Browse Source

Beginning of development of F_MM

CaseStudiesProcessDefinition
Anthony Leonardo Gracio 7 years ago
parent
commit
ae93e67d86
  1. 7
      UseCaseData/Layer2_MMS_SW_SPARK/default.gpr
  2. 2
      UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_em-behavior.ads
  3. 9
      UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_em-data.ads
  4. 8
      UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_em.ads
  5. 528
      UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_mm-behavior.adb
  6. 50
      UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_mm-behavior.ads
  7. 22
      UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_mm-data.ads
  8. 3
      UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_mm-state.ads
  9. 3
      UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_mm.adb
  10. 6
      UseCaseData/Layer2_MMS_SW_SPARK/mms-output.ads
  11. BIN
      UseCaseData/Layer2_MMS_SW_SPARK/mms.o
  12. 2
      UseCaseData/Layer2_MMS_SW_SPARK/types.ads
  13. BIN
      UseCaseData/Layer2_MMS_SW_SPARK/types.o

7
UseCaseData/Layer2_MMS_SW_SPARK/default.gpr

@ -0,0 +1,7 @@ @@ -0,0 +1,7 @@
project Default is
package Compiler is
for Switches ("Ada") use ("-g", "-O2");
end Compiler;
end Default;

2
UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_em-behavior.ads

@ -1,4 +1,4 @@ @@ -1,4 +1,4 @@
with MMS.F_PT.F_EM.Data;
private with MMS.F_PT.F_EM.Data;
package MMS.F_PT.F_EM.Behavior with SPARK_Mode is

9
UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_em-data.ads

@ -1,6 +1,7 @@ @@ -1,6 +1,7 @@
with Types; use Types;
package MMS.F_PT.F_EM.Data is
private
package MMS.F_PT.F_EM.Data with SPARK_Mode is
---------------
-- Constants --
@ -8,7 +9,9 @@ package MMS.F_PT.F_EM.Data is @@ -8,7 +9,9 @@ package MMS.F_PT.F_EM.Data is
-- From 6.8.4
Primary_Initial_Capacity : Energy_Level_Type;
Secondary_Initial_Capacity : Energy_Level_Type;
Primary_Initial_Capacity : Energy_Level_Type
with Part_Of => Private_State;
Secondary_Initial_Capacity : Energy_Level_Type
with Part_Of => Private_State;
end MMS.F_PT.F_EM.Data;

8
UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_em.ads

@ -1,6 +1,10 @@ @@ -1,6 +1,10 @@
with Types; use Types;
package MMS.F_PT.F_EM with Abstract_State => (Private_State, Output_State) is
package MMS.F_PT.F_EM with
SPARK_Mode,
Abstract_State =>
(Private_State,
Output_State)
is
pragma Elaborate_Body (MMS.F_PT.F_EM);
end MMS.F_PT.F_EM;

528
UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_mm-behavior.adb

@ -0,0 +1,528 @@ @@ -0,0 +1,528 @@
with MMS.F_PT.F_MM.Input; use MMS.F_PT.F_MM.Input;
with MMS.F_PT.F_MM.State; use MMS.F_PT.F_MM.State;
package body MMS.F_PT.F_MM.Behavior with SPARK_Mode is
----------------------------------------------
-- Mission_Range_From_Navigation_Parameters --
----------------------------------------------
function Mission_Range_From_Navigation_Parameters
return Current_Range_Type
is
begin
return Current_Range_Type (State.Navigation_Parameters.Distance) * 1852;
end Mission_Range_From_Navigation_Parameters;
------------------------------------------------
-- Operating_Point_From_Navigation_Parameters --
------------------------------------------------
function Operating_Point_From_Navigation_Parameters
return Operating_Point_Type
is
Operating_Point_Altitude : Current_Altitude_Type;
Operating_Point_Speed : Current_Speed_Type;
begin
-- Convert from ft to meters
Operating_Point_Altitude := Current_Altitude_Type
(Float (State.Navigation_Parameters.Altitude) * 0.3048);
-- Convert from k.t to km/h
Operating_Point_Speed := Current_Speed_Type
(Float (State.Navigation_Parameters.Speed) * 1.853);
return Operating_Point_Type'(Altitude => Operating_Point_Altitude,
Speed => Operating_Point_Speed);
end Operating_Point_From_Navigation_Parameters;
--------------------------------------------------
-- Current_Altitude_Close_Enough_To_ref_TakeOff --
--------------------------------------------------
function Current_Altitude_Close_Enough_To_ref_TakeOff
return Boolean
is
begin
-- ??? Consider that we are close enough when we reach the ref
return State.Input_Current_Altitude >= Data.Altitude_Ref_TakeOff;
end Current_Altitude_Close_Enough_To_ref_TakeOff;
-----------------------------------------------
-- Current_Speed_Close_Enough_To_ref_TakeOff --
-----------------------------------------------
function Current_Speed_Close_Enough_To_ref_TakeOff
return Boolean
is
begin
-- ??? Consider that we are close enough when we reach the ref
return State.Input_Current_Speed >= Data.Speed_Ref_TakeOff;
end Current_Speed_Close_Enough_To_ref_TakeOff;
-----------------------
-- Emergency_Landing --
-----------------------
function Emergency_Landing
return Boolean
is
begin
return State.Output_Emergency_Landing;
end Emergency_Landing;
------------------------------
-- Mission_Aborted_Signaled --
------------------------------
function Mission_Aborted_Signaled
return Boolean
is
begin
return State.Output_Mission_Aborted;
end Mission_Aborted_Signaled;
--------------------------------
-- Mission_Cancelled_Signaled --
--------------------------------
function Mission_Cancelled_Signaled
return Boolean
is
begin
return State.Output_Mission_Cancelled;
end Mission_Cancelled_Signaled;
-----------------
-- Read_Inputs --
-----------------
procedure Read_Inputs
is
begin
if not (Power_State = On and then On_State = RUNNING) then
Input_Navigation_Parameters := Navigation_Parameters;
if Navigation_Mode_From_GS_Received then
Input_Navigation_Mode := Navigation_Mode;
end if;
Input_Mode_Switch := Mode_Switch;
Input_Navigation_Option := Navigation_Option;
Input_Bay_Switch := Bay_Switch;
Input_Payload_Mass := Payload_Mass;
if USB_Key_Present then
Input_USB_Key := USB_Key;
end if;
end if;
Input_Go := Go;
Input_On_OFF_Push_Button := On_OFF_Push_Button;
Input_Start_Push_Button := Start_Push_Button;
Input_Mission_Abort := Mission_Abort;
Input_Estimated_Total_Mass := Estimated_Total_Mass;
Input_Current_Range := Current_Range;
Input_Current_Speed := Current_Speed;
Input_Current_Altitude := Current_Altitude;
Input_Current_Flight_Phase := Current_Flight_Phase;
Input_Energy_Level := Energy_Level;
end Read_Inputs;
-------------------
-- Write_Outputs --
-------------------
procedure Write_Outputs is
Is_Mission_Aborted : constant Boolean :=
(Power_State = On and then On_State = ABORTED);
Is_Mission_Cancelled : constant Boolean :=
(Power_State = ON
and then On_State = INIT
and then Init_State = CANCELLED);
begin
State.Output_Emergency_Landing := Is_Mission_Aborted;
State.Output_Mission_Aborted := Is_Mission_Aborted;
State.Output_Mission_Cancelled := Is_Mission_Cancelled;
end Write_Outputs;
-------------------------------------------------------
-- Management_Of_Navigation_Modes_Options_Parameters --
-------------------------------------------------------
procedure Management_Of_Navigation_Modes_Options_Parameters
is
begin
-- Set the navigation mode
State.Navigation_Mode :=
(if Navigation_Mode_From_CP = A
or else not Navigation_Mode_From_GS_Received
then Navigation_Mode_From_CP
else Navigation_Mode_From_GS);
-- Set the operating mode from parameters
if Mission_Parameters_Defined then
State.Operating_Mode_From_Parameters :=
(if Navigation_Mode_From_CP = A
or else not Operating_Mode_From_GS_Received
then Operating_Mode_From_USB_Key
else Operating_Mode_From_GS);
end if;
-- Set the operating mode
State.Operating_Mode :=
(if Operating_Mode_From_Parameters = ENERGY
and then Power_State = ON
and then On_State = RUNNING
and then Running_State = TAKE_OFF
then Data.Energy_Mode_Ref_TakeOff
else Operating_Mode_From_Parameters);
-- Set the navigation parameters
State.Navigation_Parameters :=
(if Navigation_Mode_From_CP = A
or else not Navigation_Parameters_From_GS_Received
then Navigation_Parameters_From_USB_Key
else Navigation_Parameters_From_GS);
end Management_Of_Navigation_Modes_Options_Parameters;
---------------------------------------
-- Operating_Point_Update_Management --
---------------------------------------
procedure Operating_Point_Update_Management is
begin
-- Set the operating point
if On_State = RUNNING and then Running_State = TAKE_OFF then
State.Operating_Point :=
Operating_Point_Type'(Altitude => Data.Altitude_Ref_TakeOff,
Speed => Data.Speed_Ref_TakeOff);
elsif not (On_State = RUNNING and then Running_State = LANDING) then
State.Operating_Point := Operating_Point_From_Navigation_Parameters;
end if;
-- Set the mission range
if Navigation_Mode = RP and then On_State = INIT Then
State.Mission_Range := Mission_Range_From_Navigation_Parameters;
end if;
end Operating_Point_Update_Management;
---------------------
-- Mission_Profile --
---------------------
function Mission_Profile
return Mission_Profile_Type
is
begin
return State.Mission_Profile;
end Mission_Profile;
-------------------------------------
-- Appropriate_Tabulating_Function --
-------------------------------------
function Appropriate_Tabulating_Function
return Viability_Domain_Mesh_Type
is
begin
if On_State = INIT and then Navigation_Mode = A then
return Data.Amode_Initial_Domain_Mesh;
elsif On_State = INIT and then Navigation_Mode = RP then
return Data.RPmode_Initial_Domain_Mesh;
elsif Navigation_Mode = A Then
return Data.Amode_Cruise_Domain_Mesh;
else
return Data.RPmode_Cruise_Domain_Mesh;
end if;
end Appropriate_Tabulating_Function;
-----------------------------
-- Distance_With_Neighbour --
-----------------------------
function Distance_With_Neighbour
(Neighbour : Mission_Profile_Type)
return Mission_Profile_Distance_Type
is
begin
return Mission_Profile_Distance_Type
(abs (Neighbour.Distance - State.Mission_Profile.Distance));
-- ??? not clear how the distance is computed
end Distance_With_Neighbour;
------------------------
-- Nearest_Neighbours --
------------------------
function Nearest_Neighbours
return Neighbour_Mission_Profiles
is
Viability_Domain_Mesh : constant Viability_Domain_Mesh_Type :=
Appropriate_Tabulating_Function;
M : Payload_Mass_Center :=
F_PT.Data.Payload_Mass_Grid'First;
D : Viability_Distance_Center :=
Viability_Domain_Mesh'First (1);
A : Viability_Altitude_Center :=
Viability_Domain_Mesh'First (2);
S : Viability_Speed_Center :=
Viability_Domain_Mesh'First (3);
Neighbours_Arr : Neighbour_Mission_Profile_Array_Type (1 .. 6);
Last : Num_Of_Neighbours := 1;
begin
-- Search for in Payload Mass Grid
while M < F_PT.Data.Payload_Mass_Grid'Last
and then F_PT.Data.Payload_Mass_Grid (M) < Mission_Profile.Mass
loop
M := M + 1;
end loop;
-- Search in the Distance dimension
while D < Viability_Domain_Mesh'Last (1)
and then
Viability_Domain_Mesh (D, A, S).Distance < Mission_Profile.Distance
loop
D := D + 1;
end loop;
-- Search in the Altitude dimension
while A < Viability_Domain_Mesh'Last (2)
and Then
Viability_Domain_Mesh (D, A, S).Altitude < Mission_Profile.Altitude
loop
A := A + 1;
end loop;
-- Search in the Speed dimension
while S < Viability_Domain_Mesh'Last (3)
and then
Viability_Domain_Mesh (D, A, S).Speed < Mission_Profile.Speed
loop
S := S + 1;
end loop;
-- Construct the list of neighbours
declare
Min_M : constant Payload_Mass_Center := Payload_Mass_Center'Max
(F_PT.Data.Payload_Mass_Grid'First, M - 1);
Min_D : constant Viability_Distance_Center :=
Viability_Distance_Center'Max
(Viability_Domain_Mesh'First (1), D);
Min_A : constant Viability_Altitude_Center :=
Viability_Altitude_Center'Max
(Viability_Domain_Mesh'First (2), A);
Min_S : constant Viability_Speed_Center :=
Viability_Speed_Center'Max
(Viability_Domain_Mesh'First (3), S);
Neighbor_MP : Neighbour_Mission_Profile_Type;
Neighbor_Center : Viability_Cell_Center_Type;
begin
for M_Idx in Min_M .. M loop
for D_Idx in Min_D .. D loop
for A_Idx in Min_A .. A loop
for S_Idx in Min_S .. S loop
Neighbor_MP.Mission_Profile :=
Center_Mission_Profile_Type'
(M => M_Idx,
D => D_Idx,
A => A_Idx,
S => S_Idx);
Neighbor_Center := Viability_Domain_Mesh
(D_Idx, A_Idx, S_Idx);
Neighbor_MP.Distance := Distance_With_Neighbour
(Mission_Profile_Type'
(Mass => F_PT.Data.Payload_Mass_Grid (M_Idx),
Distance => Neighbor_Center.Distance,
Altitude => Neighbor_Center.Altitude,
Speed => Neighbor_Center.Speed));
Neighbours_Arr (Last) := Neighbor_MP;
Last := Last + 1;
end loop;
end loop;
end loop;
end loop;
end;
-- ??? How many neighboors should we give? See issue #31
return Neighbours_MPs : Neighbour_Mission_Profiles (Last - 1) do
for Idx in Neighbours_Arr'First .. Last - 1 loop
Neighbours_MPs.Neighbours (Idx) := Neighbours_Arr (Idx);
end loop;
end return;
end Nearest_Neighbours;
-----------------------------------------
-- Extract_Energy_Level_For_Neighbours --
-----------------------------------------
function Extract_Energy_Level_For_Neighbours
(Neighbours : Neighbour_Mission_Profiles) return Energy_Levels
with SPARK_Mode => Off
is
type Viability_Table_Function_Type is access
function
(M : Payload_Mass_Center;
D : Viability_Distance_Center;
A : Viability_Altitude_Center;
S : Viability_Speed_Center) return Energy_Level_Type;
Neighbours_Profiles : constant Neighbour_Mission_Profile_Array_Type :=
Neighbours.Neighbours;
Neighbours_Energy_Levels : Energy_Levels (Neighbours_Profiles'Length);
Viability_Table_Function : Viability_Table_Function_Type;
begin
-- Choose the appropriated viability table function
if On_State = INIT and then Navigation_Mode = A then
Viability_Table_Function := Data.Viability_Amode_Initial'Access;
elsif On_State = INIT and then Navigation_Mode = RP then
Viability_Table_Function := Data.Viability_RPmode_Initial'Access;
elsif Navigation_Mode = A Then
Viability_Table_Function := Data.Viability_Amode_Cruise'Access;
else
Viability_Table_Function := Data.Viability_RPmode_Cruise'Access;
end if;
for I in Neighbours_Energy_Levels.Neighbours'Range loop
Neighbours_Energy_Levels.Neighbours (I) :=
Viability_Table_Function
(M => Neighbours_Profiles (I).Mission_Profile.M,
D => Neighbours_Profiles (I).Mission_Profile.D,
A => Neighbours_Profiles (I).Mission_Profile.A,
S => Neighbours_Profiles (I).Mission_Profile.S);
end loop;
return Neighbours_Energy_Levels;
end Extract_Energy_Level_For_Neighbours;
-------------------------------
-- Interpolated_Energy_Level --
-------------------------------
function Interpolated_Energy_Level
return Energy_Level_Type
is
Neighbours_MPs : constant Neighbour_Mission_Profiles :=
Nearest_Neighbours;
Neighbours : constant Neighbour_Mission_Profile_Array_Type :=
Neighbours_MPs.Neighbours;
Neighbours_Energy_Lvls : constant Energy_Level_Array_Type :=
Extract_Energy_Level_For_Neighbours
(Neighbours_MPs).Neighbours;
Int_Energy_Level : Float := 0.0;
K : Num_Of_Neighbours :=
Neighbours_Energy_Lvls'First;
begin
-- ??? Not sure about the inverse distance interpolation formula
for J in Neighbours'Range loop
Int_Energy_Level := Int_Energy_Level +
Float (Neighbours_Energy_Lvls (K)) /
Float (Neighbours (J).Distance);
K := K + 1;
end loop;
return Energy_Level_Type (Int_Energy_Level);
end Interpolated_Energy_Level;
-----------------------------
-- Mission_Viability_Logic --
-----------------------------
procedure Mission_Viability_Logic
is
begin
State.Mission_Profile := Mission_Profile_Type'
(Mass => Payload_Mass,
Distance => Current_Range,
Altitude => Current_Altitude,
Speed => Current_Speed);
end Mission_Viability_Logic;
-------------------------------------
-- Initial_Mission_Viability_Logic --
-------------------------------------
procedure Initial_Mission_Viability_Logic
is
Cur_Energy_Level : constant Energy_Level_Type := Energy_Level;
Int_Energy_Level : constant Energy_Level_Type :=
Interpolated_Energy_Level;
begin
if Navigation_Mode = A then
State.Initial_Energy_Compatible_With_Mission :=
Int_Energy_Level * 13 / 10 >= Cur_Energy_Level;
else
State.Initial_Energy_Compatible_With_Mission :=
Int_Energy_Level * 11 / 10 >= Cur_Energy_Level;
end if;
end Initial_Mission_Viability_Logic;
---------------------------------------
-- In_Flight_Mission_Viability_Logic --
---------------------------------------
procedure In_Flight_Mission_Viability_Logic
is
begin
-- ??? Include the safety margin here
State.In_Flight_Energy_Compatible_With_Mission :=
Energy_Level >= Interpolated_Energy_Level;
end In_Flight_Mission_Viability_Logic;
----------------------------
-- Current_Glide_Distance --
----------------------------
function Current_Glide_Distance
return Current_Range_Type
is
A : Glide_Altitude_Center :=
Data.Glide_Distance_Domain_Mesh'First;
Current_Alt : constant Current_Altitude_Type := Current_Altitude;
begin
while A <= Data.Glide_Distance_Domain_Mesh'Last
and then Data.Glide_Distance_Domain_Mesh (A) < Current_Alt
loop
A := A + 1;
end loop;
return Data.Glide_Distance (A);
end Current_Glide_Distance;
---------------------------------
-- Mission_Termination_Control --
---------------------------------
procedure Mission_Termination_Control
is
begin
State.Descent_Over :=
Mission_Range - Current_Range < Current_Glide_Distance;
end Mission_Termination_Control;
-------------------
-- Update_States --
-------------------
procedure Update_States
is
begin
-- Generated stub: replace with real body!
pragma Compile_Time_Warning (Standard.True, "Update_States unimplemented");
raise Program_Error with "Unimplemented procedure Update_States";
end Update_States;
end MMS.F_PT.F_MM.Behavior;

50
UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_mm-behavior.ads

@ -10,7 +10,7 @@ @@ -10,7 +10,7 @@
with Types; use Types;
with External;
with MMS.F_PT.F_MM.Data;
private with MMS.F_PT.F_MM.Data;
private with MMS.F_PT.F_MM.State;
with MMS.F_PT.Data;
@ -148,7 +148,7 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is @@ -148,7 +148,7 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is
function Mission_Range_From_Navigation_Parameters
return Current_Range_Type
with Global =>
(Input => Operating_Point_State, Proof_In => Input_State),
(Input => Navigation_Parameter_State, Proof_In => Input_State),
Pre => Power_On
and then Mission_Parameters_Defined;
-- Fetch distance from Navigation_Parameters and do the appropriate
@ -157,7 +157,7 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is @@ -157,7 +157,7 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is
function Operating_Point_From_Navigation_Parameters
return Operating_Point_Type
with Global =>
(Input => Operating_Point_State, Proof_In => Input_State),
(Input => Navigation_Parameter_State, Proof_In => Input_State),
Pre => Power_On
and then Mission_Parameters_Defined;
-- Fetch altitude and speed from Navigation_Parameters and do the
@ -191,11 +191,11 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is @@ -191,11 +191,11 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is
and then Current_Flight_Phase = CRUISE;
function Current_Altitude_Close_Enough_To_ref_TakeOff return Boolean with
Global => Input_State;
Global => (Input => (Input_State, Viability_Logic_State));
-- Return True if Current_Altitude is close enough to Altitude_ref_TakeOff
function Current_Speed_Close_Enough_To_ref_TakeOff return Boolean with
Global => Input_State;
Global => (Input => (Input_State, Viability_Logic_State));
-- Return True if Current_Altitude is close enough to Speed_ref_TakeOff
function Take_Off_Over return Boolean is
@ -233,6 +233,8 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is @@ -233,6 +233,8 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is
function Mission_Cancelled_Signaled return Boolean with
Global => Output_State;
private
---------------------------------------
-- Behavioural Specification of F_MM --
---------------------------------------
@ -292,8 +294,10 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is @@ -292,8 +294,10 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is
procedure Management_Of_Navigation_Modes_Options_Parameters with
-- Compute the value of Navigation_Mode / Options / Parameters (see 6.9.4)
Global => (Input => (Input_State, Private_State),
Output => Navigation_Parameter_State),
Global => (Input => (Input_State,
Private_State,
Data.Energy_Mode_Ref_TakeOff),
In_Out => Navigation_Parameter_State),
Pre => Power_On,
Post => Navigation_Mode =
@ -342,7 +346,10 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is @@ -342,7 +346,10 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is
Global => (Input =>
(Input_State, Private_State, Navigation_Parameter_State),
(Private_State,
Navigation_Parameter_State,
Data.Altitude_Ref_TakeOff,
Data.Speed_Ref_TakeOff),
In_Out => Operating_Point_State),
Pre => Power_On
and then Mission_Parameters_Defined
@ -389,7 +396,9 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is @@ -389,7 +396,9 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is
function Appropriate_Tabulating_Function return Viability_Domain_Mesh_Type
with
Global => Viability_Logic_State;
Global => (Input => (Private_State,
Viability_Logic_State,
Navigation_Parameter_State));
function Distance_With_Neighbour
(Neighbour : Mission_Profile_Type) return Mission_Profile_Distance_Type
@ -398,9 +407,12 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is @@ -398,9 +407,12 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is
-- Compute the distance between Mission_Profile and its Neighbour.
function Nearest_Neighbours return Neighbour_Mission_Profiles with
Global => Viability_Logic_State;
Global => (Input => (Private_State,
Viability_Logic_State,
Navigation_Parameter_State));
function Extract_Energy_Level_For_Neighbours return Energy_Levels
function Extract_Energy_Level_For_Neighbours
(Neighbours : Neighbour_Mission_Profiles) return Energy_Levels
with
Global => Viability_Logic_State;
@ -414,7 +426,8 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is @@ -414,7 +426,8 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is
(Input_State,
Private_State,
Navigation_Parameter_State,
Operating_Point_State),
Operating_Point_State,
MMS.F_PT.Data.Payload_Mass_Grid),
In_Out => Viability_Logic_State),
Pre => Power_State = ON,
Post =>
@ -476,11 +489,13 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is @@ -476,11 +489,13 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is
-- 4. Extracting energy level for the neighbours.
and then Extract_Energy_Level_For_Neighbours.Size =
and then Extract_Energy_Level_For_Neighbours (Nearest_Neighbours).Size =
Nearest_Neighbours.Size
and then
(for all I in 1 .. Extract_Energy_Level_For_Neighbours.Size =>
Extract_Energy_Level_For_Neighbours.Neighbours (I) =
(for all I In
1 .. Extract_Energy_Level_For_Neighbours (Nearest_Neighbours).Size =>
Extract_Energy_Level_For_Neighbours
(Nearest_Neighbours).Neighbours (I) =
(if On_State = INIT and then Navigation_Mode = A
then Data.Viability_Amode_Initial
(M => Nearest_Neighbours.Neighbours (I).Mission_Profile.M,
@ -538,7 +553,7 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is @@ -538,7 +553,7 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is
-- Compute the value of In_Flight_Energy_Compatible_With_Mission. It should
-- be repeated at a periodic rate of F_Viability.
-- Set In_Flight_Energy_Compatible_With_Mission to True if Energy_Level is
-- at least the Interpolated_Energy_Level plus an enery margin. When
-- at least the Interpolated_Energy_Level plus an energy margin. When
-- EstimatedTotalMass increases, and even more so if it increases quickly,
-- F_MM applies greater safety margins (see #17).
@ -589,6 +604,7 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is @@ -589,6 +604,7 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is
procedure Update_States with
Global => (Input =>
(Input_State,
Output_State,
Navigation_Parameter_State,
Operating_Point_State,
Viability_Logic_State,
@ -753,8 +769,6 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is @@ -753,8 +769,6 @@ package MMS.F_PT.F_MM.Behavior with SPARK_Mode is
Power_State = ON
and then On_State = On_State'Old);
private
----------------------------
-- Definitions of Inputs --
----------------------------

22
UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_mm-data.ads

@ -2,6 +2,7 @@ with MMS.F_PT.Data; @@ -2,6 +2,7 @@ with MMS.F_PT.Data;
with Types; use Types;
private
package MMS.F_PT.F_MM.Data is
--------------------------
@ -11,7 +12,8 @@ package MMS.F_PT.F_MM.Data is @@ -11,7 +12,8 @@ package MMS.F_PT.F_MM.Data is
-- From 6.6.2.3
Amode_Initial_Domain_Mesh : Viability_Domain_Mesh_Type
(1 .. 100, 1 .. 100, 1 .. 100); -- ??? bounds
(1 .. 100, 1 .. 100, 1 .. 100)
with Part_Of => Viability_Logic_State; -- ??? bounds
function Viability_Amode_Initial
(M : Payload_Mass_Center;
@ -24,7 +26,8 @@ package MMS.F_PT.F_MM.Data is @@ -24,7 +26,8 @@ package MMS.F_PT.F_MM.Data is
and then S in Amode_Initial_Domain_Mesh'Range (3);
Amode_Cruise_Domain_Mesh : Viability_Domain_Mesh_Type
(1 .. 100, 1 .. 100, 1 .. 100); -- ??? bounds
(1 .. 100, 1 .. 100, 1 .. 100)
with Part_Of => Viability_Logic_State; -- ??? bounds
function Viability_Amode_Cruise
(M : Payload_Mass_Center;
@ -37,7 +40,8 @@ package MMS.F_PT.F_MM.Data is @@ -37,7 +40,8 @@ package MMS.F_PT.F_MM.Data is
and then S in Amode_Cruise_Domain_Mesh'Range (3);
RPmode_Initial_Domain_Mesh : Viability_Domain_Mesh_Type
(1 .. 100, 1 .. 100, 1 .. 100); -- ??? bounds
(1 .. 100, 1 .. 100, 1 .. 100)
with Part_Of => Viability_Logic_State; -- ??? bounds
function Viability_RPmode_Initial
(M : Payload_Mass_Center;
@ -50,7 +54,8 @@ package MMS.F_PT.F_MM.Data is @@ -50,7 +54,8 @@ package MMS.F_PT.F_MM.Data is
and then S in RPmode_Initial_Domain_Mesh'Range (3);
RPmode_Cruise_Domain_Mesh : Viability_Domain_Mesh_Type
(1 .. 100, 1 .. 100, 1 .. 100); -- ??? bounds
(1 .. 100, 1 .. 100, 1 .. 100)
with Part_Of => Viability_Logic_State; -- ??? bounds
function Viability_RPmode_Cruise
(M : Payload_Mass_Center;
@ -64,7 +69,8 @@ package MMS.F_PT.F_MM.Data is @@ -64,7 +69,8 @@ package MMS.F_PT.F_MM.Data is
-- From 6.6.4 Mission termination control
Glide_Distance_Domain_Mesh : Glide_Domain_Mesh_Type (1 .. 100); -- ??? bounds
Glide_Distance_Domain_Mesh : Glide_Domain_Mesh_Type (1 .. 100)
with Part_Of => Mission_Termination_State; -- ??? bounds
function Glide_Distance
(AI : Glide_Altitude_Center) return Current_Range_Type
@ -72,8 +78,8 @@ package MMS.F_PT.F_MM.Data is @@ -72,8 +78,8 @@ package MMS.F_PT.F_MM.Data is
-- Issue #28
Altitude_ref_TakeOff : Current_Altitude_Type;
Speed_ref_TakeOff : Current_Speed_Type;
Energy_Mode_ref_TakeOff : Speed_Or_Altitude;
Altitude_Ref_TakeOff : Current_Altitude_Type;
Speed_Ref_TakeOff : Current_Speed_Type;
Energy_Mode_Ref_TakeOff : Speed_Or_Altitude;
end MMS.F_PT.F_MM.Data;

3
UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_mm-state.ads

@ -93,6 +93,9 @@ package MMS.F_PT.F_MM.State is @@ -93,6 +93,9 @@ package MMS.F_PT.F_MM.State is
In_Flight_Energy_Compatible_With_Mission : Boolean with
Part_Of => Viability_Logic_State;
Mission_Profile : Mission_Profile_Type with
Part_Of => Viability_Logic_State;
-------------------------------
-- Mission_Termination_State --
-------------------------------

3
UseCaseData/Layer2_MMS_SW_SPARK/mms-f_pt-f_mm.adb

@ -45,7 +45,8 @@ SPARK_Mode, @@ -45,7 +45,8 @@ SPARK_Mode,
Operating_Point),
Viability_Logic_State =>
(Initial_Energy_Compatible_With_Mission,
In_Flight_Energy_Compatible_With_Mission),
In_Flight_Energy_Compatible_With_Mission,
Mission_Profile),
Mission_Termination_State =>
(Descent_Over))
is

6
UseCaseData/Layer2_MMS_SW_SPARK/mms-output.ads

@ -40,8 +40,10 @@ package MMS.Output is @@ -40,8 +40,10 @@ package MMS.Output is
-- Physical Parameters --
-------------------------
function Propulsion_Torque return Torque_Type;
function Propulsion_Torque return Torque_Type
renames MMS.F_PT.Output.Propulsion_Torque;
function Braking_Torque return Torque_Type;
function Braking_Torque return Torque_Type
renames MMS.F_PT.Output.Braking_Torque;
end MMS.Output;

BIN
UseCaseData/Layer2_MMS_SW_SPARK/mms.o

Binary file not shown.

2
UseCaseData/Layer2_MMS_SW_SPARK/types.ads

@ -8,7 +8,7 @@ package Types with SPARK_Mode is @@ -8,7 +8,7 @@ package Types with SPARK_Mode is
type Speed_Input_Type is range 1 .. 250; -- in k.t
type Altitude_Input_Type is range -500 .. 3000; -- in ft
type Altitude_Input_Type is range -500 .. 3_000; -- in ft
type Navigation_Parameters_Type is record
Distance : Distance_Input_Type;

BIN
UseCaseData/Layer2_MMS_SW_SPARK/types.o

Binary file not shown.
Loading…
Cancel
Save