This project is a demonstrator tool, made by the MOISE project, that translates timed Altarica models into Fiacre models. Such translation allows to use model checkers such as Tina to prove properties. The project contains the translator tool.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

325 lines
12 KiB

//
// Copyright (c) 2002--2010
// Toon Knapen, Karl Meerbergen, Kresimir Fresl,
// Thomas Klimpel and Rutger ter Borg
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// THIS FILE IS AUTOMATICALLY GENERATED
// PLEASE DO NOT EDIT!
//
#ifndef BOOST_NUMERIC_BINDINGS_BLAS_LEVEL2_GEMV_HPP
#define BOOST_NUMERIC_BINDINGS_BLAS_LEVEL2_GEMV_HPP
#include <boost/assert.hpp>
#include <boost/numeric/bindings/begin.hpp>
#include <boost/numeric/bindings/blas/detail/default_order.hpp>
#include <boost/numeric/bindings/has_linear_array.hpp>
#include <boost/numeric/bindings/is_mutable.hpp>
#include <boost/numeric/bindings/remove_imaginary.hpp>
#include <boost/numeric/bindings/size.hpp>
#include <boost/numeric/bindings/stride.hpp>
#include <boost/numeric/bindings/trans_tag.hpp>
#include <boost/numeric/bindings/value_type.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/remove_const.hpp>
//
// The BLAS-backend is selected by defining a pre-processor variable,
// which can be one of
// * for CBLAS, define BOOST_NUMERIC_BINDINGS_BLAS_CBLAS
// * for CUBLAS, define BOOST_NUMERIC_BINDINGS_BLAS_CUBLAS
// * netlib-compatible BLAS is the default
//
#if defined BOOST_NUMERIC_BINDINGS_BLAS_CBLAS
#include <boost/numeric/bindings/blas/detail/cblas.h>
#include <boost/numeric/bindings/blas/detail/cblas_option.hpp>
#elif defined BOOST_NUMERIC_BINDINGS_BLAS_CUBLAS
#include <boost/numeric/bindings/blas/detail/cublas.h>
#include <boost/numeric/bindings/blas/detail/blas_option.hpp>
#else
#include <boost/numeric/bindings/blas/detail/blas.h>
#include <boost/numeric/bindings/blas/detail/blas_option.hpp>
#endif
namespace boost {
namespace numeric {
namespace bindings {
namespace blas {
//
// The detail namespace contains value-type-overloaded functions that
// dispatch to the appropriate back-end BLAS-routine.
//
namespace detail {
#if defined BOOST_NUMERIC_BINDINGS_BLAS_CBLAS
//
// Overloaded function for dispatching to
// * CBLAS backend, and
// * float value-type.
//
template< typename Order, typename Trans >
inline void gemv( const Order, const Trans, const int m, const int n,
const float alpha, const float* a, const int lda, const float* x,
const int incx, const float beta, float* y, const int incy ) {
cblas_sgemv( cblas_option< Order >::value, cblas_option< Trans >::value,
m, n, alpha, a, lda, x, incx, beta, y, incy );
}
//
// Overloaded function for dispatching to
// * CBLAS backend, and
// * double value-type.
//
template< typename Order, typename Trans >
inline void gemv( const Order, const Trans, const int m, const int n,
const double alpha, const double* a, const int lda, const double* x,
const int incx, const double beta, double* y, const int incy ) {
cblas_dgemv( cblas_option< Order >::value, cblas_option< Trans >::value,
m, n, alpha, a, lda, x, incx, beta, y, incy );
}
//
// Overloaded function for dispatching to
// * CBLAS backend, and
// * complex<float> value-type.
//
template< typename Order, typename Trans >
inline void gemv( const Order, const Trans, const int m, const int n,
const std::complex<float> alpha, const std::complex<float>* a,
const int lda, const std::complex<float>* x, const int incx,
const std::complex<float> beta, std::complex<float>* y,
const int incy ) {
cblas_cgemv( cblas_option< Order >::value, cblas_option< Trans >::value,
m, n, &alpha, a, lda, x, incx, &beta, y, incy );
}
//
// Overloaded function for dispatching to
// * CBLAS backend, and
// * complex<double> value-type.
//
template< typename Order, typename Trans >
inline void gemv( const Order, const Trans, const int m, const int n,
const std::complex<double> alpha, const std::complex<double>* a,
const int lda, const std::complex<double>* x, const int incx,
const std::complex<double> beta, std::complex<double>* y,
const int incy ) {
cblas_zgemv( cblas_option< Order >::value, cblas_option< Trans >::value,
m, n, &alpha, a, lda, x, incx, &beta, y, incy );
}
#elif defined BOOST_NUMERIC_BINDINGS_BLAS_CUBLAS
//
// Overloaded function for dispatching to
// * CUBLAS backend, and
// * float value-type.
//
template< typename Order, typename Trans >
inline void gemv( const Order, const Trans, const int m, const int n,
const float alpha, const float* a, const int lda, const float* x,
const int incx, const float beta, float* y, const int incy ) {
BOOST_STATIC_ASSERT( (is_same<Order, tag::column_major>::value) );
cublasSgemv( blas_option< Trans >::value, m, n, alpha, a, lda, x, incx,
beta, y, incy );
}
//
// Overloaded function for dispatching to
// * CUBLAS backend, and
// * double value-type.
//
template< typename Order, typename Trans >
inline void gemv( const Order, const Trans, const int m, const int n,
const double alpha, const double* a, const int lda, const double* x,
const int incx, const double beta, double* y, const int incy ) {
BOOST_STATIC_ASSERT( (is_same<Order, tag::column_major>::value) );
cublasDgemv( blas_option< Trans >::value, m, n, alpha, a, lda, x, incx,
beta, y, incy );
}
//
// Overloaded function for dispatching to
// * CUBLAS backend, and
// * complex<float> value-type.
//
template< typename Order, typename Trans >
inline void gemv( const Order, const Trans, const int m, const int n,
const std::complex<float> alpha, const std::complex<float>* a,
const int lda, const std::complex<float>* x, const int incx,
const std::complex<float> beta, std::complex<float>* y,
const int incy ) {
BOOST_STATIC_ASSERT( (is_same<Order, tag::column_major>::value) );
cublasCgemv( blas_option< Trans >::value, m, n, alpha, a, lda, x, incx,
beta, y, incy );
}
//
// Overloaded function for dispatching to
// * CUBLAS backend, and
// * complex<double> value-type.
//
template< typename Order, typename Trans >
inline void gemv( const Order, const Trans, const int m, const int n,
const std::complex<double> alpha, const std::complex<double>* a,
const int lda, const std::complex<double>* x, const int incx,
const std::complex<double> beta, std::complex<double>* y,
const int incy ) {
BOOST_STATIC_ASSERT( (is_same<Order, tag::column_major>::value) );
cublasZgemv( blas_option< Trans >::value, m, n, alpha, a, lda, x, incx,
beta, y, incy );
}
#else
//
// Overloaded function for dispatching to
// * netlib-compatible BLAS backend (the default), and
// * float value-type.
//
template< typename Order, typename Trans >
inline void gemv( const Order, const Trans, const fortran_int_t m,
const fortran_int_t n, const float alpha, const float* a,
const fortran_int_t lda, const float* x, const fortran_int_t incx,
const float beta, float* y, const fortran_int_t incy ) {
BOOST_STATIC_ASSERT( (is_same<Order, tag::column_major>::value) );
BLAS_SGEMV( &blas_option< Trans >::value, &m, &n, &alpha, a, &lda, x,
&incx, &beta, y, &incy );
}
//
// Overloaded function for dispatching to
// * netlib-compatible BLAS backend (the default), and
// * double value-type.
//
template< typename Order, typename Trans >
inline void gemv( const Order, const Trans, const fortran_int_t m,
const fortran_int_t n, const double alpha, const double* a,
const fortran_int_t lda, const double* x, const fortran_int_t incx,
const double beta, double* y, const fortran_int_t incy ) {
BOOST_STATIC_ASSERT( (is_same<Order, tag::column_major>::value) );
BLAS_DGEMV( &blas_option< Trans >::value, &m, &n, &alpha, a, &lda, x,
&incx, &beta, y, &incy );
}
//
// Overloaded function for dispatching to
// * netlib-compatible BLAS backend (the default), and
// * complex<float> value-type.
//
template< typename Order, typename Trans >
inline void gemv( const Order, const Trans, const fortran_int_t m,
const fortran_int_t n, const std::complex<float> alpha,
const std::complex<float>* a, const fortran_int_t lda,
const std::complex<float>* x, const fortran_int_t incx,
const std::complex<float> beta, std::complex<float>* y,
const fortran_int_t incy ) {
BOOST_STATIC_ASSERT( (is_same<Order, tag::column_major>::value) );
BLAS_CGEMV( &blas_option< Trans >::value, &m, &n, &alpha, a, &lda, x,
&incx, &beta, y, &incy );
}
//
// Overloaded function for dispatching to
// * netlib-compatible BLAS backend (the default), and
// * complex<double> value-type.
//
template< typename Order, typename Trans >
inline void gemv( const Order, const Trans, const fortran_int_t m,
const fortran_int_t n, const std::complex<double> alpha,
const std::complex<double>* a, const fortran_int_t lda,
const std::complex<double>* x, const fortran_int_t incx,
const std::complex<double> beta, std::complex<double>* y,
const fortran_int_t incy ) {
BOOST_STATIC_ASSERT( (is_same<Order, tag::column_major>::value) );
BLAS_ZGEMV( &blas_option< Trans >::value, &m, &n, &alpha, a, &lda, x,
&incx, &beta, y, &incy );
}
#endif
} // namespace detail
//
// Value-type based template class. Use this class if you need a type
// for dispatching to gemv.
//
template< typename Value >
struct gemv_impl {
typedef Value value_type;
typedef typename remove_imaginary< Value >::type real_type;
typedef void result_type;
// high-level transform typedefs and functions
template< typename MatrixA, typename VectorX, typename VectorY >
static result_type transform( MatrixA& A, VectorX& x, VectorY& y,
const value_type alpha, const value_type beta ) {
invoke();
}
//
// Static member function that
// * Deduces the required arguments for dispatching to BLAS, and
// * Asserts that most arguments make sense.
//
template< typename MatrixA, typename VectorX, typename VectorY >
static result_type invoke( const value_type alpha, const MatrixA& a,
const VectorX& x, const value_type beta, VectorY& y ) {
namespace bindings = ::boost::numeric::bindings;
typedef typename detail::default_order< MatrixA >::type order;
typedef typename result_of::trans_tag< MatrixA, order >::type trans;
BOOST_STATIC_ASSERT( (is_same< typename remove_const<
typename bindings::value_type< MatrixA >::type >::type,
typename remove_const< typename bindings::value_type<
VectorX >::type >::type >::value) );
BOOST_STATIC_ASSERT( (is_same< typename remove_const<
typename bindings::value_type< MatrixA >::type >::type,
typename remove_const< typename bindings::value_type<
VectorY >::type >::type >::value) );
BOOST_STATIC_ASSERT( (bindings::has_linear_array< MatrixA >::value) );
BOOST_STATIC_ASSERT( (bindings::has_linear_array< VectorX >::value) );
BOOST_STATIC_ASSERT( (bindings::has_linear_array< VectorY >::value) );
BOOST_STATIC_ASSERT( (bindings::is_mutable< VectorY >::value) );
BOOST_ASSERT( bindings::size_minor(a) == 1 ||
bindings::stride_minor(a) == 1 );
detail::gemv( order(), trans(), bindings::size_row_op(a,
trans()), bindings::size_column_op(a, trans()), alpha,
bindings::begin_value(a), bindings::stride_major(a),
bindings::begin_value(x), bindings::stride(x), beta,
bindings::begin_value(y), bindings::stride(y) );
}
};
//
// Functions for direct use. These functions are overloaded for temporaries,
// so that wrapped types can still be passed and used for write-access. Calls
// to these functions are passed to the gemv_impl classes. In the
// documentation, the const-overloads are collapsed to avoid a large number of
// prototypes which are very similar.
//
//
// Overloaded function for gemv. Its overload differs for
//
template< typename MatrixA, typename VectorX, typename VectorY >
inline typename gemv_impl< typename bindings::value_type<
MatrixA >::type >::result_type
gemv( const typename bindings::value_type< MatrixA >::type alpha,
const MatrixA& a, const VectorX& x,
const typename bindings::value_type< MatrixA >::type beta,
VectorY& y ) {
gemv_impl< typename bindings::value_type<
MatrixA >::type >::invoke( alpha, a, x, beta, y );
}
} // namespace blas
} // namespace bindings
} // namespace numeric
} // namespace boost
#endif