This project is a demonstrator tool, made by the MOISE project, that translates timed Altarica models into Fiacre models. Such translation allows to use model checkers such as Tina to prove properties. The project contains the translator tool.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

127 lines
3.1 KiB

//
// Copyright (c) 2003 Kresimir Fresl
// Copyright (c) 2009 Rutger ter Borg
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_NUMERIC_BINDINGS_DETAIL_ARRAY_HPP
#define BOOST_NUMERIC_BINDINGS_DETAIL_ARRAY_HPP
#include <new>
#include <boost/noncopyable.hpp>
#include <boost/numeric/bindings/detail/adaptor.hpp>
/*
very simple dynamic array class which is used in `higher level'
bindings functions for pivot and work arrays
Namely, there are (at least) two versions of all bindings functions
where called LAPACK function expects work and/or pivot array, e.g.
`lower' level (user should provide work and pivot arrays):
int sysv (SymmA& a, IVec& i, MatrB& b, Work& w);
`higher' level (with `internal' work and pivot arrays):
int sysv (SymmA& a, MatrB& b);
Probably you ask why I didn't use std::vector. There are two reasons.
First is efficiency -- std::vector's constructor initialises vector
elements. Second is consistency. LAPACK functions use `info' parameter
as an error indicator. On the other hand, std::vector's allocator can
throw an exception if memory allocation fails. detail::array's
constructor uses `new (nothrow)' which returns 0 if allocation fails.
So I can check whether array::storage == 0 and return appropriate error
in `info'.*/
namespace boost {
namespace numeric {
namespace bindings {
namespace detail {
template <typename T>
class array : private noncopyable {
public:
typedef std::ptrdiff_t size_type ;
array (size_type n) {
stg = new (std::nothrow) T[n];
sz = (stg != 0) ? n : 0;
}
~array() {
delete[] stg;
}
size_type size() const {
return sz;
}
bool valid() const {
return stg != 0;
}
void resize (int n) {
delete[] stg;
stg = new (std::nothrow) T[n];
sz = (stg != 0) ? n : 0;
}
T* storage() {
return stg;
}
T const* storage() const {
return stg;
}
T& operator[] (int i) {
return stg[i];
}
T const& operator[] (int i) const {
return stg[i];
}
private:
size_type sz;
T* stg;
};
template< typename T, typename Id, typename Enable >
struct adaptor< array< T >, Id, Enable > {
typedef typename copy_const< Id, T >::type value_type;
typedef mpl::map<
mpl::pair< tag::value_type, value_type >,
mpl::pair< tag::entity, tag::vector >,
mpl::pair< tag::size_type<1>, std::ptrdiff_t >,
mpl::pair< tag::data_structure, tag::linear_array >,
mpl::pair< tag::stride_type<1>, tag::contiguous >
> property_map;
static std::ptrdiff_t size1( const Id& t ) {
return t.size();
}
static value_type* begin_value( Id& t ) {
return t.storage();
}
static value_type* end_value( Id& t ) {
return t.storage() + t.size();
}
};
} // namespace detail
} // namespace bindings
} // namespace numeric
} // namespace boost
#endif