_NUMERIC_BINDINGS_BLAS_LEVEL1_SCAL_HPP
#include <boost/assert.hpp>
#include <boost/numeric/bindings/begin.hpp>
#include <boost/numeric/bindings/has_linear_array.hpp>
#include <boost/numeric/bindings/is_mutable.hpp>
#include <boost/numeric/bindings/remove_imaginary.hpp>
#include <boost/numeric/bindings/size.hpp>
#include <boost/numeric/bindings/stride.hpp>
#include <boost/numeric/bindings/value_type.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/remove_const.hpp>
//
// The BLAS-backend is selected by defining a pre-processor variable,
// which can be one of
// * for CBLAS, define BOOST_NUMERIC_BINDINGS_BLAS_CBLAS
// * for CUBLAS, define BOOST_NUMERIC_BINDINGS_BLAS_CUBLAS
// * netlib-compatible BLAS is the default
//
#if defined BOOST_NUMERIC_BINDINGS_BLAS_CBLAS
#include <boost/numeric/bindings/blas/detail/cblas.h>
#include <boost/numeric/bindings/blas/detail/cblas_option.hpp>
#elif defined BOOST_NUMERIC_BINDINGS_BLAS_CUBLAS
#include <boost/numeric/bindings/blas/detail/cublas.h>
#include <boost/numeric/bindings/blas/detail/blas_option.hpp>
#else
#include <boost/numeric/bindings/blas/detail/blas.h>
#include <boost/numeric/bindings/blas/detail/blas_option.hpp>
#endif
namespace boost {
namespace numeric {
namespace bindings {
namespace blas {
//
// The detail namespace contains value-type-overloaded functions that
// dispatch to the appropriate back-end BLAS-routine.
//
namespace detail {
#if defined BOOST_NUMERIC_BINDINGS_BLAS_CBLAS
//
// Overloaded function for dispatching to
// * CBLAS backend, and
// * float value-type.
//
inline void scal( const int n, const float a, float* x, const int incx ) {
cblas_sscal( n, a, x, incx );
}
//
// Overloaded function for dispatching to
// * CBLAS backend, and
// * double value-type.
//
inline void scal( const int n, const double a, double* x, const int incx ) {
cblas_dscal( n, a, x, incx );
}
//
// Overloaded function for dispatching to
// * CBLAS backend, and
// * combined float and complex<float> value-type.
//
inline void scal( const int n, const float a, std::complex<float>* x,
const int incx ) {
cblas_csscal( n, a, x, incx );
}
//
// Overloaded function for dispatching to
// * CBLAS backend, and
// * combined double and complex<double> value-type.
//
inline void scal( const int n, const double a, std::complex<double>* x,
const int incx ) {
cblas_zdscal( n, a, x, incx );
}
//
// Overloaded function for dispatching to
// * CBLAS backend, and
// * complex<float> value-type.
//
inline void scal( const int n, const std::complex<float> a,
std::complex<float>* x, const int incx ) {
cblas_cscal( n, &a, x, incx );
}
//
// Overloaded function for dispatching to
// * CBLAS backend, and
// * complex<double> value-type.
//
inline void scal( const int n, const std::complex<double> a,
std::complex<double>* x, const int incx ) {
cblas_zscal( n, &a, x, incx );
}
#elif defined BOOST_NUMERIC_BINDINGS_BLAS_CUBLAS
//
// Overloaded function for dispatching to
// * CUBLAS backend, and
// * float value-type.
//
inline void scal( const int n, const float a, float* x, const int incx ) {
cublasSscal( n, a, x, incx );
}
//
// Overloaded function for dispatching to
// * CUBLAS backend, and
// * double value-type.
//
inline void scal( const int n, const double a, double* x, const int incx ) {
cublasDscal( n, a, x, incx );
}
//
// Overloaded function for dispatching to
// * CUBLAS backend, and
// * combined float and complex<float> value-type.
//
inline void scal( const int n, const float a, std::complex<float>* x,
const int incx ) {
cublasCsscal( n, a, x, incx );
}
//
// Overloaded function for dispatching to
// * CUBLAS backend, and
// * combined double and complex<double> value-type.
//
inline void scal( const int n, const double a, std::complex<double>* x,
const int incx ) {
cublasZdscal( n, a, x, incx );
}
//
// Overloaded function for dispatching to
// * CUBLAS backend, and
// * complex<float> value-type.
//
inline void scal( const int n, const std::complex<float> a,
std::complex<float>* x, const int incx ) {
cublasCscal( n, a, x, incx );
}
//
// Overloaded function for dispatching to
// * CUBLAS backend, and
// * complex<double> value-type.
//
inline void scal( const int n, const std::complex<double> a,
std::complex<double>* x, const int incx ) {
cublasZscal( n, a, x, incx );
}
#else
//
// Overloaded function for dispatching to
// * netlib-compatible BLAS backend (the default), and
// * float value-type.
//
inline void scal( const fortran_int_t n, const float a, float* x,
const fortran_int_t incx ) {
BLAS_SSCAL( &n, &a, x, &incx );
}
//
// Overloaded function for dispatching to
// * netlib-compatible BLAS backend (the default), and
// * double value-type.
//
inline void scal( const fortran_int_t n, const double a, double* x,
const fortran_int_t incx ) {
BLAS_DSCAL( &n, &a, x, &incx );
}
//
// Overloaded function for dispatching to
// * netlib-compatible BLAS backend (the default), and
// * combined float and complex<float> value-type.
//
inline void scal( const fortran_int_t n, const float a,
std::complex<float>* x, const fortran_int_t incx ) {
BLAS_CSSCAL( &n, &a, x, &incx );
}
//
// Overloaded function for dispatching to
// * netlib-compatible BLAS backend (the default), and
// * combined double and complex<double> value-type.
//
inline void scal( const fortran_int_t n, const double a,
std::complex<double>* x, const fortran_int_t incx ) {
BLAS_ZDSCAL( &n, &a, x, &incx );
}
//
// Overloaded function for dispatching to
// * netlib-compatible BLAS backend (the default), and
// * complex<float> value-type.
//
inline void scal( const fortran_int_t n, const std::complex<float> a,
std::complex<float>* x, const fortran_int_t incx ) {
BLAS_CSCAL( &n, &a, x, &incx );
}
//
// Overloaded function for dispatching to
// * netlib-compatible BLAS backend (the default), and
// * complex<double> value-type.
//
inline void scal( const fortran_int_t n, const std::complex<double> a,
std::complex<double>* x, const fortran_int_t incx ) {
BLAS_ZSCAL( &n, &a, x, &incx );
}
#endif
} // namespace detail
//
// Value-type based template class. Use this class if you need a type
// for dispatching to scal.
//
template< typename Value >
struct scal_impl {
typedef Value value_type;
typedef typename remove_imaginary< Value >::type real_type;
typedef void result_type;
//
// Static member function that
// * Deduces the required arguments for dispatching to BLAS, and
// * Asserts that most arguments make sense.
//
template< typename ScalarA, typename VectorX >
static result_type invoke( const ScalarA a, VectorX& x ) {
namespace bindings = ::boost::numeric::bindings;
BOOST_STATIC_ASSERT( (bindings::has_linear_array< VectorX >::value) );
BOOST_STATIC_ASSERT( (bindings::is_mutable< VectorX >::value) );
detail::scal( bindings::size(x), a, bindings::begin_value(x),
bindings::stride(x) );
}
};
//
// Functions for direct use. These functions are overloaded for temporaries,
// so that wrapped types can still be passed and used for write-access. Calls
// to these functions are passed to the scal_impl classes. In the
// documentation, the const-overloads are collapsed to avoid a large number of
// prototypes which are very similar.
//
//
// Overloaded function for scal. Its overload differs for
//
template< typename ScalarA, typename VectorX >
inline typename scal_impl< typename bindings::value_type<
VectorX >::type >::result_type
scal( const ScalarA a, VectorX& x ) {
scal_impl< typename bindings::value_type<
VectorX >::type >::invoke( a, x );
}
} // namespace blas
} // namespace bindings
} // namespace numeric
} // namespace boost
#endif