o

F\\\ SAINT qute m X IRT Saint Exupéry LIV-5085L01-001
EXU PERY IRT SystemX ISX-52C-LIV-1285

Issue 4

MBSA Modelling guide
and validation report

DATE: 17/03/2023

Summary

The S2C project aims to define processes, methods and tools that allow to guarantee that safety analyses and system
modelling done by system engineer are consistent. These activities are preformed, in a context of digital continuity,
during all iterative development cycles of products and systems, to answer to certification constraints.

This guide aims to develop and validate a shared Model Based Safety Analysis methodology, based on AltaRica language,
suitable for aeronautical developments. It presents some general principles, through a unique simple example, as well
as main identified difficulties modelers may encounter such as control loop management up to mathematical theory.

Our intent is to support classical ARP4761A PSSAs and SSAs analyses with MBSA.

Author(s) Function(s) & name(s) Research engineers X. de Bossoreille
S. Delavault
F. Deschamps
C. Frazza

T. Prosirnova

C.Sequin
Checker(s) Function(s) & name(s) WP leader S. Delavault
Approver Function & name Project leader J. Perrin

IRT Saint Exupéry

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 1 / 141

\\\ SAINT qutéfbx
xu PERY 1o

Evolutions

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

Version Date Modified §
1 01/04/2021
2 01/06/2021
3 07/04/2022
4 17/03/2023

Modification summary

Updates following comments
Delivery for J3
Delivery for J4

Modified by

The S2C team would like to thank M. Machin, E. Saez, for their contributions to the previous issues of the document.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

2/141

P LI

$l 2 IRT Saint Exupéry LIV-S085L01-001
\)\(\U?;AEI:; S"‘IStemx IRT SystemX ISX-S2C-LIV-1285
Issue 4
Table of Contents
Evolutions 2

TADIE OF CONTENTS ...ttt ettt e b et e bt e bt e e bt e bt e s bt e e bt e s b et e bt e sabe e e st e sabeeeaneesbaeeneesabeeeneenane 3
TADIE OF FIBUIES ettt b e et b e e e bt e bt e s bt e e bt e e b et e bee s be e e bt e ebeeeabee s baeenneesbeeeneenane 6
TADIE OF £ABIES ..ot s b e bt e a et a et h e b e e R e e Rt e r e e anesreesreenreeneenreene 10
1 INEFOTUCTION. ¢ttt ettt et e ae e eb e s b e b e e e e s ane s beesheenbe e bt e st e emneeneesneenbeenrens 11
1.1 [0 o To XY =R ile o Yol U 4 o V=T o | SRS 11
1.2 ReferenCed dOCUMENTScouiiiiieiie ettt et e sae e s bt e sbb e e bt e e sareesbe e e saneennteesaneenees 11
1.2.1 S2C referenced dOCUMEBNTS ...cc.uiiiiieiiieteeete ettt ettt et e st e s e s bt e sabe e et e e sabeesabeesabeesabeesabeesaneens 11
1.2.2 External referenced dOCUMEBNTSooiiiiieiiieieeere sttt st bt e bt ettt saeesbeenbeereas 11
1.2.3 MBSA t0OIS CONFIGUIAtION ...eeiuiiiiiiiiieiee ettt sttt st e s b e st e et e e sabeesaneesabeesanee s 11
2 GlOSSANY ettt ettt ettt ettt ettt et e b e et b e e bt e bt e s bt e e bt e e bt e e bt e e b et e b e e e bt e e bt e e b et e bee e b et e hee e bee e bt e e abeeennee et 12
2.1 ADDreviations aNd @CrONYMS ..ottt sttt e e st e st e st e e s abeesabeeeabeesabeesaneesabeesaneess 12
2.2 DEFINTEIONS L.ttt st bt b et e bt e a et s bt e s b e b e e b e et e s et e she e s bt e nb e e bt et e enbeeneenbe e beenrean 13
3 General introduction: context and ObJECHIVES..........eiiiiiiiiiiiiiee e 15
3.1 (600 1=« P PP PP PP PP PPPPPTPPPPPPPPPRE 15
3.2 Objectives Of the OCUMENTcccuiii et e s e e e st e e e ette e e s tbee e e staeesestaeesassaeaeanssesenses 15
3.3 Contents and readING IEVEISocceeiii et e e e st e e e et e e e setae e e e abaeesestaeesrssaeaeantreeennses 16
3.4 TOPIC NOL AAAIESSEA ..ottt ettt et a et e s ab e e s bt e e st e e s bt e e sabeesateesabeesateesaneennseesaneenees 17
3.5 (ToageTe [UTolla=dh d o Yol 1 Y AN Y =T T RS 18
4 =B - AltaRica Data Flow language — general voCabulary.......cccocouuiiiiiiii ot 22
41 = 1o o 0 1= o PPN 23
4.2 EB - Overview of MOdelliNg UNITS......cciiiuiiiiiiee ettt e s ee e e st e e s eaee e s steeeeenteeeesnsaeeessneeanns 23
4.3 EB - Declarations in @ MOdelliNg UNit.......ccooiiiiiieiiiiiciee et s e et e e e st ae e e eate e e esaseeeesnseeeeas 25
4.4 EB- Transitions in @ MOAeIliNG UNitccooiiiiiiiiec e e e e e e e e rrae e e e e e e e sranraaaeeee s 25
4.5 EB - Assertions in @ MOAElING UNItccuiiiiiiiiiieir et e e e e e s st e e e e atee e enaneeeesnreeeens 26
4.6 EB - Use and Connection of Modelling UNISccueiiiciiiiiiiie s e s e e st esaae e e s eaeeeeas 28
5 - B- | Get started with failure propagation Modellingcceiiiiiiecciiii e e 30
5.1 EB- Main principles and general GUIdANCE........iiii it e e e e rbrer e e e e e e s eabaaaaeee s 30
5.2 B+ Modelling of a simple example: Command/IMONITOMINGc..cceeveerieeirieiiieieeeece et eee e ereesre v e 31
5.2.1 =B - Description Of the SYSTEMciiiiiii et e e e s e eae e e e st e e e ente e e esnnneeesnreeeens 31
5.2.2 =B- Purpose and perimeter of the Model (STEPL)oceouiiiieiiiie et ear e e e earee e 32
5.2.3 =B- Definition of the MOdel (STEP2) ...oeeieriieieie et e e s e e e rare e e senre e e s snreeeens 32
5.3 - | - Flattening Structured MOMEISoocueeii it e e e e et e e e e e e st e e e enntaeeesnnneeesnnneeeens 40
54 2 S CloTo o I ol - Yot [l U] 4 n o V- VU SUPR 41
5.5 EB- Latent, dormant or hidden fAIlUIESuuuuuerureieieiiiiiiiiieieieieiiererebererere e erararararararerarararararararerararsrsrassrernes 41
6 Simulation — general definitioNS........c..iiieiiii e e e e e et a e e e raaaeas 42

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 3 / 141

P LI

\ $l 2 IRT Saint Exupéry LIV-S085L01-001
\\\. SAINT X
XU PE RY qutem IRT SystemX ISX-S2C-LIV-1285
Issue 4
6.1 (2R oo 1= i1 014 oY F PSP PTP 42
6.1.1 EB = SIMUIGtION PriNCIPIES ..ttt ettt ettt e bbbt e s beeenee e 42
[B A I =¥ 1ol o F=1 o 11 L YA ={ =T o o PSS 42
6.1.3 - Timed and stochastic MOEISc.ccooiiiiiiii e 46
7 =B - | Get started With Model SIMUIALIONcooiiiiiiiee e s et sereeas 53
7.1 £B- Interactive or “step by step” simulation of effects of failure modesccocceeviiriiiiiiiiiniceeeee 53
7.2 £B- Modelling to support the step by step SIMUIAtioNcoocciiiiiciee e e 53
8 - Models characteristics which impact the simulation...............cccooooii 54
8.1 - | - Orientation of the flows and DataFIOW aSSErtioNSccuueiieiiiiiiriiee e sare e saaeeeeas 54
8.2 - Verification of the correctness of DataFlow assertions ... 55
8.3 -1 - Determinist reachability raphccueee i e e e et e e e tr e e e raa e e e araeaans 56
8.4 B Static/dyNamic MOTEISeeeereveeeseceseesse s 58
9 = B- Computation of feared events CONTrbULOrSocuiiiiiiiiiii e 60
9.1 = B - Computation of cut sets from faUlt TrEEcccuvviiiiiiie e are e 62
9.2 £ B - Extraction of boolean equations from AltaRica MOdels...........ooociiiiiiiiiiecie e 63
9.3 EB = COmMPULAtion Of SEBQUENCEScooutiiiiieiiiieiee ettt ettt ettt st e st e st e st e e sabeesabeesaneesabeesaneess 64
10 -1 - Going further With MOAEIIING........ccocuiiiiiee et e et e e e raae e e e s ta e e e e eataeeeearaeas 65
10.1 - |- Specific modelling topics (remove the stone in your ShOE).........ccueeeiiiieeciiiiiccee e 65
10.1.1 Non DataFlow assertion in @ DataFIoOW MOElc.coiviiiiiiiiiiiiiiieee e 65
10.1.2 How to solve an equation Cycle - CONTrOl LOOP....c.uiiireiriieiieeniieiieeeie ettt sttt et e s e s e e 68
10.1.3 HOW t0 SOIVE QN EVENT CYCIE ..t e et e e e e e e e bbb e e e e e e sesasbbaeeeaeeeenassaaneeeens 85
11 Computation of events Probabilityooiii i e e e e e e e e eaae e e e araeeeas 93
12 = B - Verification & validation of MBSA aCtiVItiescoveeiiiiiiieiiiieeeceee ettt 94
12.1 B = ASSUIANCE @CHIVITIES .eveeeeee ittt e e st e s et e e s r e e e s nre e e s sareeesenreeesannneas 94
12.2 =B+ Few words about the verification of the model syntax and execution abilityccccevevviiiieienininennn. 96
13 - | - Using MBSA to support industrial development in the aeronautics industry - Recommended Practices
97
13,1 -1 - ARPA761A / ED-135A QCHIVITIES...ccueeeieeeieieriesiestesteetetetestestesteetesseessessessessessestessesseeseessessessessessessesseensenes 97
13.2 -1 - Generality about safety assessment With MBSAcccciiiieiiiii it e e e aae e e s aaeeeeas 97
13.3 - | - FDAL/IDAL GSSIZNMENT ..veeeuviiiiieeiteeeiteeeiteeeteeeeteeeteeeeteeebeeeebeeebesesseeeteseeseseteseasseesesessseensseessseessseesaseensses 98
13.4 - |- Fail-safe assessment and probability computation...........c.eeeeiiiiiiiiiii e 98
13.5 -1-CCA assessment and independence PrinCiPIEScuieeeiiiie et eere e e et e e e s eae e e s naeeeeas 98
14 PN o 01T e | SR PURRRN 101
14.1 = B- Get Started with the t00IS — CeCilia......couiiiiiiiiieieee e e s e s raeaeas 101
I I R 1Y o Yo [V 4 o T o A OO OO PSPPSR PPPTOTPPRRRt 101
I A O] o Y= o =Y I =) (R T =4 o] o [o1 PRI 101
14.1.3 HOW tO Create @ NEW PrOJECT..ciiiiiiiiiiiiiiiciecceeeeeeeeee e e e e e e e e e e e e et e e e e e e e e e eeee e et eeeeeeeeeseresenseesererenerenens 102

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 4 / 141

LI
o
ot 0t o

\\\. SAINT qutemx
XUPERY

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4
14.1.4 Create a domain (tYPe iN COCIHIAY .eevvieiiriirtieeete ettt ettt sttt et st s e st saeesbeesaeeseeeaneeas 106
14.1.5 Function and color of the dOMaAINSeiiiiiiiii et 109
14.1.6 Modelling unit creation in the tools; contactor eXampPle........cccveieeiciiee e 110
14.1.7 Pictures imMPOrt fOr ICONSuiiiiieiieeee ettt ettt e sab e bt e s bt e e bt e e sbbeesat e e sabeesnneesaneennees 122
14.2 =B- Get Started with the tools — SIMfIANEO.......cooiiiiie e 122
14.2.1 INTFOTUCKION ettt ettt st s e st e s bt e s bt et e st e st e e b e e s b e e b e e s b e eanesanesaeesbeeseeenneenneennens 122
14.2.2 OPeN AN eXIiSEING PrOJECT cocviiiiiiiiiiiiiiiieieieteeeee ettt ee e ee ettt e teteteeerereterereretereteterens 122
14.2.3 HOW tO Create @ NEW PrOJECE.....uiiiiiiiiiiiiiie ittt e s e e e s et e e snne e e s snaeeseanne 124
14.2.4 Create @ AOMAIN .eoueeieiieieereereet ettt ettt st st e s bt e s bt et e st ese e e bt e s b e e b e e s b e eanesanesaeesbeenreeneeneenre e 125
14.2.5 Colors Of the dOMAINScoueiiieiieie ettt e n e s e saeesreesreeneenne e 126
14.2.6 Modelling unit creation in the tools; contactor eXample.......coouiiiieiriieniee e 126
14.3 —1-Modeling the command / monitoring pattern example in AltaRica 3.0ccccevvveeerierieneseseneeeeeenen 134
14.3.1 —1-Modeling the COM-IVIONoiiiiiiiee et e ettt e e et e e e e ta e e e ettee e s tbeeaesstaeeeensaseesasseeeeansseeennns 134
14.3.2 =1 - ASSESS the COM-IVION c..eeiiiiiieiieett ettt ettt ettt et h e sbe e e s it e e bt e e sabe e bt e e sbbeesbteesabeesnseesaneennees 137
14.4 = e N gLl O\ 3 N V1 oY= T PRSP 139
14.4.1 QUICK INEFOAUCTION eueiiiiiiieiieeet et sttt ettt et be e s bt e b e e et e et e st e sbeesbeenbeenneenneens 139
14.4.2 Main iCONS AESCIIPLION «..eiiiiiiiiieiteeeee ettt st e bt e st e e bt e sate e be e e sabeesaeeesabeesnseesaneennees 140
L4.4.3 FIOWS COIOUIS ..ttt ettt ettt ettt ettt e sttt e bt e s bt e e s bt e e s at e e bt e e sab e e bt e e s abeeabeeesab e e bt e e ssbeebeeesnbeeseeesaneennees 140
14.5 The document examples dESCIIPLIONiiiiiiie ettt e e et e e e e aae e e stbeeeesataeesensaeeessbaeaans 140

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 5 / 141

ﬁi\:\‘\\ SAINT qutemx IRT Saint Exupéry LIV-5085L01-001
(T EXU PE RY IRT SystemX ISX-S2C-LIV-1285
Issue 4

Table of figures
Figure 1 - Graphical view of Wheel Breaking System AltaRica model from ARP4761A/ED-135A ([REF B]).......ccccecuennen. 18
Figure 2 — lllustration of Monitoring of POWET SUPPIY «..eeeieeiieeiiiie e e e et e e et e e e nra e e e naneas 19
Figure 3 - Comparison Of MBSA @Nd FTA ..ottt ettt ettt e sat e et ee s ht e e bt e e sabeebe e e sabeeeneeesaneesnteesaneennees 19
Figure 4 — Interoperability of tools with Main MOdelooiiiiiiiiii e e 20
Figure 5 — lllustration of step simulator with failure at hydraulic power supply level .20
Figure 6 — lllustration of step simulator with failure at hydraulic power supply level .21
Figure 7 — Same patterns used tWice iN the MOUEl.........oooiiii i e e st e e e et e e e nnaeas 21
Figure 8: Command/Monitoring (COM-MON) pattern of safety archit@Cturecccvevvveeevievieeciee e, 22
FIBUIE 92 THE “SOUITE” ..ttt ettt e h e e b et e s b bt e bt e s ht e e bt e e sab e e be e e shbeeabe e e sbbeeabe e e sbbesbeeesaneennteesaneennees 24
Figure 10: Transitions in the “source” ModelliNg UNitc.coeiiiiii it e e e rae e e e ab e e e nra e e e nraeas 25
Figure 11: Flow variables of the "Comparator" modelling UNTtc.cooiiiiiiiiiiiiieee e 27
Figure 12: : Relation between the values of the flow variables of the"Comparator" modelling unit..........ccccceveeennenne. 27
Figure 13: Connexion of tWO MOAEIIINEG UNILS ..ecccuiiiiiiiie ettt e e e et e e e st r e e e e tte e e sabaeeesabbeeeensaeeennseeas 29
Figure 14: ObServer — iHUSTIatioNcocuiiiieiiieteee ettt ettt e sat et s it e e bt e sbb e e sae e e sabeesae e e saseesnteesaneennees 33
Figure 15: 1ustration Of the FIOWSco.ei ittt e sae e st e sae e sane e sat e e saneesaees 33
Figure 16: Observers —in the MOELoouuiii i e et e e st e e e st e e e etta e e seataeeesatbeeeantaeeennseeas 33
Figure 17: 1IUStration Of the SOUICE ...cc.uiiiiiiie ittt ettt e sat e e bt e e s b e e sat e e sabeesateesaneennees

Figure 18: Source Table of Truth

Figure 19: lllustration of the comparator Cmp

Figure 20: SOUrce Table Of TIULN ..ot ettt ettt e sa b e e bt e st e e sab e e saneesateesaneennees 36
Figure 21: lllustration of the CoONTACLOr ()ceiiciiieieiiee ettt e eetee e et e e e etre e e e rare e e e sabaeeeetteeessbaeeesasbeeeensaeesnnseeas 37
Figure 22: Contactor Table Of TrUL ..co.ei ittt st st san e e et e saneesaees 38
= VI =T 1ol s o 11 L AV =4 T o | SR 44
Figure 24: Traces in the reachability Sraph ... e e st e e e e e e s e baar e e e e e e seennnnens 45
Figure 25: Reachability graph of the COM-MON with deterministic transitionscccceevieriiiriieneereeeee e, 48
Figure 26: Masked NOAES aNd EUEScoiiiiruiiiiieeie ettt ettt sat e bt e sat e e be e e sae e e bte e sabeesaeeesaneesaneesaneennees 50
Figure 27: Flow variables and assertion of the "Comparator" modelling unit...........cccoieiiiiiirieiiiie e, 54
Figure 28: Relation between the values of the flow variables of the"Comparator” modelling unitccceeeevveennneen. 54

Figure 29: Altarlca 3.0 acausal model of a pipe

Figure 30: Altarlca dataflow model of a pipe.................

Figure 31: Dependency graph of the assertion..................

Figure 32: Non-determinist reachability graph of the Monitor component

Figure 33: Determinist reachability graph of the Monitor COMPONENtcccviiieiiiii i e 58
Figure 34: EXample Of StatiC MOTEIo eiii ettt e et e e e e e e st e e s eneeeeesnsaeeesnsteeeanteeesnnnneas 58
Figure 35: Example of dyNamiC MOTEIoeeiiiiieee et e e e st e e e e e st a b e e e e e e e s abateeeaaeeseensstbeeeaeeseassrens 59
Figure 36: Overview of the COM-MON system with a reversible contactor and a perfect comparatorccccccvveenneeen. 60
Figure 37: Links between the reachability graph and the causes of failure conditions..........c.ccceeecvveveieeecciee e, 61
Figure 38: Fault tree of the failure condition FC_ERR_CAT of the COM-MON SYStEMccceeeiiiiiiiiieeeeeiiiiiiieeeeeeeeeinnns 62
Figure 39: An example of circular definitions in the asSertion..........ccuvviciiee e e 65
Figure 40: Dependency graph of the assertion With @ CYCIEciii i e 66
Figure 41: Simulation of the Initial CONfIGUIALIONciii i e e e e e e e e e e e e eaaraes 67

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 6 / 141

oy Sy

Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53 :
Figure 54:
Figure 55 :
Figure 56 :
Figure 57 :
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65 :
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73 :
Figure 74 :
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:

= IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4
Control 10op illustration USING CECIlIAccveeiuiieeiieiiieeee ettt ettt e are et e e 68
Strategy to analyze the control [oop by fault tree- FTA ... s et 71
Strategy to analyze the control loop by fault tree - MBSA........co i 71
Circular logic error message in Fault Tree@ approach.......c.c.coouie ittt s 71
FT — Developed FTA and Equation cycle reSolUtionc..ioiciieeeiiiie ettt et e 72
CeCilia LOOP @SSEIT MESSAZE . .eeutieeutieiitieeitteiitte et e sttt e st e sttt e et e eshb e e sttt e sabeesae e e sabeesbt e e sabe e bt e e sabeesabeesabeennteesaneennees 73
Cecilia Loop assert message EXPlaiNediiiciiee it e e erre e et e e e e ate e e st ae e e sataeeeenraeeeanneeas 73
Cecilia Error message for the control [00p equation CYCIEeeeeiiiieiciii e 74
N LYo W eToT ol Te 1= o N} iTor | A o] o HA OSSPSRt 74
Control loop illustration using Cecilia w75
Illustration of the « cut the loop » solution .75

LU o o T FoTo] o R ol U 4= PSPPSR 75
llustration Of the « DIrac » SOIUTION ..vevviiiiiiiiiiiiiee e e e e e st e e e e s esraabbr e e e e e eesnaabanaeeeeas 77

Illustration of the « Dirac » solution, before Dirac update triggering......c..cccovcverviienierieienieereeree e 78

Illustration of the « Dirac » solution, after Dirac update trig8ering........cccocuvevieriiiinieniiieree et 78
"DIFaC SOIULION 3 CULSELS 1.veiuriiriieiriiieiieiiteteste ettt stteeste e e steeebe e s sbaeebaeesbaeebeeesbaeenbeessaesabeeenseeebaeensaesssesnseesns 79
Illustration of the « initialisation» SOIUTION (1) ...eeiieiriiieeiiee ettt ee e et e eereeeee e e eeeareeeeeaneeeens 80
Illustration of the « initialisation» SOIUTION (2)...eiicciiieieiie et eetre e s e e e tr e e e earae e sareeeens 80
"INTLIaliSAtiON SOIUTION" CULSELS ..eivuriiriieiiieiiieesiee ettt ettt st e st e sbeeeba e et b e ebeeesbaeeaaeessbeenseeesaneeseas 80

Illustration of the « dOUBIE FIOW SOIUTIONeeeeeeeeeeeeeeeeeeeee et e e e e e e e e e e e e e e e ee e
Illustration of the « double flow» solution — Plant failure : “erroneous”
4

Illustration of the « double flow» solution —Control failure: “erroneous”

Illustration of the « double flow» solution —Sensor failure “erroneous”....

"DoUDbIE fIOW SOIULION % CULSEES .ueiviiiiiiiiitiieiieeitit ettt st sae et e ste e et staesbe e s saeeesbeesbeesbaeensaesnsaeensneenes

Event cycle illustration (using one ModelliNg UNIt)c.oocveeiiiieiie e e 85
Cecilia Error message for the @VENT CYCIEoii it e e e e e s sate e e s enneeas 86
Event cycle illustration - OK SEAteuuiiiiiiiiiiiiiee et e e e et e e e e s e s aerb e e e e e e e e ennnraaaeeeeas 87
Event cycle illustration — KO Stat@.......uiiieuieiiiiiieeecie ettt e st e s et e s e e e stae e e ssntaeeesnaeeesnseaeens 87
SWiItCh illUStration USING CCIHIA .. .uuiiieiiieiiiiiee e e e e e e st e e e e e e e ebbrreeeeeeeeenstaeseeaseennns 87

Cecilia Error message for the @VENT CYCIEcoueiiieee e et tae e et e e e e are e e e eaneeas 90
SimfiaNeo Error message for the BVENT CYCIEiiiiiiii et 90
Switch 0scillation CONFIGUIATION 1cciiiiiiieeiie e e e et e e e et e e e ette e e e s baeeeesttaeeeeasaaeessreeaans 91
Switch 0scillation CONFIGUIAtION 2cci i e e e e e et e e e e ba e e eesatae e eeasaaeessreeaans 91
Cecilia GUI — 0peNn @ EXISTING PrOJECT.....uiiieiiiie ettt crte e e e e st e e e stee e e sbae e e esataeeesaseeeesnseeeesnseeesnnnns 101

Cecilia GUI — database creation #1

Cecilia GUI — database creation #2

CeCilia GUI — Create NEW PrOJECLuiiiiiieeeeiieeeeetteeestee e ettt e sseeeeestaeeesssteeesssseeeessaeaeasssaeesasssesessnseeeesssnenanes
Cecilia GUI — adding the system to the ProjeCt ... e e e eaaeaes 104
Cecilia GUI — adding the model to the SYSTEMccoiiiiiei e e e e ree e 104
Cecilia GUI — adding component and @QUIPMENTeiieeieiecciieeeriieeeeriee e eete e see e s eseteeesseeeeessnreeeesnneeesennes 105
Cecilia GUI — domain Cre@tion #1L......oouiiiiiei ettt st e e sttt e e st e e e ssabeeessabbeeesabbaeessabaeessanes 106
Cecilia GUI — domain Creation #2oouii ittt ettt et st e e sat e e s beesabeesabeesanee s 107

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 7 / 141

(g{:\‘\\ SA‘l NT S q sté rop ‘x' K IRT Saint Exupéry LIV-S085L01-001
T EXU PE RY IRT SystemX ISX-S2C-LIV-1285

Issue 4
Figure 84: Cecilia GUI — domain creation #3 - @NUMEIateccoiiiiiiiiiiieiie ettt s 107
Figure 85: Cecilia GUI — domain creation #4 — r€COINM........ccueeiiciiieeeiiie e eeeee e sree e et e e eae e e s stee e e e s taeeeeataeesnsaeeesnsseeeannns 108
Figure 86: Cecilia GUI —domain #5 — record data connection Creation.........cccueeveeriiieneeniie et 108
Figure 87: Cecilia GUI — domain #6 dOmMain COIONiiiuiiiiiiiieit ettt st naee e 109
Figure 88: Cecilia GUI — domain #7 lINKS COIOTuiiiieiiii e ciee e ceee ettt e e et e e e s eae e e st e e e esateeesensaeeesansaeeesnsaeeeannns 110
Figure 89: Cecilia GUI — modelling unit creation #1.........coii ittt st 110
Figure 90: Cecilia GUI — modelling Unit Creation #2cciie ettt rre e e s rte e e e ste e e e e nae e e sabeeeesasaeeeennns 111
Figure 91: Cecilia GUI — modelling unit creation #3 — component defintioncccceieciiii i 111
Figure 92: Cecilia GUI — modelling unit creation #5 — States tabcoouiiiiiiiiii e 112
Figure 93: Cecilia GUI — modelling unit creation #6 — events definitioncccceeeiiiie e 112
Figure 94: Cecilia GUI — modelling unit creation #4 — [/O 1ab.....cc.iiiiiiiii ettt et e sree e taeeeaae e 113
Figure 95: Cecilia GUI — set the size of the Modelling UNit.........cooiiiiiiiiiiii e 114
Figure 96: Cecilia GUI — FlOWS POSITIONiiiiiiieiiiiie ettt ettt e e et e e e st e e e e ate e e ssabaeeesabeeeesstaeeeessaeesasseeeeansseeennnes 115
Figure 97: Observers defiNitioN..........oo ittt ettt sb e s e s bt e s bt e s bt e sab e e enbee s beesneeeane 117
Figure 98: CeCilia GUI — ODSEIVEIS.iiiiiiiieeiet ettt ettt st sbe e s bt s bt e e bt e e saeesbeeesseesbeeenseenane 118
Figure 99: Cecilia GUI — launching step by Step SIMUIGLIONc..eeieiiiii i e e e s e e rae e e eees 119
Figure 100: Cecilia GUI — analysing step by step SIMUIAtioNncocciiiiiiiiiiiie et 119
Figure 101: Cecilia GUI — calculate Cut-Sets #1 launching sequence generationcccceeecveeeeiciieeeccieee e e eeieee e 120
Figure 102: Cecilia GUI — calculate Cut-Sets #2 output configurationcccccueeieiiiii i 120
Figure 103: Cecilia GUI — calculate Cut-Sets #3 add 0N COMPULAtIONeieiiiiriiiiiieiie e 121
Figure 104: Cecilia GUI — calculate Cut-Sets #4 CUt-SEtS r@SUITS.....ccccuiiiiiiiee e et e et e e e e tae e e s sabee e e eereeeeanes 121
Figure 105: SimfiaNeo GUI - OPEN USEI MANUAL......ciiciiiiiiiiiee e ciieeeeciee e e iee e e stte e e e ste e e e e taeeesstbeeeesataeesensaaeessseseessseeeannes 122
Figure 106: SimfiaNeo GUI - iMPOrt ProjeCt Hl.......cciuciiiiiciieeeiiieeeesite e eeee e sttt e e e steeessveeeessaaeeeessteeeseseeessnseeeesseeessnnes 122
Figure 107: SimfiaNeo GUI - iMPOIT ProOJECE H2......ooiieiii ettt e ettt e e e et e e e e bae e e s etbeeeesataeeeensaeeesasseeaeeasaeaeannes 123
Figure 108: SimfiaNeo GUI - Create NEW ProjECt Hl....ccuiiiecieeeiiieeeeiiee e eeitee e sttt e e e sttt e ssaeeeessaaeeeesstaeeseseeessnseesennseeesanes 124
Figure 109: SimfiaNeo GUI - Create NEW ProjECt H2.....uviiiceieeeiiieeeeciee e et e st e e e st e e s saee e s s saaeeeesateeesensaeessnseeeesnseeesannes 124
Figure 110: SIMfiaNEO GUI - SENEIAl OVEIVIEWciieiuiiiiciiee e cieee e ettt e ettt e e ettt e e e e te e e eebaee e s stbeeeesataeesesaeeesasbeeeesnsseaeannns 125
Figure 111: SimfiaNeo GUI - 0pen dOmMains tablec..uiiiciiiriiiiececie ettt e s e e e st e e s s eae e s sabeeeeseeeeeennes 125
Figure 112: SimfiaNeo GUI - dOM@INS TADIEcccuuiiiieiii ettt e e e tte e e st e e e e abe e e eebaee e seabeeeeeasaeeeennns 125
Figure 113: SimfiaNeo GUI - modify dOmMains COIOIScccuiiiiiiiiie ettt ettt e e e et e e e e are e e seabeeeeeabaeaeennes 126
Figure 114: SimfiaNeo GUI - 0pen COIOIS tablcoiiiiiiiiiiie et e e e st e e e st e e s eae e s sabe e e e sreeeeennes 126
Figure 115: SIMfiaNeO GUI - dEfINE COIOISuviiiiiiieeeie ettt et e e et e e e e tte e e et e e e e s aba e e eebaeeessabeeaeensaeaeennes 126
Figure 116: SIMfiaNe0 GUI - BriCK CrEatIONciiciiie ettt ettt e e et e e e e bt e e e s ebae e e e sataeeeeasaeessasbeeeesnsaeaeennes 127
Figure 117: SimfiaNeo GUI - general bricks informationcceeieiiiiiicciir e s e e e e 127
Figure 118: SimfiaNeo GUI - state variables tableoo i e e et e e e e e e 127
Figure 119: SImfiaNeo GUI - DENAVION taD.......cii ittt e e s e e e s e e s e eaee e snseeeesnsaeeeennes 128
Figure 120: SimfiaNeo GUI - CONNECLOIS tabIEeiiieiii ettt e e s e e e s e e s e aee e e sneeeeesnsaeeeennes 128
Figure 121: SimfiaNeO GUI - liNK CrEATIONuiiei ittt e e e e e et e e e e e e s abbtaeeeeaeseeantbeseaaeeennes 129
Figure 122: SimfiaNeo GUI - @SSErtion EaitIONiiieciiie ettt e e e et e e e eeae e e s e e e e e s te e e sennaeeesnneeeesnseeeesnnes 129
Figure 123: SimfiaNeo GUI - Style Of @ DICK......cciuiiiieiii e s e e e s e e e s b e e e e snereeeennes 130
Figure 124: SimfiaNeo GUI - store Brick in LIDrary ...t e e et e e e e e e e e 130
Figure 125: SimfiaNeo GUI - 0DSErVErs 1ableooeieiiii et e e e s e e s eee e e st e e e sereeeennes 131

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 8 / 141

LI
o
ot 0t o

\\\. SAINT qutemx
XUPERY

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285
Issue 4

Figure 126: SimfiaNeo GUI - start step-by-step SIMUIAtIONcociiiiiiiiiie e 131
Figure 127: SimfiaNeo GUI - step-by-Step SIMUIGTIONccuviiiiiiie e et e e e e s ara e e e s ereeeeanes 132
Figure 128: SimfiaNeo GUI - open computation table..........coouiiiiiiiiii e 132
Figure 129: SimfiaNeo GUI - computation ableoouiiiiiiiii et s
Figure 130: SimfiaNeo GUI - COMPULAtION FESUILSccuviiiiiiie ettt e e ere e s e e e e ste e e e sae e e snreeeesaeaeeeennes
Figure 131: COmM-MON @XAMPIE.....coiuiiiiiieiieiite ettt ettt et e b e e bt e be e s bt e sbe e s b et e bt e sabe e e bt e sabeeeaneesabeeeseenane
Figure 132: Definition of the dOMainooi i e e e e e rta e e e st e e e esate e e eentaeesnseeeesnsseeennnns
Figure 133: Definition Of the Class SENSOT........ii it e e e e e e rtae e e s ta e e e esateeesensseeesnseeeesnsseeennnns
Figure 134: Definition of the €lass CoNTaCON.....cc.uiiiuiiiiieiii ettt st seee s beeesaee e
Figure 135: Definition of the class Comparator

Figure 136: Definition of the main block ComMon

Figure 137: GTS MoOdel Of the COM-IMION......oiuiiiiiiiiii ettt ettt e sbe e et e bt e s bt e e bt e s beeesseeebeeenseenane

Figure 138: Critical sequences for the 0bSErVEr 'FC_BL'........cciiiiieieiiiie ettt ettt eette e e rtre e e e s tr e e e e ate e e seabeeeeeataeeeennes 139
Figure 139: Critical sequences for the 0bserver 'FC_B2'.......oo ittt st st 139
Figure 140 Information about ONERA icONS COlOUN Chart.......c.coiuiiiiiiiiii ettt 140
Figure 141 Information about ONERA types COOUI CRArTccuviiieiiiiic ettt e st e e eaae e e s eabe e e e e eaeeeennes 140

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 9 / 141

F\\\SAINT quterﬁ'x.i.
EXUPERY

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

Table of tables

Table 1: COM/MON example — Failure Conditions definition and classificationccccoevveeiececiienecce e 22
Table 2: Modelling description Of “SOUICE”uiii it e e e et e e s ate e e e s ta e e seastaeesasaeeeestseeeannseeessreeenns 24
Table 3: Modelling description Of “CMP” ... ittt et be e e sbe e st e bt e e saneenneas 37
Table 4: Modelling desCription OF “Ct” ... ittt et ettt e s st e sbe e sane e nbe e e saneennees 39
Table 5: Modelling framework for the Control LOOp @XampPle........cuiiiiiiie ettt e eee et e e eaee e e s eree e 70
Table 6: MOdEING FramMEWOIKccuiiiiiieieeete ettt et e sbe e s b et e bt e s bt e e bt e s beeesbbesbeeesaneenees 82
Table 7: Choice criteria for the control loop equation cycle resolUtionccoccivriiciiee e 84
Table 8: Modelling framework for the EVENT CYCIEcoo et e e et e e s eae e e e ereeeens 85
Table 9: Modelling framework for the SWItch @Xample.........oc.ii i 89

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

10/ 141

IRT Saint Exupéry LIV-S085L01-001

ey

Introduction

IRT SystemX ISX-S2C-LIV-1285

Issue 4

=

1.1 Purpose of document

One of S2C project target is to develop and validate a shared MBSA methodology suitable for aeronautical
developments.

This document provides methodological guidance for MBSA using AltaRica Data flow modelling languages and related
tools. It presents general principles as well as main identified difficulties that modellers can encounter. Our intent is to
provide recommendable generic practices to use MBSA for the support of classical ARP4761A PSSAs and SSAs analyses.

The recommended practices are illustrated using the AltaRica Data Flow language supported by Cecilia OCAS (Dassault
Aviation), SimfiaNeo (AIRBUS Protect) tools and Open AltaRica.

1.2 Referenced documents

[y

2.1 S2C referenced documents

Reference Number Title Reference

[REF 1] State of the Art of the S2C Project LIV-S085L01-001-V3
ISX-S2C-LIV-1285-V3

[REF 2] MBSE-MBSA Consistency LIV-S085L02-007-V6
[REF 3] Structural Scoped Review LIV-S085L02-023-V3
[REF 4] Behavioral Scoped Review LIV-S085L02-024-V6

[REF 5] Behavioral Cross Check LIV-S085L02-025-V6

1.2.2 External referenced documents
Reference Number Title Reference
[REF A] Michel Batteux, Tatiana Prosvirnova In International Journal of Critical
& Antoine Rauzy. "AltaRica 3.0 in ten Computer-Based Systems.
modelling patterns". Inderscience Publishers. Vol. 9, Num.

1-2, pp 133-165, 2019.

GUIDELINES AND METHODS FOR SAE ARP4761A /
CONDUCTING THE SAFETY

ASSESSMENT PROCESS ON CIVIL EUROCAE ED-135A
AIRBORNE SYSTEMS AND

EQUIPMENT

[y

.2.3 MBSA tools configuration

Reference Number Tool name Tool Owner Revision

[REF X] Cecilia Dassault Aviation/ Satodev V6.0.4
REF Y] SimfiaNeo AIRBUS Protect V1i4.2
[REF Z] Open AltaRica Open source v1.2.0

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 11 / 141

IRT Saint Exupéry LIV-S085L01-001

\\\SAlNT SqStéth
XUPERY

IRT SystemX ISX-S2C-LIV-1285

Issue 4

2 Glossary

2.1 Abbreviations and acronyms

Abbreviation and acronyms Definition Reference
ASA Aircraft Safety Assessment [REF B]
ARP Aerospace Recommended Practice [REF B]
CCA Common Cause Analysis [REF B]
CCF Common Cause Failures [REF B]
CMA Common Mode Analysis [REF B]
com Command [REF B]
DAL Design Assurance Level [REF B]
DD Dependence Diagram [REF B]
FC Failure Condition [REF B]
FDAL Functional DAL [REF B]
FFS Functional Failure Set [REF B]
FMEA Failure Mode and Effects Analysis [REF B]
FMES Failure Mode and Effects Summary [REF B]
FPM Failure Propagation Model [REF B]
FTA Fault Tree Analysis [REF B]
MBSA Model Base Safety Analysis [REF B]
MCS Minimal Cut Set [REF B]
MON Monitoring [REF B]
N/A Not Applicable [REF B]
PRA Particular Risk Analysis [REF B]
PSSA Preliminary System Safety Assessment [REF B]
SA Safety Analyst [REF 2]
SE System Expert [REF 2]
SFHA System Functional Hazard Assessment [REF B]
SFMEA System Failure Mode and Effect Analysis [REF B]
ZSA Zonal Safety Analysis [REF B]

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 12 / 141

(‘\\\ SAINT qute m)(IRT Saint Exupéry LIV-5085L01-001
EXU PERY IRT SystemX ISX-52C-LIV-1285

Issue 4

2.2 Definitions

This chapter deals with the definition of terms introduced in this guide. These definitions are pertinent in the frame of
the context of the S2C project.

The terms in bold in the definition are defined in the same table.

T

. An assertion is the definition of the behavior of a modelling unit. This definition is coded
Assertion

in AltaRica.
Basic event A basic event is an elementary event for the system considered.
Component failure A component failure is a combination of basic events that lead to the observed failure

A Cut Set is a unique combinations of component failures that can cause system failure.
Cut Set Specifically, a cut set is said to be a minimal cut set if, when any basic event is removed
from the set, the remaining events collectively are no longer a cut sets.

Domain A domain is a set of data of value.

Dormancy The dormancy represents the duration when a failure is not visible.

A model is called dynamic if it is not static i.e. it exists at least one couple of sequences

Dynamic model
v that are constituted with the same events and result in different configurations

Error An error is when a system deviates from its correct service state.
Event An event is a change of state of a variable.
Failure A loss of function or a malfunction of a system or a part thereof.

A Failure condition with an effect on the aircraft and its occupants, both direct and
consequential, caused or contributed to by one or more failures, considering relevant
adverse operation or environmental conditions. A Failure Condition is classified in
accordance to the severity of its effects.

Failure Condition

Fault An undesired anomaly in an item or system
A Fault Tree is a failure propagation model defined as a combination of logical operators
that define the combination of events leading to final state (failure condition).

A Functional Failure Set is equivalent to a cut set of a failure condition but modelling the
development errors instead of failures of the equipment.

Fault Tree

Functional Failure Set

Modelling unit A modelling unit is a basic element to build a model within a tool
Node A node is the visual representation of an event

An observer is a modelling artefact used to compute and report the status of a variable

Observer . . . -

(domain) associated to a failure condition.

A sequence is a succession of events in a certain order from an initial state and leading
Sequence .

to a final state.
State A state is the condition in which a modelled system is at one time of a sequence.

A model is called static if all the sequences of transitions which starts from the same
Static model configuration of the accessibility and which are made of permutation of a same set of
events leads to the same configuration of the reachability graph of the model
A transition is an equation that define the change from an initial state of an event to the

Transition . . .
final state of the same event depending on a trigger or another event.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 13 / 141

* o0

g S IRT Saint Exupéry LIV-S085L01-001

N T
(Qﬁﬁ. SAINT System>
T EXUPERY s IRT SystemX ISX-S2C-LIV-1285

Issue 4

Terms Definition

Trigger A trigger is an external event that push an event to occur.

Itis a symbol and placeholder for (historically) a quantity that may change, or (nowadays)

any mathematical object. In particular, a variable may represent a number, a vector, a
Variable matrix, a function, the argument of a function, a set, or an element of a set.

Itis an abstract storage location paired with an associated symbolic name, which contains

some known or unknown quantity of information referred to as a value.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 14 / 141

N IRT Sai éry LIV- -
N *e aint Exupéry LIV-S085L01-001
(A\ SA‘I NT qutemx IRT SystemX ISX-S2C-LIV-1285
T EXUPERY ystem
Issue 4

3 General introduction: context and objectives

3.1 Context

The S2C project was born thanks to an industrial need to improve current development processes and to ensure
consistency between safety analyses and system design, which today requires a significant effort.

Indeed, the development of systems like aircrafts is made difficult by two major factors: the inherent complexity of such
system and the complexity of the organization required to build and maintain them. A large number of stakeholders are
involved throughout the lifecycle. They have various concerns that are not necessarily consistent with each other. Each
stakeholder has its own viewpoints and descriptions, focused on its concerns and based on the use of dedicated
languages, formalisms, and tools. These viewpoints are highly interrelated, which produce overlaps. Clearly, these
overlaps and all elements mentioned above may possibly introduce inconsistencies.

In the S2C project, we will focus on the interactions between two particular disciplines: systems engineering and safety
analyses. The challenge is to develop methodologies to manage inconsistencies and to maintain a coherent state over
the development cycle. These methodologies should be validated through a representative case study supporting by
tools demonstrator in order to define tooling specification.

The main objectives are to:

e Improve confidence in safety analysis by aligning and maintaining consistency with system definition models.
e Provide safety specialists with more efficient means to understand and analyze complex systems.

Facilitate the use of model-based approaches in compliance with the requirements of certification bodies (for
the MBSA approach, there are no requirements issued by certification bodies).

Reduce the number of iterations between system definition and related safety analyses, in order to limit costs
and delays, by enabling efficient MBSE/MBSA interfaces [REF 2] or MBSE/FTA interfaces.

Control changes during the product development cycle; reduce risks due to redesign.

In order to address these issues, the project was divided into 4 work packages:

e WP1: Definition of a global process for ensuring and maintaining system/safety consistency all along the life
cycle [REF 1]

e WP2: Methods and means of implementing and maintaining system/safety consistency for the integrated
system models and system levels (horizontal links) [REF 2], [REF 3], [REF 4], [REF 5]

e WP4: Modeling methodology for safety

3.2 Objectives of the document

S2C Work Package 4 aims at developing and validating a shared Model Based Safety Analysis (MBSA) methodology
suitable for aeronautical developments based on members experience and best practices. The project choice is to focus
on the Model Based System Analysis defined in the ARP4761A guidelines [REF B].

ARP4761A ([REF B])current version defines MBSA as the “[...] technique which models system content and behavior in
order to provide safety analysis results. MBSA employs an analytical model called a Failure Propagation Model (FPM).”

In this document amongst the different processing algorithms available for Model Based Safety Analysis [REF 1] we
choose to consider the boolean equation generation and sequence generation.

Our purpose is to provide validated recommended practices built on the experience of the S2C projects members who
are amongst the main actors of the MBSA in aeronautics. This document aims to provide support and illustration of the
proposed methods using AltaRica Data Flow language in Cecilia Workshop (Dassault Aviation /Satodev) and SimfiaNeo
(AIRBUS Protect) tools, and in some cases by examples of AltaRica 3.0. (Open AltaRica).

This document targets the safety specialists with no MBSA background as well as MBSA advanced users. We expect
readers discovering the MBSA to have a set of mind opened to programming, new reasoning and tools.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 15 / 141

\\\ SAINT
EXUPERY

3.3 Contents and reading levels

Issue 4

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

This document provides three reading levels (Beginners, Intermediate and Advanced MBSA users) organized as described in the following table. Note that our goal is to provide the beginners
with the necessary bases to become advanced users after practicing sufficiently.

The following table describes the content of the different sections of the document. It also provides the reading level they target.

Section

Write and
failure

Modelling :
understand
propagation models

Computation : Analyse failure
propagation models

Assurance: Assure the
acceptability of models and
analyses with respect to the
user goals

Process: Include MBSA in
development processes

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares Engineering, DGA, ONERA, .SupMeca.
Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

5,55and 7

9and 11

10

12

13

Section title

Principles of AltaRica Data Flow language

Get started with failure propagation
modelling

Models characteristics
simulation

impacting the

Principles of analysis of AltaRica Data Flow
models

Specific modelling topics (remove the
stone in your shoe)

Verification & validation of MBSA activities

Using MBSA to support an industrial
development and Aerospace
Recommended Practices

Reading level

For beginners users.

For beginners users.

For advanced users and beginners.

For advanced users and beginners.

For advance users.

For beginners users.

For beginners and advanced users.

16 / 141

Content

To understand the bases and Principles of
AltaRica Data Flow language and
mathematical background.

To get started with MBSA

To provide guidance to overcome specific
MBSA difficult points of modelling

To detail the computation principles and
beyond of the AltaRica Dataflow models

To go further with the failure propagation
models.

To understand how to integer a MBSA
process in a V&V product life cycle.

To introduce the integration of the S2C
guideline inside an aeronautic industrial
development.

W syseis
(%exupery UM

Based on the above table, the document is introducing the reading level of each chapter by the following legend:

Issue 4

- : Beginner reading level
- | - : Intermediate reading level

- : Advanced reading level
The document does not proposed any further definition of those categories and let the reader define in which category, the reader is comfortable with.
3.4 Topic not addressed

The document does not address the tool performance as a modelling choice.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares Engineering, DGA, ONERA, .SupMeca.

17 /141

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

o oo

N

N S e %Y . ,
= \\ s e IRT Saint Exupéry LIV-S085L01-001
($§\;“Uiglg; S Ll St em IRT SystemX ISX-S2C-LIV-1285

Issue 4

3.5 Introducing the MBSA interest
MBSA is the answer to several challenges from modern complex systems and limits of traditional methods such as Fault
Tree Analysis.

Based on an example from the APR4761A / ED -135A [REF BJ]?, this section highlights some properties of MBSA, especially
the failure propagation models in regards of challenges and limits.

The example is a Wheel Breaking System, considering two Failure Conditions: Loss of breaking capability and Untimely
Breaking. The number of failure conditions is limited in order to illustrate the methodology. However others FC shall be
considered. The graphical view of the model, provided in Figure 1, allows to illustrate the main properties of MBSA.

Ll Electrical Power Supplies 0¥ Hydraulic Power Supplies

‘ sy amz
AAAAA
s
Ieolacipnvalvel InclatthnValves 3

&; A Control - BSCU
..............
3

INot Bramnj
paatert

)

Rotuation

Channel 2

None

delayn

L

- B B State
| “Incorrect | incorrect s
oy LAINGOITOR | [, [ncorrect |
i G&:
4 &
s

none {pilot)

with antiskid [Olane
compubec_ceatzel_sods
without antiskid

Figure 1 - Graphical view of Wheel Breaking System AltaRica model from ARP4761A/ED-135A ([REF B])

FC observers

4| command 2
ettect_on stieels

with antiskid FC_Lons_of_Beaking

BC_U smaLy_Brakiog

without antiskid

The MBSA, as defined in section §2.2, has several properties, making it efficient to perform safety analysis. These
properties are listed hereafter:

- The MBSA can address dynamic systems.

Usually the analyst takes into consideration dynamic aspect of a system and simplify it in order to use static
methods such as fault trees. For example (See Figure 1), if the monitoring fails before the power supply
dedicated equipment, the failure can remain hidden (in case of redundancy). In fault tree this situation is
capture with a combination (AND gate) leading to a cut set loss of internal power and loss of monitor. The
MBSA allows to distinguish between the sequence loss of power supply (which is detected) and then loss of
monitoring and loss of monitoring (considered undetected) and then loss of power supply. There are a lot of
other illustration of importance of the dynamic aspect (repair phase ...) which are not or poorly capture by
standard methods.

The MBSA offers the possibility to address order of events in a sequence (A then B, or, B then A). This topic is
detailed in chapter 8.4.

! This model is available here: https://satodev.com/nos-produits/cecilia-workshop/
This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 18 / 141

o oo
+ /¥ 2908

% IRT Saint Exupéry LIV-S085L01-001

NN s
(,'2%\\\\. SAINT System>
(T EXUPERY onr e IRT SystemX ISX-S2C-LIV-1285

Issue 4
-

e e MBSA will only select the sequence “loss of
o monitor and then internal power” as relevant for a

failure condition hidden loss of internal power.
The fault tree analysis is not making any difference.

PoRRERIRLCOESD
L

Figure 2 — lllustration of monitoring of power supply

- The same model is designed for different Failure Conditions

Usually a system has between 5 and more than 50 Failures Conditions. Sometimes, when you are using Fault
Tree Analysis, several failure conditions can be merged. Dozens of them still can be analyzed. With MBSA,
several Failure Conditions can be analyzed with more efficiency and consistency. The Figure 3 highlights the
model of the Failure Condition and the graphical needs to represent them with a standard approach (Fault Tree
Analysis). A Failure Condition in the AltaRica model is only a simple Boolean equation (observer in AlatRica
domain) considering two inputs: outputs of NormalMeterValve and Pilot Not breaking. Then the result is
generated by the tool. For the Fault Tree analysis the complete scenario (with all contributors) has to be
modelized by the safety analyst.

AltaRica model (graphical) Fault Tree Analysis
FC obs_er_ve:s_ R s

PC_Loax_of_Braking

| ! > 4 r=—=—-

osililghy |) | [.

....... a
[Mosts el T 2o 1 I
ovigiliee Ld--

W

by & T v
1" -] | WA (e e
2 - L " s
e g
= —— =
S E

BC_untimaly_Breaking = NormalMetterValve is OK and e memn =
Pilot_Not_Breaking is OK

Figure 3 - Comparison of MBSA and FTA

- The same model can be used for different analyses
The Fault Tree allows to generate cut sets and an estimation of the probability of occurrence. The same AltaRica
model, if made for that purpose, can be used with several computation engines such as Boolean equation
generation (Usually represented as a Fault Tree) and cut set calculation, sequence generation, probability
estimation using Monte Carlo. This model is not limited to one purpose and it can be used for different usages.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 19 / 141

N b aint Exupéry LIV- -
(&%\\} SAINT qutemx IRT Saint Exupéry LIV-5085L01-001
(T EXUPERY T IRT SystemX ISX-S2C-LIV-1285

Issue 4
§
Step
Simulator Stochastisc
I Simulation
: Pivot R Boolean Equation (usualy
e Model represented as FTA)

N

Figure 4 — Interoperability of tools with main model

- The representation of a system similar to engineering schematics from a structural point of view.
This property is obvious considering Figure 1 compared to Fault Tree Presented in Figure 3 - Comparison of
MBSA and FTA (right part).
The model eases a common understanding of the system behavior by using the same baseline to represent the
designed architecture and the operation of the system.
This model is simulable with a step simulator allowing to trigger occurrence failures and results on the state of
equipment or flows with appropriate figures and colors as it can be seen in Figure 5.

L Electrical Power Supplies M Hydraullc Power Supplios

L

;‘ Tnzernaitevers Control = BSCU

Loss of Hyd2

1.
Hyd2 path Braking
is|isolated

Actnation

The accumulator remains|
Power| Loss | o Loss | * the only Hyd source
3 Degraded, 5 D
Pl o

|
(5] —_state [Loss
I [“ncorr

snhiba

State [Loss
[“incorze

\corTe:

Incorrect |

| hydrautic 1 [hydraulic 2 auclionai sidas
emergency without antiskid

jees
braking ‘
§ hobbraling without antiskid

Figure 5 — lllustration of step simulator with failure at hydraulic power supply level

FC observers

FC_ntinely Braxing

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 20 / 141

EXU PERY

o e
o
.ooo

\ SAINT qutemx

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285
Issue 4

Moreover the model addresses also the functional behavior (not only dysfunctional) which eases discussions
between the safety and the design teams. For instance, it is possible to define the appropriate functional mode
(full braking, braking, not baking, with / without antiskid) and to monitor the main status of a system (loss of
hydraulic, command 1 considered ...) as shown in Figure 6.

command 2! none {pilot) l

Coxputer_in_contro
effect on sheels

with antiskid fullbraking | yith antiskid
— braking a9
without antiskid

compuber_contzol mode

without antiskid

Figure 6 — lllustration of step simulator with failure at hydraulic power supply level

The usage recommended is to use patterns, leading to update easily the models.

It is highly recommended to use a library of templates in order to build the model. Same equipment are based
on the same template that is why their behavior is consistent. The template is copy-pasted on the model and
each equipment is a different instantiation of the template. If needed, the modification of the template is able
to be propagated on the complete model, and even other models.

Even without template approach, the update is faster than a Fault Tree analysis and more robust in case of
modification of the architecture (add an item and associated probabilistic law) or identification of new failure
conditions (add an observer). The analyst doesn’t have to go through each FTA in order to take into
consideration the modifications. This is a reason why the MBSA is used to perform quick analysis in order to
make some trade off from safety perspectives between several architectural solutions.

DNEL [

! ! ! ! are based on same template

Bonlcorl

Loss

"E i :
Incerrect | | Incorrect |

are based on same template

Figure 7 — Same patterns used twice in the model

The approach is to act smart locally, and dummy globally.

The effort of a behavior modelling is performed at item level. The behavior at the system level is generated
automatically by using the connection ports from different items. The model takes into consideration the
reconfiguration of the system when needed, while the FTA remains static. This characteristic implies
homogeneous and robust results at the system level. This approach allows to analyze a complex system, as the
complexity is reduced to the local behavior of items.

One other interest of this property is the ability to connect several systems together if the interfaces are
correctly specified. It is then possible to simulate very complex scenarios for very specific situations.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 21 / 141

IRT Saint Exupéry LIV-S085L01-001

\\\ SAINT qut'e“‘,:nx
EXUPERY

IRT SystemX ISX-S2C-LIV-1285

Issue 4

4 - AltaRica Data Flow language — general vocabulary

This section introduces the syntax (writing rules) and semantics (meaning rules) applicable to the AltaRica Data Flow
models. Its intent is to provide insight and understanding of the AltaRica languages in its whole. Note that it does not
present the graphical capacities of the tools that greatly reduces the coding effort.

The definitions, presented in chapter 2.2, are illustrated by a small case study: the command/monitoring pattern of
safety architecture.

Such a pattern is structured as follows to compare the orders in case one fault occurs.

Ct
| @
Ccmp
| @

Figure 8: Command/Monitoring (COM-MON) pattern of safety architecture

It contains the following components:
e Two numerical functions F1 and F2
* A comparator Cmp that checks the equality of two inputs

* A contactor Ct that is closed as long as the equality check is true. When it is closed, it transmits F1
output; else, it transmits no output.

The functions have two failure modes:
* They may produce an erroneous output.

* They may produce no output at all.

The failure conditions of interest for this pattern are defined in the below table:

Failure Conditions Classification
FC_B1 erroneous output Catastrophic
FC_B2 Loss of output Minor

Table 1: COM/MON example — Failure Conditions definition and classification

AltaRica models are based on AltaRica formal language. They are some kind of program code: they shall be written
according to rules defining the syntax of the AltaRica language (e.g. these kind of rules are in Cecilia WS user manual).
MBSA tools can understand the AltaRica model code if and only if the model satisfies the syntax rules. Syntax errors
prevent the model simulation or analysis.

Let us clarify the main syntax rules for AltaRica DataFlow models.

Two kinds of words can be used to write AltaRica codes: Identifiers and Keywords

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 22 / 141

o e
o
.ooo

\-“ IRT Saint E éry LIV-S085L01-001
F\ SAlNT qutemx aint Exupéry
EXU PE RY IRT SystemX ISX-S2C-LIV-1285
Issue 4

Identifiers are names defined by the language users to refer different data (components, variables...) of their program.

A first syntax rule defines how to write valid identifiers and one rule applied by several tools is the following:

“The identifier shall start by a letter of [a-z]or [A-Z] and it can be followed by other letters or figures of [0-9]
or[].”

Example: F1 satisfies this rule. It is the identifier used to refer one component of the case study.
Keywords are reserved names with a predefined meaning. They will be introduced progressively in the following.

NB: Some keywords or language writing rules may slightly change according to the language version or supporting tools.
Main differences are between the AltaRica3.0 version and the former versions. Here we introduce only the syntax of
concepts shared by all dataflow models and when needed, the alternative 3.0 notation is given in brackets [3.0] for the
interested readers.

Example: the keyword true isone predefined possible value of the Boolean data.

4.1 &B= Domains

All data of an AltaRica code shall be associated with a domain.

Domains (respectively finite domains) are set (respectively finite set) of data values. They are attributes of the program
data, which defines how users and tools have to interpret the data.

Examples:
bool [3.0 Boolean] isthe AltaRica keyword used for the pre-defined domain {true, false}.

int [3.0 integer] isthe AltaRica keyword used for the pre-defined integer domain.

Failure propagation models often model the quality and failure mode of the service provided by a function. In our case
study, D_Command is a user finite domain of the case study. It is an enumeration of values declared as follows:

domain D Command = {OK, LOST, ERR};

The kind of domain has a strong influence on the model exploitation. For instance, the use of finite domains such as
Boolean and user-defined enumerations is compatible with any kind of analysis. This is not the case for integer or float
values, which are currently compatible only with stochastic simulations.

In case of a re-use of an existent domain, there is not any impact on the assertions.

4.2 =B+ Overview of modelling units

An AltaRica code can be structured in modelling units. The keyword used to declare a modelling unit is node [3.0 class].

These units are similar to classes in the object oriented programming languages: they represent reusable (« off-the-
shelf ») components and they can be instantiated inside other units. They allow building customized libraries.

Such units have a beginning, definition fields and an end. This unit structure is shared by all AltaRica languages versions
even if it is written with different keywords.

In this section, we use an example to give an overview of the modelling units shared structure and to clarify the nature
of the various fields of this structure. The field details are given in next sections.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 23 / 141

IRT Saint Exupéry LIV-S085L01-001

\\
ﬁ'&\ﬁ. SAINT
T EXUPERY
Example: Components F1 and F2 can be seen as two instances of the same component Source with the following

behavior (Figure 9):

Figure 9: The “Source”

IRT SystemX ISX-S2C-LIV-1285

Issue 4

Out

The modelling unit Source produces an output Out.
It may fail. In this case, the output Out is lost.
It may also produce errors. In this case, the output Out is erroneous.

Initially, the source performs the nominal function.

Table 2 shows the model of this component. The first column gives the structure of the modelling unit, which is shared
by all languages. The second (respectively third column) gives the keywords for the first version of the AltaRica language
(respectively 3.0 variant)

Start of unit node Source [3.0] class Source
definition
Declarations O_f flow D Command Out (reset = LOST);
flow variables Out:D_Command:out;
Declarations and state D Source St (init = OK);
initialisations of St’i—zourceé .
. ini t := State OK;
state variables -
Declarations of event event
events fail loss, fail err; fail loss(delay=exponential (1.0E-4)) ;
extern event
law <event fail loss> = exp(l.0E-4); fail err (delay=exponential (1.0E-5));
law <event fail err> = exp(l.0E-5);
Unit transitions trans transition
(st = state OK) |- fail loss -> St := fail loss: (St == OK) -> St := LOST;
State_LOST; fail err: (St == OK) -> St := ERR;
(St = State OK) |- fail err -> St :=
State ERR;
Unit assertions assert assertion
Out = if (St = State LOST) then LOST Out := St
else if (St = State ERR) then ERR
else OK;
End of unit edon end
definition

Table 2: Modelling description of “Source”

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

24/ 141

o

\\\ SAINT \ X i IRT Saint Exupéry LIV-S085L01-001
FEXU PERY SLISte L IRT SystemX ISX-S2C-LIV-1285
Issue 4

4.3 EB= Declarations in a modelling unit

In this section we describe the different variable kinds and how they are declared in modelling units.

Flow variables? are used to model flows circulating through the model. In plain dataflow languages, they are either
inputs or outputs of the node.

State variables are used to model the states of the systems. An initial value shall be assigned to any state variable.

These two kinds of variables take their values into domains. The variable declarations link the identifier of the variable
to its interpretation domain.

Example: the output flow Out is interpreted over the domain D_Command previously defined (outside the modelling
unit) i.e. Out can only have the value, OK, LOST or ERR. The output flow is declared as follows (using the keyword “out”
to declare an output flow):

Out:D_Command:out;

The state variable St is interpreted over the domain D_Source, meaning it can only take the value State_OK, State_LOST
and State_ERR (cf the declaration of the state in the above table). A component may have several state variables.
Moreover, an initial value shall be declared for any state variable. Here, St initial value is State_OK as written below

init St := State OK;

The event names are used to refer a change of values of some state variables. Their declaration may assign a probability
law to the event occurrence. Laws available depend on the tool.

Example: the occurrence of the fail_loss event follows an exponential law with parameter lambda 10*
[3.0] event fail loss(delay=exponential (1.0E-4));
4.4 =B= Transitions in a modelling unit

The graph below describes the expected dynamic behavior of the source component?.

fail_error (ST == State_ERR |
_—" | OuT=Err |
[ST ==state_oK)
| our=ok |

(ST == State_LOST |
fail_loss | our=LosT |

Figure 10: Transitions in the “source” modelling unit

It is worth to notice that variables change their value if and only if an event has occurred. Such changes of state variables
are specified by transition rules.

More precisely, a transition (defined for a current model unit) is a triple <e, G, P>, where:

- eisadeclared event name,
- Gisaguardi.e. a Boolean condition which is necessarily true before firing a transition
- Pisanaction which assign new values to a selection of state variables after the transition firing.

2 When many flow variables are exchanged there is the possibility to regroup them. This is called “bus” in Cecilia
Workshop and “record” in SimfiaNeo. Refer to 14.1.4 and 14.2.4.

3 |n this example the output corresponds to the internal value of the state.
This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 25 / 141

o

\\\ oot IRT Saint Exupéry LIV-5085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4

A transition is enabled only if its guard is satisfied.

Example: the transitions are enabled in the initial state, when St is ok, as illustrated Figure 10.

The following keywords and notations are used to write one transition:
trans <Guard> |- <Event identifier>-> <Action> ;

[3.0] tramsition <Event identifier>: <Guard>-> <Action> ;

where
<Guard>is a <Boolean Expression>and
<Action>is at set of assighments of values to state variables such that
<State variable identifier>:= <Expression value>; and
<Expression value> is avalue of the domain of the state variable
Examples:
trans
(St = State OK) |- fail loss -> St := State LOST;
(st = State OK) |- fail err -> St := State ERR;

State variables are modified only by actions of transitions. Conversely, actions of transition cannot modify a flow
variable.

The order of the firing transition depends on the tool in use. If a specific order of triggering is necessary, priorities have
to be defined.

It is possible to modify several states with the same transition.

4.5 =B= Assertions in a modelling unit

The combinatorial dependencies between flow and state variables are written with an assertion.

Example: In source, the dependency between the output flow Out and the state variable St is declared simply as follows.

assert [3.0] assertion
Out = if (St = State LOST) Out := St;
then LOST
else if (St = State ERR)
then ERR
else OK;

The expression “A=B” used in the first versions of the languages means only that A and B shall have the same value: the
dependency is not explicitly oriented by the user, it will be derived by the simulator.

The expression “A:=B” means that the value of the expression B is assigned to a variable A : the dependency is oriented
by the user, the value of A is derived from the evaluation of the expression B. This choice makes explicit the dataflow
constraint over the assertion part.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 26 / 141

o

\\\ SAINT \)(i IRT Saint Exupéry LIV-S085L01-001
FEXU PERY SLIStem IRT SystemX ISX-S2C-LIV-1285
Issue 4

For dataflow model, the assertion shall define univocally the value of an output flow according to the values of input
flows and/or state variables, like complete and consistent decision tables. Univocally means that the output is defined
taking into account all possible cases : a single value is assigned to each output flow in all possible system configurations.

A good practice is to use the following pieces of syntax:
<Output flow identifier> = case {
<Expression Boolean 1> : <expression value 1>,

<Expression Boolean 2> : <expression value 2>,

else <expression value n>};
Where the <Expression Boolean i> are built with conditions over input flows or state variables and

the <expression value i> provide a value of the output flow domain.

Such pieces of code have the following interpretation:
“If the expression Boolean 1 is true, then the output flow value is expression value 1
Else if the expression 2 is true then the output flow value is expression value 2
Else ... the output flow value is expression value n”

It defines univocally the value of the output flow because all combination of cases are covered and are mutually
exclusive.

Another way is to use the following syntax:
If <Expression Boolean 1> then <Output flow identifier> = <expression value 1>
Else if <Expression Boolean 2> then <Output flow identifier> = <expression value 1>

Else <Output flow identifier> = <expression value n>

Example: The logical component Comparator is used to decide whether two inputs have consistent values. The
decision table in Figure 5 specifies the output flow of the comparison (true/false) depending on the quality (OK, LOST,
ERR) of the two inputs flows. It assumes that the comparator can detect issues if and only if the input flows have
different quality.

In1 In2 Out
In1 Out
— OK OK true
—
T2} LOST LOST true
Figure 11: Flow variables of the "Comparator" modelling ERR ERR true
unit OK LOST/ERR false
LOST OK/ERR false
ERR OK/LOST false

Figure 12: : Relation between the values of the flow variables of

. . . the"Comparator" modelling unit
The truth table is an arbitrary choice.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 27 / 141

o

F\\\ SAINT qute m)(IRT Saint Exupéry LIV-5085L01-001
EXU PERY IRT SystemX ISX-52C-LIV-1285

Issue 4
Example: The assertion of the comparator encodes the previous decision table.
node Comparator [3.0] class Comparator
flow D Command Inl, In2(reset = LOST);
Inl:D Command:in; Boolean Out (reset = false);
In2:D Command:in;
Out:bool:out; assertion
assert Out := switch{
Out = case { case(Inl == In2) : true
(Inl = In2) : true, default : false
else false };
}i end
edon

The expression “A=B” used in the first versions of the languages is used both to write the Boolean condition “In1=In2"
and to assign a value to output flow “Out=case{...};.

In the version 3.0, the symbol “==" is used for expressing Boolean condition whereas “:=" is reserved to the assignment
of a unique value to variables.

In the following, we will mainly use the syntax 3.0 when we need to clarify semantics points. The syntax of the Data
Flow version will be mainly used in association with case studies.

4.6 EB= Use and Connection of modelling units
In the following, we address the connection of the different modelling units and its associated meaning.

Example: the following part of architecture can be written by reusing and connecting instances (copies) of the models
of the source and comparator defined previously. The resulting code is given below.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 28 / 141

o

\\\ T IRT Saint Exupéry LIV-S085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4
Cmp
| @
| @
Figure 13: Connexion of two modelling units
node Comparator [3.0]class Comparator
// body of the node Comparator // body of the class Comparator
edon end
node Source class Source
// body of the node Source // body of the class Source
edon end
node main block System
sub
Cmp:Comparator; Comparator Cmp;
Fl:Source; Source Fl, F2;
F2:Source;
assert assertion
Cmp.Inl = Fl.0ut, Cmp.Inl := F1l.0ut;
Cmp.In2 = F2.0ut; Cmp.In2 := F2.0ut;
edon end

The following syntax rules can be noticed.
* The reuses of model units inside other modelling unit have to be declared.

Example: Fl:Source;

* The names of variables and events of instantiated unit are prefixed by the name of the instance followed by a
dot.

Example: F1.0ut, Cmp.Inl
* Connections of instances are assertion linking inputs and outputs of two different instances.
Example: assert Cmp.Inl = F1.0ut

* User comments are free text which are after the keyword // or between /* and */. They can be read by users
to understand the model.

Example: // body of the node Comparator

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 29 / 141

o

\\\ T IRT Saint Exupéry LIV-S085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4

5 =B= Get started with failure propagation modelling

The purpose of this section is to provide the main principles and guidance’s to start with AltaRica modelling without
considering the tool used. In particular, we describe the different steps to follow.

The guiding thread of this section is the development of the example presented Figure 8.

Note that the models corresponding to this example, in Cecilia and SimfiaNeo tools are provided in the Appendix 10. It
describes how to start, in practice, with the different MBSA tools, to simulate and to compute the cutsets and
probabilities without replacing a dedicated training.

5.1 EB- Main principles and general guidance

In this section we describe the two first steps to define an AltaRica Data Flow model. Our intent is to provide high level
guidances that will be detailed further in the document.

Step 1: Definition of the needs

Before starting a model, it is important to define the needs covered by this model. This is a universal good practice that
strongly applies to MBSA. In other words, it is necessary to define what the model will be used for. This first step will
allow defining the level of details of the model as well as the kind of modelling approach to choose.

Key questions before modelling are:

e Why are you modelling?
- For instance: To Support a Trade Off? To capitalize data and information? To support classical
Analysis?
e What are the analysis you want to perform?
- ARP analysis involving probabilities computations? High level safety recommendations about the
architecture functional independence? DAL analysis?
e What are the output you seek?
- Forinstance: FC quantification? Qualitative Analysis? Functional recommendations?
e What are the input you need? What are the information available?
- For instance: Functions, Equipment, Electrical interfaces? Failure modes? Existing SE models with /
without gateway to SA tool ?
e Will the model evolve in size and in complexity?
- Forinstance: new functions, reconfigurations?
- Isthere any link with another model (for example a SE model, refer to [REF 2]) to be updated?

The answers to those questions will help defining:

» If a fault propagation model is more relevant than a fault tree

» The level of information and the objects that will be used to build the model (for instance will you model
functions or equipment? Will you model the interfaces in detail?)

» The information to be observed (in general at safety level we assess Failure Conditions)

» The level and granularity to be achieved (for instance you do not need a very high level of details for Trades-
offs)

» The level and the way of representing the system functional behaviors in your model

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 30 / 141

F\\\ SAINT qute m X IRT Saint Exupéry LIV-5085L01-001
EXU PERY IRT SystemX ISX-52C-LIV-1285

Issue 4

Step 2: Definition of the model

In a second time, it is necessary to perform the following modelling activities.

e Definition of the perimeter of the system studied (its interfaces);
e Listing of a list of the main objects in the study perimeter: list of system components, list of failure conditions, ...
e Expression of the failure conditions in relationship with the model perimeter
e Definition of the hypotheses about propagation equations inside each modelling unit or node that results both:
o from potential error and failure modes of all components/ functions
o from safety functions performed in the nominal case

In order to satisfy its intended use, the model has to:

e Fully cover the scope defined for the system studied;
e Enable the observation and the analysis of a set of failure conditions on this perimeter.

Note that the definition of the scope and of the observation allows to perform the validation of the model (refer to §
0). This preliminary work is important to avoid additional work such as additional iterations on the SA model.

5.2 EB= Modelling of a simple example: Command/Monitoring

In this section, we illustrate the proposed guidance using the COM/MON example presented in section 4.

5.2.1 BB Description of the system

We consider the system already defined in section 4 and described in Figure 8.

Ct
| @

Ccmp
| @

Perimeter of the system studied

* General description: The purpose of the system is to send a command order F1 consolidated from two input
commands. The system monitors the two orders F1 and F2. When F1 and F2 are different, an opening command
is sent to the Contactor, the Contactor opens and the command is lost. When the Contactor does not receive
the opening command, F1 is transmitted.

* Interfaces: Two input command F1 and F2 and one output command F1. The output assumptions are defined
in chapter 5.2.3(c)(i).

* The system is composed of:

- A comparator (Cmp)
- Acontactor (Ct)*

Safety requirement:
= FC1: erroneous output (Catastrophic)

= FC2:loss of output (Minor)

“41n this example the contactor is a passive device without power supply that can alter its behavior (for instance: voltage

too low to close the contactor). Then the behavior of the contactor only relies on inputs.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 31 / 141

o

\\\ oot IRT Saint Exupéry LIV-5085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4

5.2.2 EBBH Purpose and perimeter of the model (Step1)

The intent of our model is to provide the safety assessment of the architecture regarding the proposed safety
requirements. We also want the system designer to understand our model in order to ease the communication and the
validation activity.

We assume that we start from a blank model without existing libraries for instance that could reduce the effort but also
bring some modelling constraints.

In order to perform the safety assessment of the architecture, our analysis will assess qualitatively and quantitatively
(refer to the Get Started Kit to address the computation of the results) the provided Failure Conditions:

= FC1: erroneous output (Catastrophic)
= FC2:loss of output (Minor)
The targeted analyses require the computation of the CutSets and probabilities of each failure conditions.

Consequently, our model will integrate the different system components, the SFMEA failure modes and the functional
reconfigurations of the system.

Because of the simplicity of the model, we choose not to model the external system sending F1 and F2. All the
information is available.

5.2.3 BBE Definition of the model (Step2)

(a) Hypothesis about propagation equations inside each modelling unit

In this example, we base the definition of the local behavior inside each modelling on the hypothesis provided by the
system designers. Note that this behavior could also be related and traced to the system specifications.

Our first hypotheses about the propagation equations inside each modelling unit (Cmp and Ct) are the following,
considering the nominal or dysfunctional case:

* The comparator Cmp checks the equality of its two inputs :
o when the inputs are different an isolation order is sent
o when the inputs are not different no order is sent

* The contactor Ct
o Isclosed as long as the equality check is true. When it is closed, it transmits F1 output;
o The contactor is open as soon as the equality check is wrong. When it is opened, it does not
transmits F1 output;

Note these first hypotheses describe the model need. They require to be adapted in order to be included in the model
definition.

In the following we will use the same naming that in this description.
[GP 1] General recommendation - Choose explicit names in the model including their type (Event, State, ...)

In addition, in order to be able to model the system, its functional and dysfunctional behavior, we need to define the
flow variables that will be used in the model and the modelling unit themselves. We base this definition on the AltaRica
modelling language already defined in §4.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 32 / 141

\\\ oot IRT Saint Exupéry LIV-5085L01-001

(\EXU?:’AEIR; S Ll Ste m = IRT SystemX ISX-52C-LIV-1285

Issue 4

(b) Definition of the observer and flows
In this section we describe how we define the observers and the related flows and domains of our model.

For the FC1: erroneous output (Catastrophic) the system sends an erroneous command, for the FC2 the command is
lost:

= FC1: erroneous output (Catastrophic) =>the CMD at the system output is erroneous
= FC2:loss of output (Minor) =>the CMD at the system output is lost

In order to be able to assess the failure conditions, we need to express these possibilities. Consequently we choose to
define the command domain as D _Command = {OK, LOST, ERR}.

In addition, either from the documentation, or from informal exchanges, we know (or we hypothesize) that F1 and F2
in our example can provide:

* anerroneous value
* novalue atall

In this example the input and the output of the system is a command with the same possible quality considering the
possible failure of the F1 and F2 input data. Consequently we chose to use the same domain for F1 and F2 as for the
output D_Command: {OK, LOST, ERR}.

A
Vs
Variable CMD
Figure 14: Observer — illustration
With the flow represented, the model became:
Variable CMD
Type : Ok, Err, Lost
Variable CMD

Type : Ok, Ermr, Lost

Variable CMD
Type : Ok, Err, Lost

Figure 15: lllustration of the flows

In the tool modeling the observer variable CMD is replaced by two observers for each Failure Condition.

funcol Contactor //@
. FC Erx CAT
b - =t - -
Pl » C
A 4 Isclation i \‘\@
£ 02
unc E— A FC_LOST MIN

[Or—>—F ==

|

Figure 16: Observers — in the model

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 33 / 141

o

F\\\ SAINT S stemx IRT Saint Exupéry LIV-S085L01-001

EXU PERY LI IRT SystemX ISX-S2C-LIV-1285
Issue 4

At this stage, we have not defined all the flows in the model. In particular, we need to define the flow from Cmp to Ct.

From the description provided in (a) in case of detected difference between F1 and F2, an opening command is sent
from the Comparator to the Contactor. We chose to model this command close to its functionality. This flow could be
modelled as a Boolean but we choose to follow our good practice and be explicit. We define the domain of the isolation
commandasD_isolation={Isolation, No Isolation}.

(c) Definition of the modelling unit

(i) The Sources — F1 and F2

The modelling units F1 and F2 have the same definition. Consequently, they can be seen as two instances of the same
component Source. As the modelling of the source has already been presented in

Table 2: Modelling description of “Source”, in this section we only concentrate on guidances and generality.

Out

D=

Figure 17: lllustration of the source

Definition of Input and Output:
e Input flow: In this particular example there is no input flow

e Output flow: we have defined previously that the output flow of the source domain is {OK,ERR,LOST}. The
already dedicated type for a CMD is D_Command = {OK,ERR,LOST}.

Definition of the Internal State (St) of the modelling unit and Types

e The failure modes of the source are the followings : fail loss and fail err

[GP 2] Failure modes of components in MBSA are in principle not different from the failure modes in FTAs.
Nevertheless, it is useful to reduce their number as much as possible in order to optimize your modelling and analysis.
To do so and keep the traceability between your different analyses, it is possible in some cases to build a
correspondence table between the FMES provided and the failure modes in the model.

e The internal state of the Source depends on the failure modes. For the sake of readability, we chose different
names for the domain : D_Source {State_OK, State_LOST, State_ERR}

[GP 3] In some cases, it can be more efficient to use the same domain for the States and Flows. Nevertheless, this
choice can make the model difficult to read for others.

[GP 4] Beginners should choose to use different types for different nature of flows, and different domains types for
states and flows.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 34 / 141

s s IRT Saint Exupéry LIV-S085L01-001
f\\\ SAINT System>
EXU PE RY e e IRT SystemX ISX-S2C-LIV-1285
Issue 4

Definition of the Source modelling unit behavior

[GP 5] A table of truth linking the input, internal state and output variables is a valuable communication and validation
tool regarding the modelling unit behavior

In the Source modelling unit the output flow value only depends on the input flows. The following provide a complete
description of the modelling unit behavior.

Internal State: St Out
Type CMD

Domain Ok, Lost, Err

State_OK Ok
State_LOST
State_ERR Err

Figure 18: Source Table of Truth

(ii) The Comparator (Cmp)

In1 Out
]
—

In2

Figure 19: lllustration of the comparator Cmp

Definition of Input and Output :
e Input flows: there have been chosen in 0 in the domain D_Command={OK,ERR,LOST}.
e QOutput flow: it has also been chosen in 0 in the domain D_isolation={Isolation, No_Isolation}.

[GP 6] The definition of Types can allow to constrain you model : even though your model definition is the same you
will not be able to connect two output and input if they do not have compatible Types and orientation (nominally it
is impossible to connect two output for instance)

Definition of the Internal State (St) of the modelling unit and Types

This modelling unit has no failure consequently; there is no need to define an internal state.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 35 / 141

f\\\\. SAINT qutéﬁ-x
EXU PERY it

* o0
9:0-@

Definition and Validation : Table of Truth

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

[GP 7] A table of truth linking the input, internal state and output variables is a valuable tool to communicate and

document a modelling unit.

[GP 8] Comment the model locally providing the user with all the necessary information to understand the modelling

intent

Note that in the Comparator modelling unit the output flow value only depends on the input flows inl1 and in2.

Out

In1

In2

Type CMD Type CMD Type boolean

Domain OK, Err, Lost Domain OK, Err, Lost Domain: true/false
= Comparison
= isolation

Ok Ok False

Ok Lost True

Ok Err True

Lost Ok True

Lost Lost False

Lost Err True

Err Ok True

Err Lost True

Err Err False

Figure 20: Source Table of Truth

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

36/ 141

* o0

i Wi eRies IRT Saint Exupéry LIV-S085L01-001
f\\\\ SAINT System>
EXU PERY e s IRT SystemX ISX-S2C-LIV-1285

Issue 4

Table 3: Modelling description of “Cmp” provides the description of the modelling unit corresponding to its description,
in AltaRica language.

Start of unit definition node Source

Declarations of flow [§ild7

variables

Out: D_isolation:out;
In1:FailType:in;
In2:FailType:in;
Unit assertions assert

// If Equal -> isolation

Out = case {

(In1 =1In2) : false,

else
true
Table 3: Modelling description of “Cmp”
(iii) The Contactor (Ct)
. ct
[_ecmd o_cmd
- Variable CMD
Variable CMD Domain: OK, ERR, LOST
Domain : 4
OK, ERR, LOST ‘
i_control

Variable isolation
Domain: true, false

Figure 21: lllustration of the Contactor (Ct)

Definition of Input and Output :

e Input flows:

o i_cmdisa Command of the same nature of F1 and F2 as discussed in 0, consequently its domain type
is D_Command={OK,ERR,LOST}.

o i_control is an isolation command received form the Comparator. As per 0 and (ii), consequently its
domain type is D_isolation={Isolation, No_Isolation}.

e QOutput flow: o_comd is a Command of the same nature of inl as discussed in 0, consequently its domain type
is D_Command={OK,ERR,LOST}.

Definition of the Internal State (St) of the modelling unit and Types

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 37/ 141

\\\. SAINT
XU PERY

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

e The failure modes of the contactor are the followings : stuck open and stuck closed

e The internal state of the Contactor depends on its failure modes. We define a generic domain D_Switch={

Ok, Stuck Opened, Stuck Closed}

Definition and Validation: Table of Truth

In the Contactor modelling unit the output flow value only depends on the input flows. The following provide a complete

description of the modelling unit behavior.

Internal State i_cmd i_control
OK, Type CMD Type isolation
failed closed Domain OK, ERR, Domain true false

failed_open LOST

o_cmd

Type CMD

Domain OK, ERR,
LOST

State_ OK Ok False Ok
State_ OK Ok True

State_ OK False

State_OK True

State_ OK Err False Err
State OK Err True

State_Stuck_Open Err Ok Err Ok
State_Stuck_Closed Ok True Ok
State_Stuck_Closed Ok False Ok
State_Stuck_Closed True

State_Stuck_Closed False

State_Stuck_Closed Err True Err
State_Stuck_Closed Err False Err

Figure 22: Contactor Table of Truth

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

38/141

N

EXUPERY

In addition the Table 4 below provides the description of the Contactor modelling unit corresponding to its description,

in AltaRica language.

Start of unit definition

Declarations of flow
variables

Declarations and
initialisations of state
variables

Unit transitions

Unit assertions

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

5\ SAINT Systemx

* o0
[g Al

node Source

flow
o_cmd: D_Command:out;
i_cmd:D_Command:in;
i_opening_cmd: D_isolation:in;
State
St: D_Switch;
Init St:=0k;
trans
(St=0k) [-stuck_open ->St:=Stuck_Opened;
(St=0k) [-stuck_closed ->St:=Stuck_Closed;
assert
o_cmd = case {
(St=Stuck_Closed): i_cmd,
(St=Stuck_Opened): Lost,
(i_opening_cmd=Isolation) and (St=0k): Lost,
else
i_cmd

}

Table 4: Modelling description of “Ct”

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

\\\

SAINT
XU PERY

P LI
.

qutemx

5.3 - I- Flattening structured models

e IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

Before the assessment an AltaRica model is flattened “by the tool”, i.e. it is transformed into a Guarded Transition
System by means of rewriting rules. All the structure is removed. The flattened model is composed of a set of variables,
a set of events, a set of transitions, an assertion and a default or initial assignment.

Formally, a Guarded Transition System is a quintuple <V, E, T, A, .>, where

V =S U Fis a disjoint set of state variables S and flow variables F;
E is a set of events;

Tis a set of transitions, a transition is a triple <e, G, P>, where e is an event of E, G is a Boolean expression built
over the variables of V, called a guard, and P is an instruction, called an action or a post-condition;

Ais an instruction, called an assertion;

Lis a default or initial variable assignment.

Example of Guarded Transition System (flattened model):

A Guarded Transition System representing the COM-MON example, or in other words its flatten model, is as follows (we
use the syntaxe of AltaRica 3.0 for the description of expressions and instructions):

The set of state variables S = {F1.St, F2.5t},
The set of flow variables F = {F1.0ut, F2.0ut, Cmp.In1, Cmp.In2, Cmp.Out, Ct.In, Ct.Out, Ct.CloseCondition},
The set of events E = {F1.fail_err, F1.fail_loss, F2.fail_err, F2.fail_loss},
The set of transitions {

1.
2.
3.
4.

<F1.fail_loss, F1.St==State_OK, F1.St:= State_LOST>
<F1.fail_err, F1.St== State_OK, F1.St:= State_ERR>
<F2.fail_loss, F2.S5t== State_OK, F2.St:= State_LOST>
<F2.fail_err, F2.S5t== State_OK, F2.St:= State_ERR>}

The assertion A =

1.

NoubkwnN

8.

F1.0ut :=if (F1.St = State_LOST) then LOST else if (F1.St = State_ERR) then ERR else OK;
F2.0ut := if (F2.St = State_LOST) then LOST else if (F2.St = State_ERR) then ERR else OK;
Cmp.In1:=F1.0ut;

Cmp.In2 := F2.0ut;

Cmp.Out := if (Cmp.In1 == Cmp.In2) then true else false;

Ct.In := F1.0ut;

Ct.CloseCondition := Cmp.Out;

Ct.Out := if Ct.CloseCondition then Ct.In else LOST;

The default variable assignment 1 = {F1.St= State_OK, F2.St= State_OK]}.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

40/ 141

o

\\\ oot IRT Saint Exupéry LIV-5085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4

5.4 EB= Good Practice summary

This section aims to summarize the good practices presented in the above chapters. These good practices are not
mandatory but guideline coming from the experience of the S2C project.

[GP 1] General recommendation - Choose explicit names in the model.

[GP 2] Failure modes of components in MBSA are in principle not different from the failure modes in FTAs. Nevertheless,
it is useful to reduce their number as much as possible in order to optimize your modelling and analysis. To do so and
keep the traceability between your different analyses, it is possible in some cases to build a correspondence table
between the FMES provided and the failure modes in the model.

[GP 3] In some cases, it can be more efficient to use the same domain for the States and Flows. Nevertheless, this choice
can make the model difficult to read for others.

[GP 4] Beginners should choose to use different types for different nature of flows, and different domains types for states
and flows.

[GP 5] A table of truth linking the input, internal state and output variables is a valuable communication and validation
tool regarding the modelling unit behavior.

[GP 6] The definition of Types can allow to constrain you model : even though your model definition is the same you will
not be able to connect two outputs and input if they do not have compatible Types and orientation (nominally it is
impossible to connect two output for instance).

[GP 7] A table of truth linking the input, internal state and output variables is a valuable tool to communicate and
document a modelling unit.

[GP 8] Comment the model locally providing the user with all the necessary information to understand the modelling
intent.

5.5 EB- Latent, dormant or hidden failures

As in all safety assessments in aeronautical domains, there is a need to address the latent and dormant failures.
Indeed, if one or more failed elements in the system can persist for multiple flights (latent, dormant, or hidden failures),
the calculation should consider the relevant exposure times (e.g. time intervals between maintenance and operational
checks/ inspections).

The MBSA based on AltaRica Dataflow allows to define a dormancy / latency for each basic event with the same
characteristics than in a FTA based analysis.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 41 / 141

o

\\\ T IRT Saint Exupéry LIV-S085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4

6 Simulation — general definitions

One interest of the proposed MBSA approach is to provide simulation capabilities. The simulation aims at checking
whether the propagation equation are complete and compliant with the knowledge about the system and its failures.
It allows simulating what happens when a fault occurs or when a nominal event (e.g. a reconfiguration) is triggered.

The following section presents different aspects of the simulation modelling and use. Different examples to illustrate
this capacity are provided in the document.

6.1 Basic definitions

6.1.1 =B Simulation principles

The Simulation is defined as a sequence of trigger able events, starting from an initial safe state. In particular these
events can be the cut set of chosen Failure Conditions (i.e. one triggers the event(s) of the cut). It allows observing the
results and checking the model.

There are two kind of simulation used in MBSA purposes

- “step by step” or interactive, meaning there is no temporality only the order of the triggered events run the
simulation. Refer to §7 for further details

- Timed or stochastic models, meaning that triggering of the event is controlled by a function from time. This
aspect is discussed in §6.1.3

Different examples to illustrate this capacity are provided in the document. The impact of the model characteristics on
the simulation itself is discussed in §0.
6.1.2 - | - Reachability graph

A reachability graph for AltaRica models is a formal representation of all possible configurations a given model can reach
when following its defined transitions. For most exploitations of an AltaRica model, this graph is not directly computed,
as its size faces a combinatorial explosion. Instead, it is gradually explored with each transition. In order to ease the
discussion, in the following sections, the whole reachability graph will be displayed on our small example.

A configuration is an assignment of state and flow variables, each variable of V has a value of its domain.
Example of Configuration:
In the COM-MON model given Figure 8 the configuration is defined by the values of the following variables:

- State variables F1.St, F2.St,
- Flow variables F1.0ut, F2.0ut, Cmp.In1, Cmp.In2, Cmp.Out, Ct.In, Ct.Out, Ct.CloseCondition.

A possible assignment of state and flows variables is

o; = {F1.5t=0K, F2.5t=0K, F1.0ut=0K, F2.0ut=0K, Cmp.In1=0K, Cmp.In2=0K, Cmp.Out=true, Ct.In=0K,
Ct.CloseCondition=true, Ct.Qut=0K}.

The initial configuration is calculated as follows. First, all the state variables receive their initial values from ¢, then the
assertion A is applied to calculate the value of the flow variables. Let denote the initial configuration

gy = A(D).

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 42 / 141

RS
’ooo

% \ SAlNT S t . X IRT Saint Exupéry LIV-S085L01-001
EXU PERY liS em IRT SystemX ISX-S2C-LIV-1285

Issue 4

Example of Initial configuration:
In the initial configuration, the value of F1.St and F2.St is OK.
Then the assertion is applied to calculate the value of the flow variables:

F1.0ut :=if (F1.St = State_LOST) then LOST else if (F1.St = State_ERR) then ERR else OK;
F2.0ut := if (F2.St = State_LOST) then LOST else if (F2.St = State_ERR) then ERR else OK;
Cmp.Inl :=F1.0ut;

Cmp.In2 := F2.0ut;

Cmp.Out :=if (Cmp.In1 == Cmp.In2) then true else false;

Ct.In :=F1.0ut;

Ct.CloseCondition := Cmp.Out;

8. Ct.Out :=if Ct.CloseCondition then Ct.In else LOST;

NoubkwnNeR

So, F1.0ut = OK from the first assignment, F2.0ut = OK from the second assignment, Cmp.In1 = OK from the third
assignment, Cmp.In1 = OK from the fourth assignment, Cmp.out = true from the fifth assighment, Ct.In = OK from the
6" assighment, Ct.CloseCondition = true from the 7t" assighment and Ct.Out = OK from the 8" assighment.

Finally, the initial configuration of the COM-MON model is as follows:

o, = {F1.St=State_OK, F2.St=State_OK, F1.0ut=0K, F2.0ut=0K, Cmp.In1=0K, Cmp.In2=0K, Cmp.Out=true, Ct.In=0K,
Ct.CloseCondition=true, Ct.Qut=0K}.

A transition is enabled in the current configuration if the value of its guard is true in the current configuration.

Example of Enabled transition.
In the model of the COM-MON there are four transitions:

1. <F1.fail_loss, F1.St==State_OK, F1.St:= State_LOST>
2. <Fl.fail_err, F1.St== State_OK, F1.St:= State_ERR>
3. <F2.fail_loss, F2.5t== State_OK, F2.St:= State_LOST>
4. <F2.fail_err, F2.St== State_OK, F2.St:= State_ERR>

In the initial configuration the value of F1.St is State_OK, so both F1.fail_loss and F1.fail_err are enabled;
F2.St is also State_OK, so both transitions F2.fail_loss and F2.fail_err are enabled.
A Guarded Transition System defines a Reachability graph R = < X, 0 >, where

- Xisaset of configurations of the AltaRica model;
- Bisasetofedges < gy,e,0, >, where g; € X are configurations and e € E is an event of the AltaRica model.

The Reachability graph is calculated as follows.
First, the initial configuration g, = A(t) is calculated. It is added to the set of configurations &.

Second, enabled transitions are calculated in the initial configuration. To calculate next configurations, each enabled
transition is fired independently.

When an enabled transition t=<e, G, P> is fired, then first its action is executed to calculate the new value of state
variables, then the assertion is applied to calculate the new value of flow variables. Let denote the new configuration

0; = A(P(0y)).

The new configuration is added to the set of configurations X and the edge < gy, e, 0; > is added to the set of edges O.
The process iterates until no new configuration is reached.

Be aware that the Reachability graph of an AltaRica model may have an infinite number of configurations.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 43 / 141

* e
. Fo e

|§\\\§ SAINT Sys tem ¥ IRT Saint Exupéry LIV-S085L01-001
($ EXUPERY "‘I b IRT SystemX ISX-S2C-LIV-1285

Issue 4

The number of configurations of the Reachability graph is exponential on the number of state variables in the AltaRica
model.

For example, considering a system made of n components, each component has a Boolean state variable, representing
whether it is working or not, and a transition, making the component change its state from “working” to “failed”. The
whole reachability graph of this system has 2™ configurations.

In practice, the reachability graph is never generated in full but only partially explored.

Example of Firing of an enabled transition:
Let us consider again the COM-MON example given Figure 8.
In the initial configuration, four transitions are enabled: F1.fail_loss, F1.fail_err, F2.fail_loss and F2.fail_err.

Let us fire the transition F1.fail_err. First, the action of the transition is executed and F1.St receives the value State_ERR.
Second, the assertion is applied.

So, F1.0ut = ERR from the first assignment, F2.0ut = OK from the second assignment, Cmp.In1 = ERR from the third
assignment, Cmp.In2 = OK from the fourth assignment, Cmp.Out = false from the fifth assignment, Ct.In = ERR from the
6" assignment, Ct.CloseCondition = false from the 7t assignment, Ct.Out = LOST from the 8 assignment.

Finally, the new configuration of the COM-MON model is as follows:

o, ={F1.St=State_ERR, F2.St= State_OK, F1.0ut=ERR, F2.0ut=0K, Cmp.In1 = ERR, Cmp.In2=0K, Cmp.Out = false, Ct.In =
ERR, Ct.CloseCondition=false, Ct.Out=LOST}

Example of Reachability graph:
The complete Reachability graph of the AltaRica model of the COM-MON is given in Section 14.5.

F2.fail_loss F2.fail_err

Initial
configuration

F1.fail_err

F1.fail_err|

F1.fail_loss

F1.fail_err

ERR, OK
03 LOST

F1.fail_loss

LOST, OK

04 LOST

F2.fail_logs Fp.fail_err

F1.St

F2.St

Name of the Ct.out
configuration ’

F1.fail_loss

F2.1ail_loss F2.fail_err

LOST, LOST)
07 LOST]

Figure 23: Reachability graph

For the sake of simplicity, for each configuration of the graph we give only the value of three variables F1.St, F2.St and
Ct.Out. Each edge of the graph is labelled by an event of the model.

An execution (or a trace) of an AltaRica model is a succession of configurations and transitions defined recursively as
follows:

- 0, is an empty execution (or trace),
t1 t, tn . . X tnt1 .
- IfA, = gy—> gy > ...> 0, is an execution of the model then sois A,,;1 = A, — 0y,44iff

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 44 / 141

N o e IRT Saint Exupéry LIV-S085L01-001

\ .
I\ \> i %e
(%z%ﬁ\)\(\Ui’AE Ig; S Ll S l' em X IRT SystemX ISX-52C-LIV-1285

Issue 4

o The transition t, 1 =< €,41, Gp41, Phyq > is enabled in the configuration o, i.e. the guard G, is
true in oy;
o The configuration a,,,; = A(P,+1(0y)) is obtained by firing the transition ¢, .
A trace corresponds to a path in the Reachability graph, starting from the initial configuration and ending in some
configuration of the model.

In the Reachability graph, we are interested by paths leading from the initial configuration to the configurations, where
some conditions are satisfied (for example, a Failure condition occurs). These paths are also called sequences.

Example (Execution trace):

In the reachability graph given in §6.1, the traces leading from the initial configuration to the configurations, where
Ct.Out=ERR are as follows:

F2.fail_err F1l.fail_err

F1.fail_err F2.fail_err

Initial
configuration

OK, ERR

F1.fail_err

ERR, ERR

F1.fail_loss

F1.fail_err

F1.St

ERR, LOST
Os LOST

F1.fail_loss

F1.fail_loss

LOST, OK LOST, LOST
04 LOST, (o LOST

Figure 24: Traces in the reachability graph

Name of the CL.out

) p F2.fail_loss
configuration -

F2.fail_err

Og LOST

In the reachability graph given 6.1, the execution traces leading from the initial configuration to the configurations
where Ct.Out = ERR are marked in red.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.
Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 45 / 141

o

\\\ oot IRT Saint Exupéry LIV-5085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4

The traces leading from the initial configuration to the configurations, where Ct.Out=LOST are as follows:

F2.fail_loss
_—
0o 01

F1.fail_loss
_—
0o 04

Fl.fail_err
Og —— 03

F2.fail_err
Og —— 03

F2.fail_err F2.fail_loss
0o 03 Os

F2.fail_loss Fl.fail_err
0o 01 Os

Fl.fail_loss F2.fail_loss

F2.fail_loss F2.fail_loss

F1.fail_loss F2.fail_err

F2.fail_err F1.fail_loss

Example of Sequences:

In the reachability graph given in §6.1, sequences of events leading from the initial configuration to the configurations
where Ct.Out = ERR are as follows:

- F2.fail_err, F1.fail_err,
- Fil.fail_err, F2.fail_err.

6.1.3 -Timed and stochastic models
Stochastic or deterministic delays can be associated with the events of an AltaRica model.

Deterministic transitions are defined by the probability distribution named Dirac(t), where t is a fixed delay, a non-
negative number. If a deterministic transition becomes enabled at time d, then it should be fired exactly at time d + t.

A special case of deterministic transitions are immediate transitions, defined by Dirac(0). They should be fired as soon
as their guards become true (before any other transition).

Stochastic transitions are defined by stochastic probability distributions (for example, exponential, Weibull, etc.). If a
stochastic transition becomes enabled at time d, it should be fired at time d + t, where T is a random delay calculated
according to the probability distribution associated with the event e.

When performing cuts or sequences generation, these computations are performed qualitatively, before then assessing
each cut/sequence probability. As a consequence, the choice of a stochastic law (e.g. exponential vs. Weibull, or
different numerical parameters) has no consequence on the list of cuts or sequences, but only on the associated
numerical probabilities. On the contrary, numerical parameters of deterministic laws can modify the list of found
sequences.

Let us denote by delay(e) a delay calculated for the event e according to its probability distribution, which is a random
value for stochastic events and is equal to t for deterministic events.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 46 / 141

\\\
XU PERY

P LI

i D IRT Saint Exupéry LIV-S085L01-001

SAINT qutemx

IRT SystemX ISX-S2C-LIV-1285

Issue 4

Example of Stochastic and deterministic transitions:

To illustrate the use of deterministic and stochastic transitions let us consider again the COM-MON example given Figure
8. The failures of the functions are represented by stochastic events, which are exponentially distributed with given
failure rates.

Now we represent a contactor with memory, i.e. if the contactor receives the order to open (the value of the variable
Ct.CloseCondition becomes false) then it remains open even if it receives later the order to close again (the value of the
variable Ct.CloseCondition becomes true again). To do that, we modify the previous model and define:

A Boolean state variable Ct.Open which is false in the initial configuration,

A deterministic event Ct.Open_ct with a delay Dirac(0),

An immediate transition <Ct.Open_ct, not Ct.CloseCondition and not Ct.Open, Ct.Open := true>, which should
be fired as soon as its guard “not Ct.CloseCondition and not Ct.Open” becomes true,

An assertion “Ct.Out := if Ct.Open then LOST else Ct.In".

The whole Guarded Transition System is as follows (changes in comparison with the previous model are marked in red):

The set of state variables S = {F1.St, F2.St, Ct.Open},
The set of flow variables F = {F1.0ut, F2.0ut, Cmp.In1, Cmp.In2, Cmp.Out, Ct.In, Ct.Out, Ct.CloseCondition},
The set of events E = {F1.fail_err, F1.fail_loss, F2.fail_err, F2.fail_loss, Ct.open_ct},
The set of transitions {
1. <F1.fail_loss (stochastic), F1.5t==0K, F1.St:=LOST>
2. <F1.fail_err (stochastic), F1.5t==0K, F1.St:=ERR>
3. <F2.fail_loss (stochastic), F2.5t==0K, F2.5t:=LOST>
4. <F2.fail_err (stochastic), F2.5t==0K, F2.St:=ERR>
5. < Ct.Open_ct (Dirac(0)), not Ct.CloseCondition and not Ct.Open, Ct.Open := true >}
The assertion A =
1. F1.0ut:=F1.5t;
F2.0ut := F2.St;
Cmp.Inl:=F1.0ut;
Cmp.In2 := F2.0ut;
Cmp.Out := if (Cmp.In1 == Cmp.In2) then true else false;
Ct.In := F1.0ut;
Ct.CloseCondition := Cmp.Out;
8. Ct.Out :=if Ct.Open then LOST else Ct.In;
The default variable assignment (= {F1.5t=0K, F2.5t=0K, Ct.open=false}.

Nouhkwn

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 47 / 141

o oo
o
Sl 00s

|§\\\ SAINT Sys tem ¥ IRT Saint Exupéry LIV-S085L01-001
($ EXUPERY l‘l b IRT SystemX ISX-S2C-LIV-1285

Issue 4

Example of Reachability graph with stochastic and deterministic transitions:

F1.St F2.St Ct.Open
; ERR, LBST, open v |
Initial F2.fail_loss Fa.tail_err LOST
configuration

Ct.Out

OK, LOST, closed

01 OK

OK, ERR, closed

0y OK

Ct. open_‘(’;{\ \'cr. open_ct
Al ¥
———————— [OK.LOST. open) (O, ERR, open | F1.ail_ioss
(% Lost)\ (910 LosT)
F1.fail_err i \ F1.fail_e
Fofallbogs _ — 4 Fifailloss -

F1.fail_ioss Ct.open_ct

ERR, LOST, open | ERR, ERR, open |

-z o
LOST, OK, closed| [LOST, OK, open)
[0+ ost] (o7 LOST

F2.fail_err

LOST, LOST, open

) LOST

‘ LOST, ERR, open

Figure 25: Reachability graph of the COM-MON with deterministic transitions

The chapter 6.1.2 shows the reachability graph of the COM-MON with deterministic (immediate) transitions. Immediate

transitions are marked in red with dashed lines. As in the previous model, in the initial configuration four transitions are
enabled:

- F1.fail_loss (stochastic),
- F1.fail_err (stochastic),
- F2.fail_loss (stochastic),
- F2.fail_err (stochastic).

All of them are stochastic and any of them can be fired in the initial configuration.
When the transition F1.fail_err is fired, the new configuration is calculated:

- From the action of the transition F1.St=ERR;
- After the application of the assertion Ct.Out = ERR.

In this configuration, there are three enabled transitions:

- F2.fail_loss (stochastic),
- F2.fail_err (stochastic),
- Ct.open_ct (Dirac(0)).

As Ct.open_ct is an immediate transition, it should be fired before the transitions F2.fail_loss and F2.fail_err.
It is fired first:

- From the action of the transition Ct.Open = true;
- After the application of the assertion Ct.Out = LOST.

In this new configuration, two transitions are enabled:

- F2.fail_loss (stochastic),
- F2.fail_err (stochastic).

Unlike the previous example, if the transition F2.fail_err is fired, the contactor Ct remains open and Ct.Out remains LOST
even if Ct.CloseCondition becomes true again.

Execution traces leading from the initial configuration to the configurations where Ct.Out = ERR is

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 48 / 141

(T EXUPERY "

Fl.fail_err
Og —— 03

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

Execution traces leading from the initial configuration to the configurations where Ct.Out = LOST are

F1.fail_loss
_—
0o 04

Fl.fail_err Ct.open_ct
0o 03 Os

F1.fail_loss Ct.open_ct
0o 04 07

Fl.fail_err Ct.open_ct F2.fail_loss
0o 03 Os Og

Fl.fail_err Ct.open_ct F2.fail_err
0o 03 Os 011

F1.fail_loss Ct.open_ct F2.fail_loss
0o Oy 07 09

F1.fail_loss Ct.open_ct F2.fail_err
0o Oy 07 012

F2.fail_loss Ct.open_ct
0o 41 43

F2.fail_loss Ct.open_ct F1l.fail_err
0o 41 43 Og

F2.fail_loss Ct.open_ct F1.fail_loss
0o 41 43 0Oy

F2.fail_err Ct.open_ct
0o) 010

F2.fail_err Ct.open_ct F1l.fail_err
0o) 010 011

F2.fail_err Ct.open_ct F1.fail_loss
0o) 010 012

Sometimes it is convenient to mask some configurations and edges in the reachability graph. It is the case of
configurations with outgoing edges labelled by immediate events. Indeed, we would like to observe only the
configurations without outgoing edges labelled by immediate events and only the edges labelled by non-immediate

events.

For example, in the reachability graph given in §6.1.2, we would keep only the configurations without outgoing edges

labelled by immediate events.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

49/ 141

I@} SAINT Sys temx ’ IRT Saint Exupéry LIV-S085L01-001
(? EXUPERY |"I : IRT SystemX ISX-S2C-LIV-1285

Issue 4
F1.5t F2.5t Ct.Open
[ERR, LOST, open ¥
Initial F2.fail_loss F2.fail_err l LosT J
configuration N
Ct.Out
Ct.open_¢t, ", Ct.open_ct
F1.fail_err Ct.open_ct v Y
- [OK.LOST. open] [OK.ERR, open | F1 fail_foss
[ERR. OK, open] (% LosT) (510 LOST)
Os __LOSTIN FifaiLen| Fipail oss \ F1.fail_e
Ctopen cf F2.fail| Ibss v .
F1.fail_loss ___‘_R,_-_“‘ ERR, LOST, open (ERR, ERR_], open

2 Og LOST 011 LOST

LOST, OK, open

2.fail_loss F2.fail_err

LOST, LOST, open
0g LOST 012 LOST
F2.fail_e

Figure 26: Masked nodes and edges

In the reachability graph given in §6.1.2, masked configurations and edges are marked in red.

Therefore, we mask the nodes a;, 0;, g3, 0, and the outgoing edges labelled by the immediate event Ct.open_ct. In this
case, the traces leading to the configurations where Ct.Out = LOST would be as follows:

Fl.fail_err
Op —— 05

F1l.fail_loss
O — 0y

Fl.fail_err F2.fail_loss
(o)) Og Jg

Fl.fail_err F2.fail_err
0o Os 011

F1.fail_loss F2.fail_loss
O a7 09

F1.fail_loss F2.fail_err
0o g7 012

F2.fail_loss
Og — 0¢

F2.fail_loss Fl.fail_err
0o 43 Og

F2.fail_loss F1.fail_loss
0o 43]

F2.fail_err
O — 019

F2.fail_err Fl.fail_err
0o 010 011

F2.fail_err F1.fail_loss
0o 010 012

In the new Reachability graph with masked configurations and edges, there is no traces leading from the initial
configuration to the configuration where Ct.Out=ERR. Indeed, in our example the reconfiguration is perfect, only

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 50 / 141

N ; wilfune’s IRT Saint Exupéry LIV-S085L01-001
(FI%\\ SAINT SqStemx IRT S X ISX-S2C-LIV-1285
T EXUPERY ystemx BX52tL:
Issue 4

functions F1 and F2 may fail in operation. Therefore, when F1.fail_err or F2.fail_err occurs, the contactor is open and
Ct.Out becomes LOST.

In order to take into account in the simulation the probability distributions associated to the events of AltaRica models,
in the following we define a scheduler and a timed/stochastic execution or trace. The defined principle is used in the
stochastic simulation of AltaRica models.

Ascheduler I': T - R* U {0} of an AltaRica model is a function that associates to each transition t=<e,G,P> of the set
T its firing date according to the probability distribution of the event e.

At the beginning of a simulation, for each transition t =<e, G, P> from T the scheduler [} is calculated as follows:

- delay(e), if the transition t=<e, G, P> is enabled in the initial configuration;
- oo, otherwise.

A timed/stochastic execution (or timed/stochastic trace) of an AltaRica model is defined as follows:

- <0y dy, Iy > is an empty execution, with the initial configuration g, = A(t), the current firing date dy, = 0
and the initial scheduler Iy;

t &t
- A, =< 0y,dy, Ty >5< 01,dy, [>3 ..5< O, dp, I, > is an execution of the model thensois A,,; = A,

t
n_+%< On+1s dn+1'Fn+1 > iff

1. The transition t,., =< €41, Gnt1, Pnyq > is enabled in the configuration o, i.e. the guard G, 44 is
true in 0, and its firing date is one of the smallest in the scheduler I, (t,,41) < I, () Vt €T;

2. The configuration g,,,1; = A(P,4+1(0y)) is obtained by firing the transition t,,,4;

dpy1 = I,(t,4+1), the new current firing date equals to the firing date of the transition t,,,1;

4. The new scheduler is calculated as follows:
= [41(t) = I, (t) if the transition t was enabled and remains enabled after the firing of t,,,4,
v [.1(t) = d,yq + delay(e) if the transition was not enabled before and becomes enabled

after the firing of t,., ort = t,,44,

= [,41(t) = oo if the transition t is not enabled.

w

Example of A timed execution:

Let us consider again the COM-MON pattern for safety architecture with stochastic and deterministic transitions. Here
is presented one of the possible times executions of this model.

At the beginning of the simulation:

- 0y = {F1.5t=0K, F2.St=0K, Ct.open=false, F1.0ut=0K, F2.0ut=0K, Cmp.In1=0K, Cmp.In2=0K, Cmp.Out=true,
Ct.In=0K, Ct.CloseCondition=true, Ct.Out=0K};

- do = Oh;

- Iy(F1.fail_err) = 4380h, I (F1.fail_loss) = 6340h, I (F2.fail_err) = 5150h, I},(F2.fail_loss) = 5300h, I;(Ct.open_ct)
= oo (the firing dates of stochastic transitions have been calculated randomly).

According to the scheduler I, the smallest firing date is 4380, so F1.fail_err should be fired first.
After the firing of F1.fail_err:

- 0, = {F1.St=ERR, F2.5t=0K, Ct.open=false, F1.0ut=ERR, F2.0ut=0K, Cmp.In1=ERR, Cmp.In2=0K,
Cmp.Out=false, Ct.In=ERR, Ct.CloseCondition=false, Ct.Out=ERR};

- dy =4380h;

- [(Fl.fail_err) =00, I3 (F1.fail_loss) = oo, I3 (F2.fail_err) = 5150h, I3 (F2.fail_loss) = 5300h, I; (Ct.open_ct) = 4380 +
0 = 4380h.

According to the scheduler I the smallest firing date is 4380, so Ct.open_ct should be fired.

After the firing of Ct.open_ct:

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 51 / 141

IRT Saint Exupéry LIV-S085L01-001

\\\. SAINT qut'e"fﬁx
XUPERY RS

IRT SystemX ISX-S2C-LIV-1285
Issue 4

- o0, = {F1.St=ERR, F2.5t=0K, Ct.open=true, F1.0ut=ERR, F2.0ut=0K, Cmp.In1=ERR, Cmp.In2=0K,
Cmp.Out=false, Ct.In=ERR, Ct.CloseCondition=false, Ct.Out=LOST};

- d, =4380h;

- L(Fl.fail_err) =oo, I} (F1.fail_loss) = oo, I} (F2.fail_err) = 5150h, I;(F2.fail_loss) = 5300h, I, (Ct.open_ct) =

According to the scheduler I, the smallest firing date is 5150, so the next transition to fire is F2.fail_err.
After the firing of F2.fail_err:

- 03 = {FL.St=ERR, F2.St=ERR, Ct.open=true, F1.0ut=ERR, F2.0ut=ERR, Cmp.In1=ERR, Cmp.In2=ERR,
Cmp.Out=true, Ct.In=ERR, Ct.CloseCondition=true, Ct.Out=LOST};

- d3 =5150h;

- I3(Fl.fail_err) =oo, I3(F1.fail_loss) = oo, I3(F2.fail_err) = oo, I3(F2.fail_loss)= oo, I3(Ct.open_ct) =

After the firing of F2.fail_err there is no more enabled transitions.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 52 / 141

RS
’ooo

\\\ AINT . IRT Saint Exupéry LIV-S085L01-001
FEXU?’E RY SLISte Lidg IRT SystemX ISX-52C-LIV-1285

Issue 4

7 EB- Get started with model simulation

7.1 EBHY Interactive or “step by step” simulation of effects of failure modes

The interactive simulators are applicable to all models that passed the syntax and execution ability checks.
When the operator launches an interactive simulator:

- the simulator computes the initial system configuration i.e. the values of all the model variables (flows and
states). Initial values of state variables are directly declared in the model, flow variables are computed through
assertions.

- the simulator put also in evidence the enabled transitions i.e. the transitions whose guards are true in the
current configuration.

- From these, the user chooses and triggers one of these enabled transitions. The simulator computes the new
configuration, i.e., assigns new values to state variables (defined by the effect of the transition) and computes
the values of flow variable through assertions. The list of enabled transitions is updated from the new
configuration.

- The user triggers another enabled transitions, and so on

Within Cecilia or SimfiaNeo environment, you can choose to trigger automatically or manually the Dirac(0) (see section
6 for the definition of this determinist law).

In the manual mode, you can choose to trigger all possible “Dirac” transitions as soon their condition is true. The “step
by step” mode helps to see these transitions.

In the automatic mode, the enabled transitions following a Dirac law are triggered automatically. When there are several
enabled transitions, the triggering order can be defined in the model. If it is not defined, the tool default order is used
(for instance the default order can be the alphabetical order)

7.2 EBH Modelling to support the step by step simulation

In order to ease the model simulation visualisation, graphical representations of nodes can be added within AltaRica
framework. It is possible to define how the modelling unit are displayed during simulation, according the values of their
state and flow variables. For instance, colours can be associated to the flow values to ease the model review and
simulation.

Example of icons and flows visualisation definitions are given §14.
Define links colors and icones
Select a color coding use always the same.

Examples:

e Ok:green, Erroneous: red, Lost : orange
e Drift high: red, Drift low: blue
e false: pink, true: blue green (turquoise)

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 53 / 141

F\\\ SAINT qute m)(IRT Saint Exupéry LIV-5085L01-001
EXU PERY IRT SystemX ISX-52C-LIV-1285

Issue 4

8 - Models characteristics which impact the simulation

This section defines the usual characteristics of AltaRica models which impacts their simulation

8.1 - - Orientation of the flows and DataFlow assertions

AltaRica models can define several kind of mathematical relations between the values of the flow and state variables.
Model designers often need to specify oriented propagations of values, from so called “input” flows to “output” flows.
They also often need to define the values of output flows as a function of the values of a subset of input variables (flow
or state variables). The concept of DataFlow model has been introduced to address these needs.

The model is called DataFlow if the flow variables have a constant orientation (in or out), the set of assertions assigns
unique values to the output variable flows for any configuration of values of the inputs flows and state variables, and
there is no circular definition of the flows variable.

Thus, the initial configuration of a DataFlow model is easily compute by the simulation tools and a unique configuration
is computed after firing one enabled transition. Such a determinist step of computation accelerates the exploration of
the reachability graph of the DataFlow models.

The “Comparator” modelling unit is a small example of data flow model. It specifies oriented flows: two inputs and one
output. Moreover, its assertion defines uniquely the value of the flow variable “Out according to the values of the flow
variables “In1” and “In2” as shown by the decision table below.

In1 In2 Out
OK OK true
In1 — Out LOST LOST true
- ERR ERR true
In2
OK LOST/ERR false
Assert Out=(In1=In2);
Figure 27: Flow variables and assertion LOST OK/ERR false
of the "Comparator" modelling unit ERR OK/LOST false

Figure 28: Relation between the values of the flow variables
of the"Comparator” modelling unit

Nevertheless, model designers may also need to specify balances between flows rather than fix oriented propagations.
Let us for instance consider the model of a pipe of a hydraulic circuit. The left and right extremities of the pipe can be
represented by two Boolean flows L and R. L (resp. R) is true means that fluid is present at the left (resp. right) extremity.
Different pumps can be activated so that the fluid goes either from left to right or from right to left. So, the orientation
of Land R is decided at run time, according to the pump activities, the relation between L and R is called acausal.

Acausal relations between flows are not compatible with the dataflow constraints; they cannot be simulated by plain
dataflow simulators and the simulator send a warning to the end user.

However, AltaRica 3.0 propose an extended simulation algorithm to deal both with dataflows and acausal relations.

class Pipe Acausal
L R Boolean L, R(reset = FALSE);
assertion
L :=: R;
end
Figure 29: Altarlca 3.0 acausal model of a pipe

| “,_n

The figure above gives the AltaRica 3.0 model of a pipe. L and R orientations are not defined. The symbo makes
explicit that L and R shall have the same values without fixing an evaluation order, the simulateur shall solve the

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 54 / 141

o

\\\ oot IRT Saint Exupéry LIV-5085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4

problem. When no pump is active, neither L nor R have to be true. So the simulation can either set L=R=true or L=R=false.
The directive “(reset = FALSE) “ defines the user preference for such a case and the AltaRica 3.0 simulator will choose
L=R=false.

Finally, the following modelling approach can be used to model acausal relations in DataFlow models. The idea is to
represent one acausal equation between L and R by two complementary dataflow equations. Since the orientation of L
and R may change in time, each flow is decomposed into two flows with opposite fix orientations as shown in the figure
below. Then the two complementary equations assign L_In value to R_Out and R_In value to L_out.

Node Pipe DataFlow
flow
L In, R In:bool:in;
L Out, R Out: bool: out
assert
L Out=R In;
R Out=L Inj;
edon

L In R_Out
L_Out R_Int

Figure 30: Altarica dataflow model of a pipe

The model can be simulated with the data-flow tools but the price to pay is to have more flow variables and a larger set
of equations in the model assertion.

8.2 - Verification of the correctness of DataFlow assertions

All simulation tools checks whether the model assertion is DataFlow or not. Let us see the principles used to implement
this check in the AltaRica 3.0 tools.

In AltaRica 3.0 the concept of DataFlow assertion has been formally defined as follows. The assertion A of flow variables
from F is Dataflow iff:

- Each flow variable v € F is assigned only once in the assertion A;
- There is no circular definitions of flow variables in the assertion A.

Let v and w be two variables from V, let A be an assertion built over the variables of V. We say that v depends
immediatelyon win Aifv=F(w,...) in A.

Let v and w be two variables from V, let A be an assertion built over the variables of V. We say that v depends on w in
A if there is a variable € V, such that v depends immediately on uin A and u depends on w in A.

The last definition is recursive and allows us to define the cycles of equations.

There is a cycle of equations in the assertion A if there is a flow variable € F , which depends on itself in the assertion
A, in other words there is a circular definition in the assertion A.

In practice, cycles of equations can be detected during a compilation thanks to the dependency graph of the assertion.
A dependency graph of the assertion A is a graph G = < N, E >, where

- Nisaset of nodes, each node is labelled by a variable v € V, such that v appears in the left hand side or in the
right hand side of the assignment of the assertion A, v can be a flow or a state variable, let denote such a node
n(v);

- Eis a set of edges, such that if there is an assignment in A v;:= F(v,, ...), then there is an edge e =<
n(vy),n(v,) > n(vy),n(v,) € N,e € E.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 55 / 141

LI
o
ot 0t o

\\\. SAINT qutemx
XUPERY

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285
Issue 4
If the dependency graph of the assertion A has cycles, then there is a cycle in the equations of the assertion A.

An example of dependency graph with cycles is given in Section 10.1.1.

Example of a dependency graph of the assertion:
Let us consider the following assertion from the example given in Section 0:

1. F1.0ut :=if (F1.St = State_LOST) then LOST else if (F1.St = State_ERR) then ERR else OK;
F2.0ut := if (F2.St = State_LOST) then LOST else if (F2.St = State_ERR) then ERR else OK;
Cmp.Inl :=F1.0ut;

Cmp.In2 := F2.0ut;

Cmp.Out :=if (Cmp.In1 == Cmp.In2) then true else false;

Ct.In := F1.0ut;

Ct.CloseCondition := Cmp.Out;

Ct.Out := if (Ct.CloseCondition = No_lsolation) then Ct.In else LOST;

N AW

The corresponding dependency graph is given in Figure 31. Nodes of the graph labelled by state variables are marked
in green, nodes of the graph labelled by flow variables are marked in black. This graph is an acyclic directed graph.

If there is a cycle in the dependency graph of the assertion A that means that there is a circular definition in the assertion

A and the assertion A is not a Dataflow assertion.

F1.0ut] [F2.0ut]

I i

[Cmp.Inl] [Cmp.In2]

[Ct.In] [Ct.CloseCondition]

Figure 31: Dependency graph of the assertion

To verify if an assertion A is a DataFlow assertion two properties should be verified:

1. Each flow variable is assigned only once in the assertion A;
2. The dependency graph of the assertion A has no cycles.

If at least one of the properties is not verified then the assertion is not a DataFlow assertion.

8.3 -1- Determinist reachability graph

The reachability graph R = < X, 0@ > of an AltaRica model is determinist if and only if:

- ZXisaset of configurations of the AltaRica model;
- Bisasetofedges < 0y,e,0, >, where o; € X are configurations and e € E is an event of the AltaRica model;
- Iftwo edges < g4,€,0, >,< 04,€,03 > belong to 0, then 7, = g5 .

In other words, a determinist graph does not contain two edges labelled by the same event and leading from one

configuration to two different configurations.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 56 / 141

RS
’ooo

qutemx

(\ SO SAINT
EXUPERY

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

Let us illustrate the impact of this feature on simulation with a component which monitors the occurrence of a hazard
and raises an alarm when the hazard occurs. This monitor can fail and generates randomly a true or false alarm. The
modeling unit “Monitor” encodes this behavior and the resulting reachability graph is given in the figure below.

Node Monitor
flow Alarm: bool:

state
S Monitor: {ok,stuck true,

out;

init S Monitor:=ok;
event fail stuck ;
trans

hazard

S Monitor=ok

S Monitor=ok |[-fail stuck->

S Hazard=false
assert

Alarm= case{ S Monitor=ok

else true};
edon

S Hazard:
stuck false};
S Hazard:=false;

init

N

bool;

|-fail stuck-> S:=stuck false;
S:=stuck true;
| -hazard-> S Hazard:=true;

S Hazard,
S _Monitor=stuck false:

false,

cl

S_Monitor=0k, S_Hazard=false

fail_stuck

S_Monitor=stuck_false, S_Hazard=false
G2 Alarm=false

A

S_Monitor=0k, S_Hazard=true

Alarm=false
fail_stuck
hazard S_Monitor=stuck true, S _Hazard=false
o4 Alarm=true
Alarm=true azard

 BS———

S_Monitor=stuck _true, S Hazard=true
G6 Alarm=true

Figure 32: Non-determinist reachability graph of the Monitor component

This graph is clearly non determinist: starting from the initial configuration o1, the same “fail_stuck” event leads either
to 62 or 54. In such a case, there is no common agreement on what should be presented to a user who wants to trigger
the fail_stuck event: one of the resulting configuration? Both resulting configurations? So, more often, the simulators
detect the non determinist transitions, warn the end user and they do not support the simulation.

The problem can be easily solved: different event names are needed for labelling the transitions with compatible guards

and divergent effects.

For instance, it is recommended to use two different event names e.g fail_stuck_true and fail_stuck_false rather than
fail stuck in the Monitor model. The corrected transitions and the resulting graphs are the followings:

trans
S Monitor=ok
S Monitor=ok

|-fail stuck false-> S:=stuck false;
|-fail stuck true-> S:=stuck true;

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

57/ 141

RS
’ooo

\ IRT Saint Exupéry LIV-S085L01-001
(\E\;\USPAEI:; S LI St e m - IRT SystemX ISX-S2C-LIV-1285

Issue 4
init
S_Monitor=0k, S_Hazard=false
. cl Alarm=false
fail_stuck_false fail_stuck_true
S_Monitor=stuck | false S_Hazard=false hazard S_Monitor=stuck_true, S Hazard=false
o2 Alarm=false G4 Alarm=true

S_Monitor=ok, S_Hazard=true
o3 Alarm=true azard

fail_stuck_faW;

S_Monitor=stuck_true, S_Hazard=true
G6 Alarm=true

Figure 33: Determinist reachability graph of the Monitor component

8.4 [static/dynamic models

As a reminder, a configuration is an assignment of state and flow variables. It describes the current global state of the
model.

A model is called static if all the sequences of transitions which starts from the same configuration of the accessibility
and which are made of permutation of a same set of events leads to the same configuration of the reachability graph
of the model.

In other words, the occurrence order of the events has no influence on the resulting configuration of the reachability
graph. For example, we consider a model with two possible events E1 and E2. Both sequences (E1, E2) and (E2, E1) result
in the same configuration (Configuration D).

B

Configuration Configuration
A D

Configuration
C

Figure 34: Example of static model

A model is called dynamic if it is not static i.e. it exists at least one couple of sequences that are constituted with the
same events and result in different configurations. For example, in the Figure 35: Example of dynamic model, the
sequences (E1, E2) and (E2, E1) are constituted with the same events and result in different configuration: (E1, E2)
results in Configuration E and (E2, E1) results in Configuration F.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 58 / 141

o oo
5008

IRT Saint Exupéry LIV-S085L01-001

N il
(&%\\\ SAINT qutem
(T EXUPERY T IRT SystemX ISX-52C-LIV-1285

Issue 4
Configuration Configuration
B E

Configuration
A

C F

Figure 35: Example of dynamic model

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 59 / 141

o

F\\\ SAINT qute m X IRT Saint Exupéry LIV-5085L01-001
EXU PERY IRT SystemX ISX-52C-LIV-1285

Issue 4

9 =Bf Computation of feared events contributors

In aeronautic, a Failure Condition is “a condition having an effect on the aircraft and/or its occupants, either direct or
consequential, which is caused or contributed to by one or more failures or errors, considering flight phase and relevant
adverse operational or environmental conditions, or external events (AMC 25.1309)".

Safety Analysis Methods such as Fault tree analysis or Model Based Safety Analysis aim at providing means to investigate
critical scenarios which causes each failure condition of interest for a studied system.

On one side, models or fault trees make explicit the knowledge of the safety expert which is used for this investigation.

- The set of basic events of the model (system failures or errors, external adverse events, ...) defines the potential
root causes which may contribute to the occurrences of a set of Failure Conditions of interest.

- The equations of the model define the effects of the basic events and how they can be propagated or mitigated
according to the system nature and its protections.

On the other side, associated tools extract from the model or fault tree the critical scenarios causes of a given FC i.e.
the combinations of the model basic events (failures or external event) that lead from an initial system configuration to
a configuration where a given FC holds, according to the model hypotheses.

Let us remind the COM-MON example and the two related failure conditions FC_ERR_CAT and FC_LOST_MIN which are
true when the output value of the contactor Ct.O is respectively equal to ERR or LOST.

Figure 36: Overview of the COM-MON system with a reversible contactor and a perfect comparator

One version considers that only F1 et F2 may fail and that Ct can be open and then closed again if the condition
disappear. The reachability graph of this model was previously defined in chapter 6.1.2. This figure is repeated below
for sake of readability. Red arrows of this graph show two paths leading from the initial configuration to
configurations where Ct.O =ERR:

F2.fail_err F1l.fail_err
0o) 43

F1.fail_err F2.fail_err
0o 03 43

Those red paths define the critical scenarios for FC_ERR_CAT.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 60 / 141

I@\\ SAINT Sys temx IRT Saint Exupéry LIV-S085L01-001
($ EXUPERY l‘l b IRT SystemX ISX-S2C-LIV-1285

Issue 4

- F2.fail_loss F2.fail_err
e N OK, LOST [OK, ERR |
configuration 5 LOST 5, LOST
1 2
F1.fail_err
F1.fail_err P e F1.fail_er
~ F2.fail_loss Fp.fail_err
F1.St F2.St ERR, LOST ERR, ERR

Os LOST Og ERR
F1.fail_loss

N F1.fail_loss
Name of the ct.out F2.fail_err
configurati LOST, LOS - LOST, ERR
- 0, LOST 07 LOS O3 LOST

Figure 37: Links between the reachability graph and the causes of failure conditions

Critical scenarios for the FC_LOST_MIN are more numerous:

The traces leading from the initial configuration to the configurations, where Ct.Out=LOST are as follows:

F2.fail_loss
Oy — > 0;

F1.fail_loss
Opg ——— 04

F1l.fail_err
Og— 03

F2.fail_err
Oyp—— 02

F2.fail_err F2.fail_loss
0o 03 Os

F2.fail_loss Fl.fail_err
0o 41 Os

F1l.fail_loss F2.fail_loss
0o 04 07

F2.fail_loss F2.fail_loss
O 41 07

F1.fail_loss F2.fail_err
0o Oy Og

F2.fail_err F1l.fail_loss
(o) gy Jg

Indeed, safety experts are interested by the minimal critical scenarios i.e. the scenarios such that all events of the
scenario are necessary and sufficient to reach a configuration where FC holds.

For instance:

F2.fail_err Fl.fail_err . L . X
1) o 0, 0 is a minimal critical scenario for FC_ERR_CAT because all events of the trace are

needed to reach a configuration where FC_ERR_CAT holds
F2.fail_err F2.fail_loss . L . .
2) o, 03 05 is not a minimal critical scenario for FC_LOST_MIN because FC_LOST_MIN holds
F2.fail_loss
in o3 and thus, g3 —— 05 is not necessary

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 61 / 141

o

\\\ oot IRT Saint Exupéry LIV-5085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4

Safety expert also expect that the tools provide for the each FC a complete set of minimal critical scenario i.e. no
relevant scenario is missing.

Finally, the safety experts need a compact representation of the complete set of minimal critical scenarios.
When the reachability graph is determinist and the initial configuration is unique, the sequences of events are compact
representation sufficient to reconstruct the paths.

. . . F2.fail_err F1l.fail_err
For instance, the sequence < F2.fail.err ; F1.fail.err> represents the path: g, 0, Og

Moreover, if the model is static, failure sets are sufficient to represent sequences in a more compact way.

For instance, this version of the COM-MON example is static. < F2.fail.err ; F1.fail.err>and < F1.fail.err ; F2.fail.err> lead
both to the same configuration g,. So, in such a case failure sets noted { F2.fail.err, F1.fail.err} is a more compact
representation of the two sequences.

Let us now see how these concepts are implemented with fault tree or AltaRica models.

9.1 EB*- Computation of cut sets from fault tree

Computation Inputs

A fault tree is a type of graph used to specify progressively the logical combination of causes of one failure condition.
The top node of the tree is the studied failure condition. It is decomposed into some intermediate events combined by
one Boolean gate (and, or, ...). Intermediate events can be decomposed similarly until reaching the tree leaves i.e. the
atomic system failure.

The figure below gives the tree of for the FC_ERR_CAT of the former COM-MON system

FC_ERR_CAT | <« Top event
D D— And gate

O ‘ COM and MON agree 2 o Intermediate events
F1.fail_err

Iy

F1.fail_err F2.fail_err += Leaves

Figure 38: Fault tree of the failure condition FC_ERR_CAT of the COM-MON system

It is worth noting that the fault tree identifies which combinations of events cause the FC but it does specify the event
ordering that can be find in reachability graphs.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 62 / 141

o

\\\ oot IRT Saint Exupéry LIV-5085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4

Computation Outputs

The tools usually extract from the fault tree the minimal sets of atomic failures leading to the top event according to
the FC decomposition. These sets are also called “minimal cut sets”. The size of the cut set is called “order”

In our example, { F2.fail.err, F1.fail.err} is the unique cut set leading to FC_ERR_CAT. The cut set order is 2.

Properties of the available algorithms

Afault tree is a Boolean equation which encodes when the top event is true or false according to the value of the leaves.
A cut set represents an applicant of the top event i.e. if all leaves of a cut set are true, then the top event is also true.
Some algorithms can compute all the minimal cut sets of any order. Some others limit the search to cut sets of a given

maximum order, especially for vey big fault tree.

9.2 BB Extraction of boolean equations from AltaRica models

Computation Inputs

It is recommended to apply this computation to a static and determinist AltaRica model which includes observers of the
studied failure conditions.

Computation Outputs

The tools synthetize a Boolean equation for each failure condition which encodes when the top event is true or false
according to the value of the model basic events.

These equations can be injected in fault tree tools to compute the minimal cut sets of the failure conditions.

In our example, the Boolean equation produced for FC_ERR_CAT could be :

FC_ERR_CAT = ((F2.fail.err and F1.fail.err) or (F1.fail.err and F2.fail.err))

Properties of the available algorithms

The algorithms explore the reachability graph of the model and search the critical paths leading from the initial
configurations to configurations where the studied FC is true.

Each critical path is encoded by the product (conjunction) of its event. The set of all the critical paths is encoded by a
disjunction of the “path”-product (see for example the Boolean equation generated for FC_ERR_CAT above).

One expects that the computation of minimal cut sets of a FC applied to the generated Boolean equation is:

- sound i.e. there exist for each cut set an ordering of events which leads from the initial configuration to a
configuration where the FC holds
- complete i.e. each minimal critical path is covered by a minimal cut sets

These properties are at least guaranteed for correct algorithms applied to static models like the former COM-MON
system.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 63 / 141

o

\\\ SAINT \)(i IRT Saint Exupéry LIV-S085L01-001
FEXU PERY SLIStem IRT SystemX ISX-S2C-LIV-1285
Issue 4

9.3 EB* Computation of sequences

Computation Inputs
This computation is applicable to any AltaRica model which includes observers of the studied failure conditions.
It is recommended (or mandatory depending on the tools) to use determinist model with a unique initial configuration.

The user shall also provide a criteria to bound the sequence search. Acommon bound is the maximum number of events
that are in each sequence.

Computation Ouputs

The tools extract sequences of events leading from the initial configuration to configurations where the failure condition
holds. The sequences may be minimal or not depending on the tool used.

In our example, <F2.fail.err ; Fl.fail.err > and <F1.fail.err ; F2.fail.err > are the sequences of length 2 leading to
FC_ERR_CAT.

Properties of the available algorithms
The algorithms perform an automated simulation guided by the search of configurations where the FC holds.

Starting from one initial configuration, all enabled transition are triggered, new configurations are built and the process
is applied to the new configuration. The automated simulation is stopped in one configuration either because the
configuration satisfies the FC or because the maximum sequences length is reached.

The successful paths are represented by sequences, some tools minimize the sequences and the generation is complete
modulo the bound on the sequence length.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 64 / 141

\\\ T IRT Saint Exupéry LIV-S085L01-001

FEXU?’AEIR; S Ll St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4

10 -1- Going further with Modelling

10.1 -I- Specific modelling topics (remove the stone in your shoe)

This section objective is to provide guidance to overcome chosen MBSA modelling difficulties. For more clarity these
points are presented through dedicated examples. We highlight the reasons of the difficulty, the different possible
solutions of modelling and the criteria to choose between these solutions.

For the sake of simplicity in the following, the modelling units are also called nodes. In addition we use component as a
shot cut for “physical component”.

10.1.1 Non DataFlow assertion in a DataFlow model

In the case of non DataFlow assertion the model assertion does not allow to assign a unique value to the flow variables.
Either several values may be acceptable or there is no acceptable value.

This issue can be detected by the analysis of the graph of variable dependencies, which derives from the assertions. If
this graph has cycles, the model is not dataflow: the equations of the assertion define circularly the variable values.

Example : Let us illustrate the case with the following model, which contain two modelling units S and R. S is a
recoverable function, which may fail randomly. R is a recovery function, which can recover immediately a failed function.
They are connected as shown on the Figure 39: S provides R with the S.ok status; R provides S with the R.Recover
function.

] 5.0k B
- O
| «“—=u
E.Fecover

Figure 39: An example of circular definitions in the assertion

The structured model is the following

node S2CBlock RecoveryPolicy funcRecoverableRandomFault
flow
Recovery : bool : in;
Ok : bool : out;
state Failed : bool;
event fail;

init Failed := false;
trans

not Failed|- fail -> Failed:=true;
assert

Ok= (not Failed or Recovery);
edon

node S2CBlock RecoveryPolicy funcRecoverImmediate

flow
Ok : bool : in;
Recovery : bool : out;
assert

Recovery = not Ok;
edon

node main
sub

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 65 / 141

o

\\\ oot IRT Saint Exupéry LIV-5085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4
S : S2CBlock RecoveryPolicy funcRecoverableRandomFault;
R : S2CBlock RecoveryPolicy funcRecoverImmediate;
assert

R.0Ok = S.0k ;
S.Recovery = R.Recovery ;
edon

The equations of the flat assertion are the following:

//equation 1

S.0k = (not S.Failed or S.Recovery);
//equation 2

R.Recovery = not R.Ok;

//equation 3

R.0Ok = S.0k ;

//equation 4

S.Recovery = R.Recovery ;

The transitions are :
not S.Failed |- S.fail -> S.Failed:=true;

The corresponding graph of the variable dependencies is given Figure 40. Arrows define a “depends on "relation. The
graph illustrates that :

e The flow variable S.OK “depends on” the state variable” S.failed” and on the flow variable “S.Recovery”
(equation1)

e The flow variable R.Recovery “depends on” the flow variable R.Ok (equation 2)

e The flow variable R.Ok “depends on” the flow variable S.0Ok (equation 3)

e The flow variable S.Recovery “depends on” the flow variable R.Recovery (equation 4)

In addition there is an equation cycle which creates a circular definition of the variables S.0k, R.Ok, R.Recovery and
S.Recovery .

The graphs allow to shows that S.Recovery “depends on” R.Recovery that depends on R.Ok that depends on S.0k, that
depends on S.Recovery.

Variables of S Variables of R

S.0k " Equation3

Equationl Equationl)
Equation2

[S.Failed] [S.Recovery R.Recovery

Equationd

Figure 40: Dependency graph of the assertion with a cycle

In this particular case, there is no problem in the initial configuration: S.Failed is initially false, this enforces that S.Ok is
true and then R.Recovery and S.Recovery are false. The initial configuration can be calculated and is unique.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 66 / 141

o

\\\ oot IRT Saint Exupéry LIV-5085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4

o, = {S.Failed=false, S.Ok=true, R.Ok=true, R.Recovery=false, S.Recovery=false}

] 5.0k i
u
D [j
E, =i}

E.Recover

Figure 41: Simulation of the Initial configuration

The flat transition is: not S.Failed|- S.fail -> S.Failed:=true;

It is enabled in the initial configuration. After firing this transition, S.Failed becomes true.

Then, there is no possible assignment of values which is compatible with the flat assertion.

In general, to avoid these problems DataFlow assertion should respect the following properties:

1. Each flow variable is defined only once in the assertion;
2. There no circular definitions in the assertion, i.e. there no cycles in the dependency graph of variables of the
assertion.

If these two properties are satisfied then the assertion is DataFlow and for each assignment of state variables, there is
only one assignment of flow variables.
(a) - 1- Cycle in the reachability graph

The reachability graph of the models may contain cycles i.e. there exist at least one sequence of events which starts and
ends in the same configuration of the reachability graph.

Example: instantaneous repair policy of a system with a determinist fault

(b) -1 - Equation cycle

There is a cycle of equations in the assertion if there is a flow variable which depends on itself in the assertion, in other
words there is a circular definition in the assertion.

In practice, cycles of equations can be detected during a compilation thanks to the dependency graph of the assertion.
If the dependency graph of the assertion A has cycles, then there is a cycle in the equations of the assertion

More mathematical details are provided in the next chapter.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 67 / 141

o

\\\ T IRT Saint Exupéry LIV-S085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4
10.1.2 How to solve an equation cycle - Control Loop

In this section, we consider a simplified control loop example in order to illustrate our proposed guidance and solutions.
More information corresponding to the different solutions and corresponding models (Cecilia, SimfiaNeo, and OAR). is
provided in section 14.5.

(a) System description and Safety input data

(i) System description

In order to illustrate how to solve an equation cycle we can find when dealing with control loops, let us consider the
example illustrated in Figure 42. In that example, we consider a system composed of a logical component we named
AllControllnputs that build a command from the information provided by the Sensor and from the initial Order (that
can be seen as the initial target). The Sensor acquires the data of the Plant output. The Control output information is
the one used to control the Plant.

This example is a simplified control loop, and we can easily replace the Plant by a valve or an actuator for instance.

frder AllControllnputs Control Plant Plant 0uput

>

Figure 42: Control loop illustration using Cecilia

Description of the System behavior

- The Plant output is monitored by the Sensor that sends its acquired information to the AllControlnputs node.
The Plant ouput depends on the Plant input data

- The AllControlinputs node computes a re-evaluated order (0) from its two inputs, 11 (the Order) and 12 (the
Sensor acquisition information) and sends it to the Control

- The Control controls the Plant based on its input data (I).

(ii) Safety input data

From a safety point of view, the evaluated failure conditions are the following:

- FC1: Loss of plant output
FC2 : Erroneous plant output

PlantOutput, on Figure 42, is a safety artefact, observator of the Failure Conditions.
The component failures and corresponding system output and effects are described below:
Control:

- fail_loss: leads to the loss of control and the loss of Plant output
- fail_err: leads to an erroneous command of the Plant and an erroneous Plant output.

- fail_loss: leads to the loss of Plant output
- fail_err: leads to an erroneous Plant output. The erroneous data is acquired by the Sensor.

Sensor

- fail_loss: leads to the loss of the Sensor acquisition sent to AllControlinputs leading to the loss of the Plant
output

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 68 / 141

* o0

\\\ T IRT Saint Exupéry LIV-S085L01-001

\ s 5 % . .0. . 74 _ |
AINT X
K\EXU PERY S q Stem IRT SystemX ISX-S2C-LIV-1285

Issue 4

- fail_err: leads to an erroneous information from the Sensor acquisition, leading to an erroneous Plant output

The logical node AllControllnputs has no failure.

(b) MBSA modelling framework

In this chapter, we describe the way nodes will be modelled in the following section. Note that for the sake of simplicity
and homogeneity we have chosen to use an extract of ONERA existing library. The modelling elements used in all
modelling solutions are described in

Table 5. The additional modelling elements or proposed modifications will be described in the corresponding sections.
Eventually, note that the modelling is directly related to chapter 5.2 descriptions.

Node/Component Interface Internal Transitions Assertions
name (input and output status and

flows) failure modes
(state
variables)

S € {ok, err,

Input: N/A S=ok |- fail_loss -> S:= /*The order depends on

output: O lost} lost; the state of the
Initially ok S=ok |- fail_err->S:=err; component*/
Type: ok, lost, err 0=S
AliControlinputs Input: 11, 12 N/A N/A /*The output depends on
output: O the two inputs. If at least
one is err, then the output

Type for all flows: Is err,

ok, lost, err If not, if at least one input is
lost then the output is lost.
Otherwise the output is
ok*/

O =case{
I1=err or 12=err : err,
I1=lost or 12=lost :lost,

else ok };
Control Input: | S € {ok, err, S=ok |- fail_loss -> S:= /*The output depends on
output: O lost} lost; the state of the
Initially ok S=ok |- fail_err->S:=err; component*/
Type for all flows:
ok, lost, err O =case
{S=0k: I,
S=lost : lost,
elseerr};

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 69 / 141

s s IRT Saint Exupéry LIV-S085L01-001
f\\\ SAINT System>
EXU PE RY e e IRT SystemX ISX-S2C-LIV-1285
Issue 4

Node/Component Interface Internal Transitions Assertions
name (input and output status and
flows) failure modes
(state
variables)

Input: | S € {ok, err, S=ok |- fail_loss -> S:= /*The output depends on
output: O lost lost; the state of the
Initially ok S=ok |- fail_err->S:=err; component*/
Type for all flows:
ok, lost, err O = case {
S=ok : I,
S=lost : lost,
else err };
Input: | S € {ok, err, S=ok |- fail_loss -> S:= /*The output depends on
output: O lost lost; the state of the
Initially ok S=ok |- fail_err->S:=err; component*/
Type for all flows:
ok, lost, err 0 = case {
S=ok: I,
S=lost : lost,
else err };
PlantOutput Input: | o=1I;
output: O N/A N/A

Type for all flows::
ok, lost, err

Table 5: Modelling framework for the Control Loop example

In order to facilitate the understanding of the model during simulation, icons and colours are associated to the nodes
and flows. Appendix 14.2 provides a simplified description of the ONERA library colours and icons meaning used in this
section.

(c) System characteristic

Even before starting the modelling, we can identify that the system modelled is a control loop: the input of the Control
brick depends on the Sensor output depending themselves of the Control output.

In that case, a straightforward modelling (meaning without taking into account the characteristic of the system and just
plugging the modelling bricks together), will generate an equation cycle (see §10.1.1(b)). Fortunately, this can be solved
dealing with the loop or with the equation cycle.

In this section we show that a control loop can lead to an equation cycle in a fault tree. Let us model the system using a
classical Fault Tree approach. On purpose, we structure the fault tree strictly following the dependencies of the different
inputs and outputs of the system, as defined by the blue arrow in Figure 44 and Figure 43. The Figure 42 shows the
resulting message error and the Figure 46 the fault tree. Following this modelling strategy, we generate a circular logic
or in other words, an equation. This cycle is due to the dependency between the “erroneous Sensor output” gate and
the erroneous “AllControllnputs outputs” gate (red square). We solve the cycle by removing the gate crossed in red,
without affecting the expected resulting cut sets.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 70 / 141

e

o e IRT Saint Exupéry LIV-S085L01-001

.

N i
(&%\ﬁ. SAINT System>
T EXUPERY IRT SystemX ISX-S2C-LIV-1285

Issue 4

(d) lllustration of the control loop equation cycle in a Fault Tree

Emonecus Plant Qutput
Example 1

A NEWTOP

Emoneocus Ermonecus Contrel Suput Emonecus PlantOuput Ermonecus SensorCutput
ControlinputsOutput

- -
—

Figure 43: Strategy to analyze the control loop by fault tree- FTA

—

Order

‘ Ermonecus erderOutput

AllControlInputs control Plant Ouput

Figure 44: Strategy to analyze the control loop by fault tree - MBSA

In practice, most of the time, the equation cycles are unnoticed in fault trees because they are solved implicitly when
the analysts do not choose this modelling approach (without representing the propagation in the top gates choice) or
because they remove one of the independent gates without noticing it Figure 46. Nevertheless, when an equation cycle
appears in a fault tree, it is always worth analysing the possible impacts of the simplification performed to solve it.

Evaluate =
} !! Tree contains drcular logic.
oK |

Figure 45: Circular logic error message in Fault Tree approach

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.
Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 71 / 141

N
(,‘2%\\\\. SAINT
(T EXUPERY

Systemx

o oo
o
Sl 00s

Emonsous Plant Output
Example 1

NEWTOP

iy

IRT Saint Exupéry LIV-S085L01-001

IRT SystemX ISX-S2C-LIV-1285

Issue 4

Emoneous orde rOutput

Ermoneous
ControllnputsOutput

Emoneous Contral Ouput

Ermonecus PlantOuput

Eroneous SensorOutput

Ermoneousorder- HW

G004

. 1.00E-02

L
G001

G011

AN

ﬁre

Ermoneous PlantOuput

Emoneous SensorHW

&

Emonaous Control Quput

Ermoneous PlantHW

S011

o

G008
O 1.00E-03

Ermoneocus
Controll nputsOutput

Emonecus Control- HW

TO0T

Ermoneous orderCutput

Eroneocus Controllnputs.
HW

1_00E-03

Figure 46: FT — Developed FTA and Equation cycle resolution

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

72 /141

O A TR IRT Saint Exupéry LIV-S085L01-001

\\\ SAINT qutémx
xu PERY 1o

IRT SystemX ISX-S2C-LIV-1285
Issue 4
(e) Identification of the equation cycle

Modelling tools also provide ways to identify unresolved equation cycles due to control loops. When modelling with
Cecilia or SimfiaNeo, informative messages will be displayed providing useful information.

(i) Cecilia v6 illustration of the loop “detection”

The following message is displayed explaining why the AltaRica Data Flow solver is unable to provide a solution.

i : file=>Inatance : Loop assert : AllControllnputs.0 [Control.l]
<= Sensor.0 [AllControllnputs.I2]
<= Plant.0 [Senscr.l FlantOuput.0 Flantluput.I]
<= Control.0 [Plant.I]
<= AllControllnputs.0 [Control.I]
=> RllControlInputs.0:Quality Function OLE:out

Figure 47: Cecilia Loop assert message

The information related to the equation cycle generated from the loop is illustrated in Figure 48. The loop is described
from its start and goes from “downstream” to “upstream”. The message describes that:

the output data of AllControllnputs named O depends on [the Control input named I]

the Sensor output named O depends on the input data of AllControlinputs called 12

the Plant output O depends on: the Sensor input I, the output of PlantOutputO and the input | of PlantOutputl
the Control output O depends on Plant input |

The AllControlinputs output O depends on the Control input named |

kW e

The problem as it is defined is thus insoluble using Cecilia v6 because it is not completely defined.

: file=>Instance : Loop assert : AllControlInputs.0 [Control.I]
= Sensor.0 [AllControllnputs.I2]
<= Plant.0 [Sensor.I PlantOuput.0 PlantOuput.I]
= Control.0 [Plant.I]
<= AllControlInputs.0 [Control.I]
=> AllControllInputs.0:Quality Function_OLE:out

Ordgr AllControllnputs (ontrol Plant PlantOuput

Figure 48: Cecilia Loop assert message explained

When launching the computation or the simulation, the message error Figure 49 is displayed:

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 73 / 141

o oo
5008

NV celet aint Exupér - -
(é%\\\ SAINT qutem IRT Saint Exupéry LIV-S085L01-001
(T EXUPERY e e IRT SystemX ISX-52C-LIV-1285

Issue 4

% Error - StepperException &

|8| Unresolving loop because 9 wvariables have no value :
- A1l Control Inputs.O

Control.0

Plant.O

Sensor.C

A1l Control Inputs.icone

Control.icone

Sensor.icone

Plant.icone

Plant_Cutput.icone

Figure 49: Cecilia Error message for the control loop equation cycle

(i) SimfiaNeo illustration of the loop “detection”

In SimfiaNeo, the loop is identified by the tool and directly displayed textually and graphically as illustrated in Figure 50.

47 Loop 1
Plant.of Order Control Observer :
Plant.i2
Control.ol
Controli3
Sensor.ol

_______________ —

o) NON ReN |

Sensor.id

Figure 50: SimfiaNeo Loop identification

(f) The simplification solution or “Cut the Loop” solution

(i) Description of the solution

The simplification or « cut the loop » solution modifies the model in order to solve the equation cycle by “cutting” the
control loop in the system, and by ensuring the safety model analysis is still representative of the system studied. Most
of the time, it is necessary to add assumptions and explanations in order to achieve this goal.

For instance, instead of analyzing the control loop illustrated Figure 51 we can choose to perform the analysis on a
model with a simplified control loop as illustrated Figure 52.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 74 / 141

F\\\ SAINT qutemx IRT Saint Exupéry LIV-5085L01-001
EXUPERY

dzder AllControlInputs Control Plant Plancnutput

o

IRT SystemX ISX-S2C-LIV-1285

Issue 4

Sensor

Figure 51: Control loop illustration using Cecilia

Order AllControllnputs Control Plant Plant Cutput

Const_ok d

H Sensor
el
|

Figure 52: Illustration of the « cut the loop » solution

r

In our example, the system existing control loop is “cut” using a safety artefact shown in green in Figure 52. The purpose
of the “Const_ok” node, or “Ok” node, is to use the same Sensor node than the one previously defined. It is a numerical
“cap” that sends an “Ok” input to the Sensor. This is equivalent to use a Sensor node with no Input.

It is interesting to note that this approach can be related with the way one can “cut the loop” in the fault tree discussed
in §10.1.

The key point in this solution is to ensure that the analysis performed thanks to the proposed with the simplified model
is as representative as the one performed with the complete model discussed in (ii).

(ii) Validity of the Results

This solution is valid if the simplified model is representative of the system studied despite the simplification. Note that
to achieve this goal, in some cases, it may be necessary to provide additional analysis to the model output.

In the example, we consider the safety analyst who decides to cut the loop will check that the cutsets obtained by
“cutting the loop” are representative of the control loop described O (i). This is the case as shown

Figure 53.

products(MCS('Plant_Output.O.lost')) =
{'Control.fail_loss'}
{'Order.fail_loss'}
{'Plant.fail_loss'}
{'Sensor.fail_loss'}
end

Cutsets for FC1 : Loss of plant output

products(MCS('Plant_Output.O.err")) =
{'Control.fail_err'}

{'Order fail_err'}
{'Plant.fail_err'}
{'Sensor.fail_err'}
end

Cutsets for FC2 : Erroneous plant output

Figure 53 :

"cut the loop" cutsets

In particular, we check that the Sensor failures (fail_loss and fail_err) lead to the Failure Conditions as it is expected

(loss of the Sensor leads to the Loss of Plant ouput and erroneous Sensor leads to an erroneous Plant ouput). In addition,
This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 75 / 141

o e
o
.ooo

\-“ IRT Saint E éry LIV-S085L01-001
F\ SAlNT qutemx aint Exupéry
EXU PE RY IRT SystemX ISX-S2C-LIV-1285
Issue 4

the others components’ failures effects are unchanged. Indeed the failures of the Order, Control or Plant (fail_loss and
fail_err) directly lead to the Plant ouput corresponding failures.

In this example, the Sensor State (“ok” or “failed”) has a direct effect. In other words, in case of an erroneous sensor,
the Failure Conditions “FC2 : Erroneous Plant output” is directly reached.

Counterexample: In case of the addition of a consolidation between the two inputs of AllControllnputs (one input ok
and the other erroneous leading to the loss of the output),” cutting the loop” the proposed in this example is not valid.
It leads to lose the information captured by the Sensor. In that different case, an erroneous Order, Plant or Control
then leads to the loss of the Plant output (FC1) and not to an erroneous Plant output (FC2). It is still possible to “Cut the
loop” by linking directly the AllControllnputs to the PlantOuput and by cutting the loop right before the Control node,
nevertheless the resulting model is very far from the initial system .

(iii) Criteria for choosing this approach

The interest of this approach is to solve the equation cycle by using a static modelling (chapter 5). Compared to dynamic
modelling, static modelling enables shorter cutset computation time. In addition, some of the MBSA tools (Cecilia) are
able to generate a Boolean equation from static models. In that case, this modelling choice can allow solving big models
that otherwise would be too big. In particular, this is the reason why safety specialists at Dassault Aviation use this
approach for MBSA models (e.g. flight Control).

Eventually, in addition, for static models the probabilities computation are straightforward.

(iv) Approach limitation

Nevertheless the simplification of the model leads to a model closer to what the safety specialist has in mind (and could
write down in a FTA) than to the initial system description. Modelers can choose to make the model look like the system,
for instance by adding some graphical artefacts or “empty” links. In that case, they introduce an artificial consistency
between the safety and the system models that may lead to misunderstandings and future mistakes.

As illustrated in the discussion section 10.1.2(f)(ii) only the output just before the “loop cut” is affected by all the failure
modes. Consequently, this approach is only valid (in terms of resulting cutset) when the control loop has only one output
(here PlantOutput). When the control loop has several outputs (to the FCs or to the other parts of the model) some
information may be missing. In our example, if Control output is an input for a monitoring positioned after the Sensor,
this new node does not see the impact of the failures of Plant.

This approach is efficient when the loop can be “cut” before nodes (The Sensor here) that only affect the system when
they fail (State ok or failed here). Its use is limited when the components involved are implicated in the functional
description of the system (for instance in the monitoring).

(g) The “Dirac” solution

(i) Description of the solution

The “Dirac solution” introduces a safety artefact to handle the equation cycle. It allows the modelling of all dependencies
between the output and input flows by introducing a state variable.

In order to solve the equation cycle in the example illustrated Figure 52, we introduce this safety artefact through the
node called FeedbackDelay.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 76 / 141

F\\\ SAINT qute m X IRT Saint Exupéry LIV-5085L01-001
EXU PERY IRT SystemX ISX-52C-LIV-1285

Issue 4

Order AllControlInputs Control Plant Plantdutput

@A-—?:

FeedbackDelay # g

Sensor

Figure 54: lllustration of the « Dirac » solution

The FeedbackDelay node, from the ONERA generic library, introduces:

- Astate variable prev_val that is initially ok
- Anassertion :
O=prev_val;
- Anevent called “update” that follows a Dirac(0) law (see 10.1.2(g)).
- Atransition that allows:
o Toremove the direct flow dependency between the output value (O) of the node and its input value
(1)
o Tointroduce a dependency between the input | and state variable prev_val
not (I = prev_val) |- update -> prev_val:=l;

The defined transition can be read: “when the condition (input value | is different from the state value
prev_val), the determinist event update is instantaneously triggered (because it follows a Dirac(0) law). As a
result prev_val is assigned to the current value of I. Because of the assertion the output O takes immediately
the same value, resulting in the propagation of the failure mode.

The introduction of a state variable set to “ok” initializes the problem to be solved when no failure are triggered. This
solves the equation cycle for the initial state (refer to 10.1.1).

At this stage it is interesting, to note the state variable introduces a “memory” effect on the transition. Indeed, the state
value of prev_val will change only when the transition conditions are fulfilled. This is why the modelling artefact we
have presented is often called a “Delay”. It does not refer to quantitative time (e.g. measured in second) but to
sequential time, i.e., the order in which the different updates happen.

Figure 55 and Figure 56 illustrate this “Delay”, using the step by step simulation capacities of graphical MBSA tools. In
the following images, the green node state is ok, while the red node state are erroneous (see Appendix 14.4.2 for more
details). The two figures show consecutively the system states, before and after the manual triggering of the Dirac
transition.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 77 / 141

(‘\\\ SAINT qute 4 X IRT Saint Exupéry LIV-5085L01-001
EXU PERY IRT SystemX ISX-52C-LIV-1285

Issue 4

Order AllControllnputs Control Plant Plantoutput
On 2 ” ao= L) » » @
1 0
FeedbackDelay (E
? Sensor

err

Figure 55 : lllustration of the « Dirac » solution, before Dirac update triggering

Figure 56 represents the state of the system after an erroneous Plant failure is triggered. Then, the output of the node
FeedbackDelay is Ok while its input is erroneous.

err
Ordex AllControllnputs Control Plant PlantCutput
e —— m
L L
err
FeedbackDelay
Sensor

err

Figure 56 : lllustration of the « Dirac » solution, after Dirac update triggering

The state of the system is the following:

- prev_val =ok (default)
- l=err
- The condition not (I = prev_val) is true

Consequently, the determinist “update” transition defined above is triggered and leads to the update of the
modification of prev_val value and to the correct propagation of the erroneous behavior. More precisely:

- The assignement prev_val :=1leads to prev_val =err
- The assertion O=prev_val leads to O=err

- The condition not (I = prev_val) is now false, the update transition cannot be triggered in this new state of the
model

The problem, with no failure triggered except for Plant, is well posed (same number of equations and unknowns) thanks
to the initialization of prev_val and consecutive updates. This will be the same for all the failure combinations to be
analyzed.

Note the addition of a dedicated node is a modelling choice or “good practice”. It is possible to model the delay defined
in this section directly within the modelling unit.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 78 / 141

(ii) Validity of the Results

For this example, the cutsets

Figure 57 are as expected and validate the model outputs.

F\\\SAINT quterﬁ‘x‘ﬂ.
EXUPERY

IRT Saint Exupéry LIV-S085L01-001

IRT SystemX ISX-S2C-LIV-1285

Issue 4

products(MCS('Plant_Output.O.lost')) =
{'Control.fail_loss'}

{'Order.fail_loss'}

{'Plant.fail_loss'}

{'Sensor.fail_loss'}

End

Cutsets for FC1 : Loss of plant output

products(MCS('Plant_Output.O.err'")) =
{'Control.fail_err'}

{'Order.fail_err'}

{'Plant.fail_err'}

{'Sensor.fail_err'}

end

Cutsets for FC2 : Erroneous plant output

Figure 57 : "Dirac solution » cutsets

The “Dirac solution” does not require specific validation, except for the local validation of the dedicated node.

In addition, as illustrated in this section, the “step by step simulation” capacities of MBSA tools is very helpful for this
validation in order to understand the transition modelled. In addition we can also outline that special care shall be taken
when several Dirac are introduced.

All those validation aspects will be developed in future issues of this document.

(iii) Criteria for choosing this approach

The proposed model is very close to the system analyzed. It allows a close representation of the system control.
Consequently, it will be easier to validate with system engineers. It will also be easier to use this model to communicate
to others or to capture the system behavior.

(iv) Approach limitation

Introducing a determinist Dirac) law may lead to have a dynamic model. When this is the case, the tool solver will
generate all the possible sequences of failures leading to the top events while for a static model it would be sufficient
to generate all the combination of failures (i.e cutsets) or to solve directly a boolean equation. Consequently, the
computations time becomes more important than for a static model. At worst, for very big systems this computation
time can be a blocking point.

In addition, when there are several determinist transitions, their synchronization and priority of triggering need to be
handled. This adds complexity to the model. Note we will develop these modelling aspects in the future issues of this
document.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 79 / 141

o oo
5008

NV celet aint Exupér - -
(é%\\k SAINT qutem IRT Saint Exupéry LIV-S085L01-001
(T EXUPERY T IRT SystemX ISX-52C-LIV-1285

Issue 4
(h) The “Initialization” solution

(i) Description of the solution

For the proposed example the “initialization” solution allows to solve the equation cycle by initializing the Sensor node
output to « ok », see Figure 59. This allows to have the same number of equations and unknowns (refer to 10.1.1) and
thus to solve the equation cycle for the initial configuration (no failure).

Orde AllControllnputs Control Plant PlantCutput

o

Sensor

Figure 58: lllustration of the « initialisation» solution (1)

™l S2C/Control_Loop/Init_solution;1 EE@

Content f:}f Synchronizations Altarica code Initial Configurations Modified Events {:_E’,’. Links colors Properties

Code QOperators -

Edit
dBYY HMe &
Sensor_Ir= Plant.0Q ; :
agaert
init
Sensor.0 = ok ;
Save Syntax Consistency Close
Figure 59: lllustration of the « initialisation» solution (2)
(ii) Validity of the Results
For this example, the cutsets Figure 60 are as expected and validate the model outputs.
products(MCS('Plant_Output.O.lost')) = products(MCS('Plant_Output.O.err')) =
{'Control.fail_loss'} {'Control.fail_err'}
{'Order.fail_loss'} {'Order.fail_err'}
{'Plant.fail_loss'} {'Plant.fail_err'}
{'Sensor.fail_loss'} {'Sensor.fail_err'}
end end
Cutsets for FC1 : Loss of plant output Cutsets for FC2 : Erroneous plant output

Figure 60: "Initialisation solution" cutsets

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 80 / 141

o oo
+ /¥ 2908

% IRT Saint Exupéry LIV-S085L01-001

N « il
(,'2%\\\\. SAINT System>
(T EXUPERY T IRT SystemX ISX-52C-LIV-1285

Issue 4

(iii) Criteria for choosing this approach

This approach is very simple to use, as it only requires writing a few lines. The proposed model is also very close to the
system analyzed. It allows a close representation of the system without safety artefacts and prevents the use of Dirac.

(iv) Approach limitation
Note this approach is only available with Cecilia tool. Since initializing a flow variable may result in a not calculable

models (due to conflicts between assertions and initial values), some tools forbid initializing flow variables (SimfiaNeo),
and thus do not allow the presented approach.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 81 / 141

ity IRT Saint Exupéry LIV-S085L01-001

SO

\ SAINT int Exupery LIV-S085L01-
(;EXU PERY qutem = IRT SystemX ISX-S2C-LIV-1285

Issue 4
(i) The “Double flow” solution

(i) Description of the solution

The « double flow » solution relies on the addition of artificial flows to deal with the dependencies in the model. As
shown in Figure 61, the dependencies between the variables are modelled through two different paths.

Plantdutput

Figure 61: lllustration of the « double flow» solution

Firstly, failure modes of all components are “collected” by the flows from Order to Sensor (underneath path). In this
underneath path, the output of AllControlinputs does not depend on the Sensor output. Then, AllControlnputs gets a
second output. Each AllControlnputs output is related to an inputTable 6. From this point, the flows (above path) are
affected by all loop failure modes.

In order to apply this approach, the nodes AllControlinputs, Control and Plant are modified. Table 6.shows the new
definition with changes in bold font.

Node/Compo Interface Internal status Transitions Assertions
nent name (input and output and failure
flow) modes
(state variables)
AllControllnputs = Input: 11, 12 N/A N/A Ol1=11;
output: 01, 02 02=

Control :

Plant

Type for all flows :
ok, lost, err

Input: 11, 12 S € {ok, err, lost S=ok |- fail_loss -> S:= lost; 01 = case {
output: 01, 02 Initially ok S=ok |- fail_err -> S:=err; S=ok: 1,
S=lost : lost,
Type for all flows: ok, elseerr};
lost, err
02 = case {
S=ok: 12,
S=lost : lost,
else err };
Input: 11, 12 S € {ok, err, lost S=ok |- fail_loss -> S:= lost; 01 =case {
output: 01, 02 Initially ok S=ok |- fail_err -> S:= err; S=ok : I1,
S=lost : lost,
Type for all flows: ok, else err };
lost, err 02 = case {
S=ok : 12,
S=lost : lost,
else err };

Table 6: Modelling framework

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 82 / 141

Teet e IRT Saint Exupéry LIV-S085L01-001

N « il
(,'2%\\\\. SAINT System>
(T EXUPERY T IRT SystemX ISX-52C-LIV-1285

Issue 4

When the nodes Plant fails, for instance in Figure 62, the path remains green (i.e. “ok”) from Order to Plant, while the
failure is propagated to all nodes through the path above. The two propagations, “ok” and “erroneous” are coexisting
in the model without affecting the solution computation.

For all configurations of failures in the model, the corresponding problem is correctly initialized.

AllControlInputs Control Plant PlantJutpuc
OJrder E = [m
s o]
On O
Sensor
=i}
Figure 62: lllustration of the « double flow» solution — Plant failure : “erroneous”
AllControllnputs Control Plantdutput
Order = [
& -
on . I d=k =N s
Sensor
-+
Figure 63: lllustration of the « double flow» solution —Control failure: “erroneous”
AllControllInputs Control Tlant PlantOutput
Order 5 m = - w
= o O
On o . o= m
L k]
E Sensor
-+# =i,
Figure 64: lllustration of the « double flow» solution —Sensor failure “erroneous”
(f)] Validity of the Results

The validation of this approach is the same than the one discussed for the “cut the loop” approach. It is needed to
demonstrate the modelling is representative of the modelled system. Additional analyses may be required to justify this
choice.

The cutsets in the next figure are as expected and validate the model outputs.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 83 / 141

IRT Saint Exupéry LIV-S085L01-001

\\\ SAINT quté@x

EXU PE RY IRT SystemX ISX-S2C-LIV-1285
Issue 4
products(MCS('Plant_Output.O.lost')) = products(MCS('Plant_Output.O.err')) =
{'Control.fail_loss'} {'Control.fail_err'}
{'Order.fail_loss'} {'Order.fail_err'}
{'Plant.fail_loss'} {'Plant.fail_err'}
{'Sensor.fail_loss'} {'Sensor.fail_err'}
end end
Cutsets for FC1 : Loss of plant output Cutsets for FC2 : Erroneous plant output
Figure 65 : "Double flow solution » cutsets
(i) Criteria for choosing this approach

The interest of this approach is to solve the equation cycle using a static modelling (see definition in §2.2). As discussed,
this choice can thus reduce the model computation time. In addition the probabilities computation is straightforward.

This approach is usable in case of control loops with several outputs (when several downstream components depend
on the control loop output).

(ii) Approach limitation

This approach is the one requiring the more safety artefacts, making the model and the justifications heavier. As a
consequence, it is mostly used for local loops, with few components involved.

(iii) Synthesis

Our simple example illustrates that there are several ways to solve an equation cycle. In order to choose between the
different approaches one can try to answer the following questions:

1) Dol need to generate cutsets or is an approach that will provide me with sequences acceptable?
2) Do | want my model to represent the system’s behavior as closely as possible or is it acceptable to perform
simplifications?

The answers to these questions will be driven for instance by the size of the system model or by the use given to the
model. Table 7 provides a first guidance to choose the solutions according to chosen criteria.

Criteria Use of Dirac Initialization “Cut the loop” Double flows

Preference for static (Al No Ok Ok
models (lower
computation time)

several outputs
Large loop Ok Ok with a good Ok with a good Notadapted
knowledge of the knowledge of the

loop loop
Table 7: Choice criteria for the control loop equation cycle resolution

Note: the methods described above are not working whit buses (in Cecilia Workshop) or records (in SimfiaNeo) as the
flows have to be isolated to apply the solutions above.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 84 / 141

* o0

\\\ i IRT Saint Exupéry LIV-S085L01-001

\ s 2 74 _ |
AINT X
K\EXU PERY S q Stem IRT SystemX ISX-S2C-LIV-1285

Issue 4

10.1.3 How to solve an event cycle

(a) A first simple example

(i) Description of the model

In order to illustrate what is an event cycle, let us consider a basic example. We concentrate on the model illustrated
Figure 66 and described in the next table.

Problem local event cycle

Figure 66: Event cycle illustration (using one modelling unit)

Node/Component name Interface Internal Transitions Assertions
(input and output status and
flow) failure
modes
(state
variables)
Problem_local_event_cycle None State € {ok, State_=ok |-fail ->State_ None
ko} :=ko;
Initially ok State_ = ko |- repair ->
State_ := ok;

Repair and fail follows a
Dirac(0) law

Table 8: Modelling framework for the event cycle

(ii) Identification of the problem

Figure 67: Cecilia Error message for the event cycle. It indicates the solver has stopped because the limit of 100
instantaneous transitions successively triggered has been reached without allowing to find a stable configuration.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 85 / 141

e IRT Saint Exupéry LIV-S085L01-001

(&%\\\\. SAINT System>
(T EXUPERY T IRT SystemX ISX-52C-LIV-1285

Issue 4

&% Error - StepperinstantaneousLoopException X

Instantaneous loop K

100 instantaneous transitions are fire in succession.

Hum Tr Ewent

ss 1 Problem local_ event_cycle.repair

S8 O Problem local event cycle.fail

o7 1 Problem local event cycle.repair

S O Problem local_ event_cycle.fail

85 1 Problem local event cycle.repair

S4 0O Problem local event cycle.fail

53 1 Problem local_ event_cycle.repair

22 0 Problem local event cycle.fail

91 1 Problem local event cycle.repair

S0 0O Problem local_ event_cycle.fail

g9 1 Problem local event cycle.repair

g8 o0 Problem local event cycle.fail

87 1 Problem local_ event_cycle.repair

8e O Problem local event cycle.fail

g5 1 Problem local event cycle.repair

84 0 Problem local_ event_cycle.fail

83 1 Problem local event cycle.repair

82 0 Problem local event cycle.fail

81 1 Problem local event cycle.repair

80 O Problem local event cycle.fail

79 1 Problem local event cycle.repair

78 0 Froblem local event cycle.fail

77 1 Problem local event cycle.repair

76 0 Problem local event_cycle.fail v

Figure 67: Cecilia Error message for the event cycle

(iii) lllustration of the event cycle using the interactive simulation

We can illustrate the event cycle through an interactive simulation, using the Dirac(0) manual triggering (selected in
the tool Preferences).

Figure 68 and Figure 69 illustrate the event cycle oscillations between two states, “ok”, and “ko”. These oscillations are
due to transitions that depends on event triggered with a Dirac(0) law (as defined in

Table 8) and that become true successively and indefinitely (see §10.1.1(b)). The event cycle is due to a “re-initialization”
or a “rearming” of the condition that triggers the events.

In our example, we have the two following transitions:

- State_=ok |- fail ->State_:=ko;
- State_=ko |- repair -> State_ := ok;

When the condition allowing the first transition is true, it allows the triggering of the event “fail” (Figure 68). This event
follows an instantaneous Dirac law consequently, it is triggered. As soon as the event “fail” has been triggered the
transition to trigger “repair” becomes true (Figure 69). When it is triggered, the first condition become true again, and
so on (Figure 68).

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 86 / 141

o oo

NN g phisesee aint Exupér - -
(é%\\\ SAINT qutem IRT Saint Exupéry LIV-5085L01-001
(T EXUPERY s e IRT SystemX ISX-52C-LIV-1285

Issue 4

£ Event list x

Pro]:ls m_local ewvent ‘cycl

Selected component : Problem_local_event_cycle

O K Choose an event ;
Delay| M... Description

Ojfal |(Problem_local_event_cyde.State_ = ok) |- Problem_local_event_cyde. fail -= Problem_local_event_cyde.State_:=ko

Figure 68: Event cycle illustration - OK state

&L Event list x

Proh lfm_lo cal ewvent Loy

Selected component : Problem_local_event_cyde

KO Choose an event :
Delay| Mame | Description

0|repair |[Problem_local_event_cyde.State_ = ko) |- Problem_local_event_cyde.repair -= Problem_local_event_cyde.State_ := ok

Figure 69: Event cycle illustration — KO state

(b) System description and Safety input data

In this section, we model a switch in order to illustrate how to identify and solve event cycles (see §10.1.1(b)). More
information corresponding to the solution is provided as well as corresponding models in their export format (Cecilia,
SimfiaNeo, and OAR), see appendix 14.5 for more information.

(i) System description

Let us consider the example illustrated Figure 70. In this example, we consider a system composed of two input sources,
a Primary and a Backup. Each source provides an input (an order for instance) to a Selector which function is to select
one between the two. By default the Primary source is used. Downstream the Selector, a Monitoring is able to detect
a lost output. In case of a detected failure, the Selector switches from the Primary to the Backup

Primary
@, ’ q Observer
Selector = > w
[O=——
Backup £+
A Y
—a—

Monitoring

Figure 70: Switch illustration using Cecilia

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 87 / 141

F\\\ SAINT qute m X IRT Saint Exupéry LIV-5085L01-001
EXU PERY IRT SystemX ISX-52C-LIV-1285

Issue 4

Description of the System behavior

- The Selector output is monitored by the component called Monitoring

- Monitoring sends validity information of the Selector output to the Selector component.

- The Selector output depends on the validity it receives from Monitoring. In the nominal case (no failure
detected) the Primary output is selected. In case the validity sent to the Selector is false the Selector selects
the input from the Backup component.

(ii) Safety input data
From a safety point of view, the failure conditions analyzed are the following:

- FC1: Loss of system output
- FC2: Erroneous system output

The components failures and corresponding system effects are described below:
Primary:

- fail_loss: detected by Monitoring, leads to the use of the backup information. No system effect
- fail_err:first leads to an erroneous selected value, detected by Monitoring. As a consequence, Selector selects
the backup output. No system effect.

Backup:

- fail_loss: leads to the loss of backup. No system effect.
- fail_err: leads to an erroneous backup output. No system effect.

Both Selector and Monitoring are considered fault-free.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 88 / 141

f\) saINT qutéﬁx
EXU PERY T
(c) MBSA modelling framework

In this chapter, we describe the way components are modelled in presented

Table 9.

Node/Comp
onent name

Primary

Selector

Monitoring

Interface
(input and output
flow)

Input: N/A
output: O

Type: ok, lost, err
Input: N/A
output: O

Type: ok, lost, err
Input: 11, 12,
i_validity
output: O

Type for 11, 12 and
O flows : ok, lost,
err

Type
i_validity:
Boolean

for

Input: |
output: o_validity

Type for | flow :
ok, lost, err
Type
o_validity:
Boolean

for

Internal status
and failure
modes

(state variables)
S € {ok, err, lost}
Initially ok

S € {ok, err, lost}
Initially ok

N/A

Validity
Type: Boolean
Initially true

Transitions

S=ok |- fail_loss -> S:= lost;
S=ok |- fail_err -> S:=err;

S=ok |- fail_loss -> S:= lost;
S=ok |- fail_err -> S:=err;

N/A

(Validity=true)and(input=L
ost)
|-update->Validity:=false;

(Validity=false)and
(input!=Lost)
|-update->Validity:=true;

Table 9: Modelling framework for the Switch example

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

Assertions

0=S

0=S

/*The output selection depends
on the validity input. The value
of the output flow depends on
this selection and on the value
(ok, err, lost) of the selected
input

*/

O=case{

(i_validity=true): 11,

else

12 // (i_validity=false)
L

o_status_valid=Validity;

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

89/ 141

\\\ Laa et IRT Saint Exupéry LIV-5085L01-001

K\EXU;AEII:; S l“I Ste m = IRT SystemX ISX-52C-LIV-1285

Issue 4
(d) Characteristic of the system

In this example, the equation cycle due to the control loop is solved by introducing a Dirac law in the Monitoring node.
In addition, in order to take into account the system description 0(b)(i), the Selection output depends on the validity.
This modelling example illustrate how an event cycle can be introduced, identified and solved.

(e) Identification of the event cycle

As far as event cycles are concerned, corresponding error messages of the different tools, Cecilia and SimfiaNeo, are
not very explicit regarding how to solve the event cycle. Figure 71 and Figure 72 shows respectively Cecilia and
SimfiaNeo messages. In Figure 71 the tool informs that the solver has stopped because the limit of 100 instantaneous
transitions successively triggered has been reached without allowing to find a stable configuration (§10.1.1(b))

@ Error - StepperlnstantanecusLoopException =
@ Instantanceous loop : L
100 instantansous transitions are fire in succession. I

Num Tr Ewent

ag9 2 Monitoring.update

a8 1 Monitoring.update

a7 2 Monitoring.update

=1 1 Monitoring.updatce

a5 2 Monitoring.update

94 1 Monitoring.update

93 2 Monitoring.update

9z 1 Monitoring.update

91 2 Monitoring.update

Qg 1 Monitoring.update

89 2 Monitoring.update

88 1 Monitoring.update o

Figure 71: Cecilia Error message for the event cycle
5]

Instantanecus event ‘Monitoring.update’ osollates: it is part of loop of instantanecus
events

{[Monitering update Monitoning.update Montoning.update Montonng.update Mon
teeing.update Monttonng. update Montonng update Montonng update Monitornng.
update Monitonng.update Monitonng update Monitenng. update Monftcang. update
Mentorng. update Mcattonng.update Monttoning update Monitonng update Monit
oring.update Monitoring update, Monitoring updete Monitoring. update Monitoring.u
pdate, Monitoring update Monitoring update Monitoring. update Montonng.update,
Monitcang.update Monitoning. update Montorng.update Monitoring update Monit
onng.update Mondtoring update Monitonng update Monitering. update Menttceing.u
pdate Monitering. update Moniteeing.update, Monttonng.update Montonng. update,
Monitoning update Montoang. update Mentonng. update Montonng update Mond
onng.update Montoring update Monitonng update Montteeing. update Moenttorng.u
pdate Monitoning update Monitoring. update Mon#toring. update]'.

[]

Figure 72: SimfiaNeo Error message for the event cycle

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 90 / 141

F\\\ SAINT qute m)(IRT Saint Exupéry LIV-5085L01-001
EXU PERY IRT SystemX ISX-52C-LIV-1285

Issue 4

This message is displayed in simulation mode when the failure “Loss” of Primary is triggered. The way the system has
been modelled the configuration indefinitely changes from Figure 73 to Figure 74. One can simulate these “oscillations”
using the simulation “step by step” (see 6.1 for more details)

Selector
Primary Selector
® 4 Observatew Primary
[: @ E? 4 Observateur
o - I
Backup £t On gl
EBackup T
- 5
iy
i)
Monitoring
N Monitoring !
Figure 73 : Switch oscillation configuration 1 Figure 74 : Switch oscillation configuration 2

The reason of these oscillations is the fact an event cycle has been introduced due to the “re-initialization” or a
“rearming” of the condition that triggered in Monitoring. Indeed, in order to introduce the dependency between the
Selection output and the Validity defined in (b)(i), the two following transitions have been introduced:

(Validity=true) and (input=Lost) | -update->Validity:=false;
(Validity=false) and (input!=Lost) | -update->Validity:=true;

Figure 73 shows the model configuration when Primary is lost. As Primary is initially selected, the output of Selector is
lost. Thus the input of Monitoring is lost too, making the first transition triggerable. Figure 74 illustrates the
configuration after this transition. Validity output of Monitoring is now false (detection of the loss of the Selector
output). Selector switch to its backup input and its output is then ok. In this situation, the second transition of
Monitoring is triggerable. This transition gets the model back to the Figure 73 configuration.

As both transitions are associated to Dirac(0) event (determinist and instantaneous), these two transitions are triggered
infinitely without possibility to trigger any other event. It is thus impossible to reach stable state.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 91 / 141

o

\\\ T IRT Saint Exupéry LIV-S085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4
(f) The solution

(i) Description of the solution

In order to solve the problem, we consider that both Selector and Monitoring cannot commute back (in practice this
information needs to be discussed with the system designer in order to determine if something is actually missing in
the system definition).

As a consequence, the following transition of Monitoring is deleted from the model, preventing the event cycle to
happen.

(Validity=false)and (input=Lost)|-update->Validity:=true;
Only the following transition remains in order to model the initial commutation:
(Validity=true)and(input=Lost) | -update->Validity:=false;

As the Validity state variable can never go back to its initial value the only Dirac event of the model is fire able.
Consequently the event cycle is prevented.

(i) Validity of the Results

This solution is acceptable in this example, because as soon as Primary has failed (either erroneously or by loss), the
failure mode is permanent on the whole duration of the study (for example on an aircraft, for the duration of the flight).
Asillustrated by Figure 73 and Figure 74, when Primary is lost, Monitoring detects it and requires the Selector to switch
to its backup input. As Primary is not repairable, there is no use (from a model point of view) to enable the Selector to
switch back to Primary. From a system point of view, the same reasoning shall be done to decide whether it is relevant
to implement the possibility for Selector to switch back while Primary is not recoverable.

In this case, the model enables to highlight that either the system description is not sufficient (not mentioning that
switching back is inhibited) or that the system has a “switch back” functionality that is, in this context, at least useless
and at worst dangerous (opening the possibility of erroneous “switch back”).

(iii) Approach limitation
This approach is limited to the case of non-recoverable sources. In case of recoverable sources, and if Selector is able

to select back Primary, the event cycle issue is much more complicated to solve. This aspect will be developed in a future
issue.

(g) Synthesis

The above paragraphs sum-up the way to solve the event cycle issue. These solutions are working independently from
the system modeled.

The latch solution which consist by adding a latch component in the flow is not detailed here, as we considered it could
be used only if the system modelled includes the capability of latching.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 92 / 141

N\ Leg'es IRT Saint Exupé
----- péry LIV-S085L01-001
F\-- SAINT qutemx
EXU PERY IRT SystemX ISX-52C-LIV-1285
Issue 4

11 Computation of events probability

In Aeronautics, regulations require that the probability of occurrence of a critical failure conditions per flight hour is
proportionated to the failure condition severity during the whole aircraft life. However, the probability of occurrence
of a failure condition is varying during the aircraft life: it is increasing with the ageing of the aircraft equipment and it
decreases after an maintenance action.

So different measures (average risk or maximum risk per flight hour) have been defined in aeronautical standards such
as ARP 4761 in order to address this variability. The agreed computation rules consider the failure rates of basic
components, the mission durations and the intervals of time between the components maintenance.

The currently available algorithms exploit these reliability parameters and either the cut sets or the fault tree of the
failure condition. Thus, MBSA tools can be used to generate cut sets or Boolean Formula and then other existing tools
can be applied to compute the risk. These means are not specialized for MBSA model and their presentation is out of
the scope of this guide. The interested reader may find more details in the appendix G of the ARP 4761.

Currently, for MBSA, the main issues are twofold:

- Enter the parameters of interests
- Estimate the accuracy of the computation results.

The parameters edition and exploitation is currently tool dependent (see for the section 14.1.6(c) in the Appendix).

The accuracy of the computation chain is model dependent. Static models do not account for event ordering, so their
compilation into Boolean equations or cuts sets will not change the global accuracy level. The question is open when
compiling a dynamic model, with hidden failures for instance, into a Boolean equations.

Past experiences shown that the approximation remain acceptable. Further researches are needed to estimate the
conservatism of the computation and possibly design new quantification tools for assessing the reliability of dynamic
systems.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 93 / 141

F\\\ SAINT qute m)(IRT Saint Exupéry LIV-5085L01-001
EXU PERY IRT SystemX ISX-52C-LIV-1285

Issue 4

12 =B+ Verification & validation of MBSA activities

12.1 E=B- Assurance activities

This section will provide guidance to ensure the validation and verification of MBSA models along time.

Validation & verification activities are distributed along the lifecycle of a model. First activities are performed before
starting the creation of the model.

In order for internal or external reviewers, or for certification authorities, to be confident in the presented results, it is
necessary to build confidence in the model itself. One option could be asking reviewers to analyze exhaustively the
produced model. However, this would necessitates reviewers to always fully master both the modelling language and
the tool, and would be highly complicated by the great variety of modelling possibilities and strategies. For these
reasons, we find more suitable to take advantage of the MBSA approach specificities:

- Effort of behavior modelling is performed at item level
- Model specification should be performed before the modelling activity (refer to §5.1)

Taking advantage of these two points, verification can be performed in a structured way. The proposal of this guide is
to proceed by following steps:

- Step 0: specification of the model

- Step 1: verification of the model specification

- Step 2: verification of the individual modelling units
- Step 3: verification of the global model structure

- Step 4: verification of the global model behavior

Step 0: specification of the model

As described in §5.1, preliminary activities are to be conducted prior to any modelling. These activities are used to
specify the future model, including:

- List of modelling units
- List of global model inputs and outputs (e.g. resource systems, failure conditions observation, ...)
- List of considered failure conditions

For each modelling unit, the following details should be given:

- What does it stand for? E.g. equipment, safety artefact, logics, ...

- List of considered inputs and outputs, with their domain

- Internal states, with their domains.

- List of considered failure modes

- List of other considered transitions (e.g. “opening” and “closing” for a switch)
- For each output, the corresponding transfer function

If using an already existing library of modelling units, these details are replaced by the information of which modelling
unit from the library will be used.

[GP 5] A table of truth linking the input, internal state and output variables is a valuable communication and validation
tool regarding the modelling unit behavior.

Step 1: verification of the model specification

The documents produced at step 0 should be reviewed by a third-party prior to modelling. They will be used in steps 2
and 3 to check the produced model. This review aims at both validating the modelling strategy, and the correct
understanding of input data, including from the design team.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 94 / 141

I§\ SAINT Sys te m X IRT Saint Exupéry LIV-5085L01-001
(R 2 l‘l IRT SystemX ISX-S2C-LIV-1285
T EXUPERY Y

Issue 4

Step 2: verification of the individual modelling units

Modelling units being specified and documented from step 0, they can be individually verified. If some discrepancies
exist between a model unit and its specification, they can be due to:

Error in model, needing to be fixed
Voluntary decision to modify it, meaning the specification needs to be updated accordingly (and reviewed)

In all cases, verification should be performed by someone other than the modeler, and documented.

Step 3: verification of the global model structure

Verification of modelling units in step 2 is essential, but not enough. As models are built from assembling the modelling
units, it is also necessary to verify the global model structure, according to what was specified in step 0. These
verification should include:

List of instantiated modelling units

The list of instantiated modelling units should be the one specified in step 0. By extension, this check can
additionally look at the list of failure modes. If performing quantitative analysis, failure rates should also be
checked.

Connections between modelling units

Connections between modelling units should correspond to the input architecture. Dangling inputs are
forbidden as they prevent any computation to take place. Dangling outputs are tolerated as they do not
prevent computation, however they should be justified (e.g. using a generic modelling unit from library).

Global model inputs and outputs
Global inputs usually correspond to system inputs (e.g. resource systems). Global outputs can correspond to
system outputs, or modelling artefacts to ease readability.

Translation of Failure Conditions into observers
Failure Conditions are branched on the model using observers. Their transfer functions should be reviewed.

Step 4: verification of the global model behavior

Last step of verification focuses on behavior of the global model.

Individual failure modes

Simulation of each individual failure mode can be performed. Impact of individual failure modes can usually be
anticipated from a preliminary analysis. For each failure mode, its simulated impact, locally and globally, can
be observed to detect discrepancies with expected behavior. If a preliminary SFMEA exists as an input of the
study, it can be used to check the model behavior.

Step-by-step simulation of scenarios

It is usually possible to predict how the model should react to a set of scenarios. Definition of a scenario shall
include the sequence of transitions and the expected values of a subset of variables from the model. These
scenarios are then tested on the model, and (non-)compliance is documented.

Cuts or Sequences computed from the model on failure conditions can also be used as an additional verification
step. Presence or absence of some cuts/sequences is checked, linked to anticipated system behavior. Detailed
study of orders 1 and orders 2 is usually considered as manageable.

These verification steps are performed at pre-determined milestones for the study. At each iteration of the system
design, it is important to not only update the model, but also its specification, in order to update steps 1 to 4. As MBSA

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 95 / 141

o

\\\ oot IRT Saint Exupéry LIV-5085L01-001

FEXU?’AEIR; S LI St e m = IRT SystemX ISX-52C-LIV-1285

Issue 4

focuses on local modelling, it is not necessary to review the whole model at each iteration, but instead to perform logical
verifications and update global simulation scenarios.

Verification needs to be documented in order to justify confidence in the model, hence in the results. These proofs are
to linked to the different system and model versions.

12.2 EB- Few words about the verification of the model syntax and execution ability

Graphical editors assist the model coding and prevent some errors in the coding and in the assembling of nodes. The
verification of the model syntax aims at checking whether the MBSA tools can understand the model code.

In our case, the model and all the nodes shall be compliant with the syntax rules of the AltaRica language. Syntax errors
prevent the model simulation or analysis. The full syntax check is automated. Syntax errors are reported and they are
localized (more or less accurately) in the model code. It is recommended to check the syntax of modelling unit before
reusing them in hierarchical modelling unit to ease the global model debug.

The verification of the model execution ability aims at detecting whether the simulation of the model may fail.

This is dependent of the language operational semantics i.e. the rules that are defined to run a model syntactically
correct, in our case AltaRica dataflow.

Errors can also be prevented by following recommended practices. For instance it is recommended to write a unique
equation to define the value of an output flow case by case. We use “if then else” or “case” constructions to ensure a
methodical consideration of the assertion. The “else” case ensures that all cases are considered while giving a fallback
value.

Problems may also be raised by creating circular assertions after connecting modelling units in a system architecture
with loops. This is detected by consistency checks of the global model. This kind of issues is developed in particular in
section 10.1.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 96 / 141

LI
o
ot 0t o

SAINT qutemx

IRT Saint Exupéry LIV-S085L01-001

\\\.

XU PERY IRT SystemX ISX-52C-LIV-1285
Issue 4
13 - | - Using MBSA to support industrial development in the aeronautics industry -

Recommended Practices

This section will provide guidance in order to use MBSA models to support the safety activities during systems
development.

13.1 -1-ARP4761A / ED-135A activities

SAE ARP4761A and its EUROCAE complement, ED-135A ([REF B]), present guidelines for performing safety assessments
of civil aircraft, systems, and equipment. It may be used when addressing compliance with certification requirements
(e.g., CS 25 for large airplanes, CS29 for large helicopters or CS-E for engines).

This document deals with both processes (Aircraft Safety Assessment (ASA), System Functional Hazard Assessment
(SFHA), Preliminary System Safety Assessment (PSSA) ...) and methods that may be used to conduct the processes (Fault
Tree Analysis (FTA), Dependence Diagram (DD), Markov Analysis (MA), Failure Modes and Effects Analysis/Summary
(FMEA/FMES) ...)

The A version of SAE ARP4761 (and more particularly the appendix N) introduces the MBSA as a new method, which
achieves results that are equivalent to those obtained from the classical e.g., Fault Tree Analysis (FTA) safety analysis
methods.

The appendix Q describes, in detail, a contiguous example of the safety assessment process for a function on a fictitious
aircraft design, the “Decelerate wheels” function, performed by the “Wheel Braking System”. More particularly, the Q9
part of the appendix gives an example of how a MBSA method may be carried out to support the safety analysis during
a Preliminary System Safety Assessment (PSSA).

The latter will be quoted or referenced to illustrate the point.
13.2 - |- Generality about safety assessment with MIBSA

The safety analyst should get explicit inputs from the design team or capture on his own rationales to fully understand
the design characteristics. As long as the upper level requirements are not fulfilled, the design architecture is improved
and refined. The MBSA model evolves accordingly.

The design architecture continues to be refined notably for definition reasons. The model will not be refined up to the
same level. The stop criteria may be to have sufficient decomposition to get independent blocks regarding the effects
of random failures. An other stop criteria for refining the model may be the ability to verify each safety requirement.
At each iteration, this process was followed:

1. Take into account MBSA inputs: Failure Conditions, refined requirements, design architecture and updates;

2. Model this architecture: modeling assumptions to be confirmed, acceptable simplifications;

3. Perform the MBSA Failure Conditions Evaluation (generation of functional failure sets and/or minimal cutsets,
probability computation);

4. Assess the PASA (Preliminary Aircraft Safety Assessment) and refined safety requirements compliance;

5. Provide MBSA outputs: new requirements, design recommandations or even architecture suggestions to cope
with non-compliant requirements.

Note that, even if it is possible to do it with a MBSA model, it is efficient to do DAL allocation and probability budgets
(i.e. qualitative and quantitative objectives) with a high-level Fault Tree.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 97 / 141

LI
o
ot 0t o

\\\. SAINT qutemx
XUPERY

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

13.3 -I- FDAL/IDAL assignment

The FDAL/IDAL assignment (Functional/Item Development Assurance Level) is based on the Functional Failure Set (FFS).

The definition of a Functional Failure Set (ARP4761A ([REE B])main body § 2.2) is:
“Functional Failure Set: a set of one, or more members that are considered to be independent from one another (not
necessarily limited to one system), whose development error(s) leads to a top-level failure condition.”

A parallel is drawn between FFS and MCS in ARP4761A([REFE B]) Appendix P § 3.2.3:
“A FFS is the equivalent to a fault tree minimal cut set, whose members represent the result of potential development
errors rather than failures”.

In this case, the MBSA model "failure events” described in Q9 § 2.2 represent development errors (for hardware as well
as for software).

The FFS for each Failure Condition (FC) (e.g., Q9 § 4.3.1 and § 4.3.2) will imply DAL assignment constraints (Q9 § 4.4.1)
and independence requirements. At this point, some common modes (such as common resource systems, common
hardware development or common software development) have already been taken into account.

The common resource systems follow from the overall integration (Wheel Braking System, Hydraulic System, Electrical
System). The hardware/software common modes are handled through Common Cause Failures (CCF) definition.

A post-processing analysis based on “Attributes”, which can be assigned to each failure event, allows to identify other
common modes as much as possible.

Note that in this proposition, the FDAL/IDAL assignment is optimized by engineering judgement. The model is only used
to verify that DAL are correctly assigned regarding the ARP rules and the chosen safety principles.

13.4 - |- Fail-safe assessment and probability computation

The fail-safe concept (no single “random” failure should lead to a catastrophic Failure Condition) and the probability
computation are based on the Minimal Cut Set (MCS).

A Minimal Cut Set is a set of one, or more members whose random failure(s) leads to a top-level failure condition.

In this case, the MBSA model "failure events” described in Q9 § 2.2 represent random failures (for hardware only), have
their own probability laws and their own failure rates.

The MCS of the catastrophic FC should not have first order member (Table Q9-10), and each FC should meet quantitative
safety objectives (Tables Q9-8 and Q9-10), depending on their criticality.

13.5 -I- CCA assessment and independence principles

This part deals with Common Causes Analyses (CCA), which cover Common Modes Analysis (CMA), Zonal Safety Analysis
(zSA) and Particular Risk Analysis (PRA).

The definition of a Common Cause (ARP4761A ([REE B])main body § 2.2) is:

“COMMON CAUSE: a single failure, error, or event that can produce undesirable effects on two or more systems,
equipment, items, or functions.”

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 98 / 141

N L wrdestes IRT Saint Exupéry LIV-S085L01-001
(FI%\\‘ SAINT SqStemx IRTS X ISX-S2C-LIV-1285
T EXUPERY ystemA A2t

Issue 4

Common causes issues can be addressed in several ways:

- By integrating them directly into the model
- By evaluating them through post-processing of the cuts (FFS or MCS) enriched with attributes

Hera are some examples explained:

a) Electrical power supply

First method: create electrical power supply attributes, with values that represent the different bus bars (AC
and DC). If in a MCS of order 2, both equipment are powered with the same bus bar, the cut recalculated in
relation to the attributes will be order 1.

Second method: create the electrical power system with its bus bars (which can also have their own common
modes, for example the engines...) and integrate it with the system of interest. Then the equipment of the
system of interest will include a dedicated electrical power supply input, linked to the suitable bus bar. This
input will obviously impact the behavior of the equipment (through the state or the assertion).

The first method is easier to implement but allows only to assess cuts at order 1. The second method needs
more work but allows to assess cuts at any order, to combine power supply system failures and the failures of
the system of interest, but also to assess more precisely the impact of various failure modes (loss, erroneous...).

These methods are applicable for any power supply (hydraulic, fuel, pneumatic...)

b) Development errors

First method: create development errors attributes, for example “Autopilot software development”.

Second method: use the synchronization artefacts proposed in some tools (called for instance Common Cause
Failure in Cecilia). These synchronizations will create events which will appear in the cuts (FFS).

Third method: create nodes which will represent the development errors and which will be linked to the
equipment through dedicated inputs.

The first method is easier to implement but less accurate, the second one can be time-consuming in case of
many common modes to assess, the third one increases the size of the model but allows to have a graphical
representation of common modes.

c) Zonal threats or particular risks

First method: create zonal attributes, with values that represent the different zones where equipment are
installed.

Second method: create a zonal view, whose equipment will represent the different zones. The failure modes
will represent the zonal threats (internal or external) that will impact the equipment installed in these zones.
The equipment of the systems (systems of interest and power supply systems) will be linked to the zones
through dedicated inputs.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 99 / 141

Teet e IRT Saint Exupéry LIV-S085L01-001

N « il
(,'2%\\\\. SAINT System>
(T EXUPERY T IRT SystemX ISX-52C-LIV-1285

Issue 4

The first method is easier to implement but less accurate, the second one will allow to have a graphical
representation and to be more precise (which threat impacts which zone, what is the impact of each threat on
each equipment behavior...).

Note: this topic is not addressed in the ARP4761A([REF B]) document.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 100 / 141

\\\.
XU PERY

14 Appendix

SAINT Systemx

14.1 - Get Started with the tools — Cecilia

This chapter deals with the basic notions to start modelling with SATODEV Cecilia tool.

14.1.1 Introduction

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

Before to start it is recommended to come back to the questions to asked before starting, by referring to §5

and GetStarted kit.

The COM/MON pattern example is described in §5.2 and GetStarted.

14.1.2 Open an existing project

In Cecilia, open a model corresponds to import function. To import a file do: File> Create > Import> Import
(Cecilia .xml) then select the » .xml » file to import.

#R Cecilia WorkShop [New)

File Library Edition MBSA FaultTree Tools Help

| dB Create ..
B Save Ctrl=S
[} lose Ctrle W
Export
Import
Printing format
B Preview Ctrl+Maj+P
| & Print CtrleP
2 Docbock Export Alt«D
[] Word2003 (Xml) Al-W
() aQua Cul-Q
I

Import (Arbor-V5 : *xml)

Import (Ocas-V5: ".exp)

mport (Arbor-V4 : ".dag/".def, *.ara)
mport (Arbor-V2 : “arb

import (CAFTA)

Import (FaultTrees : *.mdb)

Figure 75: Cecilia GUI — open a existing project

e Q R f10% Aaym F-W)»HE]
Import (Cecilis : *xml)

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

101/ 141

* o0

i Wi eRies IRT Saint Exupéry LIV-S085L01-001
f\\\\ SAINT System>
EXU PERY el st IRT SystemX ISX-S2C-LIV-1285

Issue 4

14.1.3 How to create a new project
Open Cecilia tool by clicking on cecilia.bat.

Create a database as described below in the figure:

CECILIA WORKSHOP

Select database:

(4 DASSAULT

A VIariIrow

Figure 76: Cecilia GUI — database creation #1

To create a new data base: select the location and name by filling the blank field in the image below or clicking
on “Create new database”.

#R Change database x

Input the name for database Nouvelle
Select a type of database H2 ~
Connection parameters

H2 database (file *.h2.db)

Create new database ‘

vaidate | | Cancel

Figure 77: Cecilia GUI — database creation #2

Write the name of your database in the field “Input the name for database”.

Then create the project through the add project button:

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 102 / 141

* o0
B
e B e

(&N\\\k SAJ NT qute‘f.n % IRT Saint Exupéry LIV-S085L01-001
T EXUPERY s IRT SystemX ISX-S2C-LIV-1285

Issue 4
File Library Edition MBSA FaultTree Tools Help | bt
aHE S RBMAC > Q Q| Z2ym EvW) - :
: : B Project window:
l Wsﬂa Components & Types (&l Operators Others Click right
(2 cyde osdillation transition
So RPN ik i
£-E£3 COM_MON
-4 Models EH Add (associated file)
=20 ;gMMON B4 Edition

(] logics F4 Remove €3 Createa new project X
C] MBSA_Ex Properties Proct Getstarted
£ys2¢ 7
£ Control_Loop / Freeze Comments Access rights
(Z] Local_event_cycle B
-] Switch Copy

S LXJ Cut

e i B Paste

3] oK Cancel

; ’ Expand all

5 Collapse all

gy Export
g / , 7 f‘_‘ i Import >
ey

Figure 78: Cecilia GUI — create new project

Then to add the system, the first step in Cecilia consists in create and organize the model. Each model has to be
divided in:

Project > System > Model > Equipment > Component > issue.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 103 / 141

* o0
B
ctLe e e

I§\\§ SAINT Sys tem ¥ IRT Saint Exupéry LIV-S085L01-001
($ EXUPERY l‘l IRT SystemX ISX-S2C-LIV-1285

Issue 4
To add the system, right click on add Add button in the following menu:
File Library Edition MBSA FaultTree Tools Help

SES s mBAC - QR

& Projects (&) Equipments () Components Types ¢

[cycle oscillation transition
£ ExampleLLI
(] logics
O
Cmesat
£ysx
20 Cor Bl Add
=
===

Add project 21 Create a new system X

-0 Path [GetStarted
(JLoc
-] swi Ed[Add one ele

Remaove

Properties Comments | Access rights

Freeze

System | COM_MON|

Copy
Cut

Paste

o= &

Expand all
Collapse all

Export
Import >

Figure 79: Cecilia GUI — adding the system to the project

Then to add the model, right click on add Add-> Model button in the following menu:

| - o - db "= wm W " ST AR

& Projects (&) Equipments (=) Components =] Types (@ O

(Z] cyde oscillation transition
3 ExamplelLLT

(] logics

£3 GetStarted

a -
@mmA_e £ Addproject — The new model appears in the browser
952 Cllck nght 20 Create a new model X

-] Conty Add -> Model

®- Local Path [GetStarted/COM_MON }j GetStarted
-] Switd Add a new model (MBSA) B A
: Add -> DSF Model |model_COM_MON| . =y COM_MON

Add -> FMEA S T Accessighis E}‘ Models

Remove; Em odel_COM_MON
] ol 1

i 1

- Prop

Freeze

B C A X
3 ot Double Click
@ Paste Sl e To open it
Expand all Issue 1 of your model
Collapse all
Export
Import >

Figure 80: Cecilia GUI — adding the model to the system

Now it is possible to add component and equipment. The hierarchical order described in introduction of this chapter
has to be respected (Project > System > Model > Equipment > Component > issue). The next figure shows a graphic
representation of this hierarchical order.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 104 / 141

\\\ SAINT
XU PERY

‘ () Components

| (=] Types
o Projects -

£ GetStarted
(=~ COM_MON
= . Models
. =3[COM_MON_Equipment
- L@g
. 2] model_COM_MON
@ Fault-Trees

Figure 81: Cecilia GUI —

Refer to §5 to create the models to create the domains suitable for your needs.

Operators

Oth

(] Equipments

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

Hierarchical node A

Hierachical node B

D

Atomic Atomic Atomic
node C node D D node E b

Hierarchical node A

Hierachical node 8

Atomic
node C

Atomic Atomic
nodeD B 1s N nodeE

adding component and equipment

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

105/ 141

\\\ SAINT qut'ér'i"x
XUPERY &

14.1.4 Create a domain (type in Cecilia)
To create a type, the following GUI has to be used:

File Library Edition MBSA FaultTree Tools Help

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

[sas smano-aq

FALEE AR

Figure 82: Cecilia GUI -

&% Projects (&) Equipments () Components (=] Types (] Operators Others h DL MY,
() cyde osdillation transition i
£ ExampleLL] L s
=@ Models I8 (3 Ly eo)
=3 COM_MON Llidar
@-(] logics i
() MBSA_Ex S e
£352C 4
-] Control_Loop L e
-] Local_event_cyde A TN
@] Switch AT YT
iy -.‘i'} 77,
ax WA h T
WA

domain creation #1

The type button allow user to define the domains, of the State and of the flow variable.

Then a new family has to be created. This would be the sub category of the types of the project, as described

in the following figure:

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

106 / 141

ﬁg\?\\\\ SAINT
(T EXUPERY

23 Create s new family
Famly Types COM_MON

(o Access rights

File Library Edition MBSA Faultiree 100ls Help

SHG tmMBAO o

SR

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

Aum Fvl () >ER

B Projects (] Equpments () Components (&l Types (1) Operators Others

2 Create a new family

Famiy oLg|

Comments

Accessrights

&oE

X Sperfo

B () Level

(£ Quaity

£ Types_COM_MON
=10 00

o

Add family

Add ->

Enumerates

®E

Add -> Record

id

Remove
Properties

Freeze

Copy
Cut

Dweg

Paste

Expand all
Collapse all
Export

Figure 83: Cecilia GUI — domain creation #2

When creating an enumerate type, the definition of possible state domains has to be perform thanks to the

following interface:

(State_OK, State_ LOST, State. ERR)

& Create a new enumerate type
Path [Types_COM_MON/OLE
Enumerate StateOLE

Comments Access rights

X

Cancel

L4 Types_COM_MON/OLE/StateOLE;1

General Pproperties

Type name StateOLE

=[O &=

Choose the color
of the flow when
applicable

&|

MName State_Err

Close

Note boolean (true/false) type are included in the language
so do not need to be created (but possible)

‘Logs

Add an enumerate

Figure 84: Cecilia GUI — domain creation #3 - enumerate

When creating a record type (bus), the definition of possible state domains has to be perform thanks to the

following interface:

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

107 / 141

(f;@& SAINT qut m X IRT Saint Exupéry LIV-S085L01-001
T EXUPERY T IRT SystemX ISX-S2C-LIV-1285

Issue 4

=l Types_COM_MOM/Bus_Example/Bus_CMD;1 R=rl B2 E

General Properties

Type name |Bus_CMD |

Mame Type Crientation Cross field Link to display
CMD1 ypes_COM_MON/... Mormal O

Types_COM_MOMN/... Mormal

CAENIEVE I

Name |CMD2 |

Type |predefine « | |Types_COM_MON/GenericOLE/TypeOLE; 1 [[oo | | Assign |

Figure 85: Cecilia GUI — domain creation #4 — record

Then the connection to the data is made through the graphical interface:

oo =
Content £ Synchronizatons [] Altarica code ~ Initial Configurations (] Modified Events (g Unks colors Properties
‘l ~]
coM_MON_11
f‘[]:nO—iOl FC_CAT Errl
I+m L
funco2 A* C_LOST MIN1
[On——
@& Create a connection X
Creation of a connection between :
funcO1 COM_MON_11.in1_in2
e o_cmd CMD1 B
{1l imcoro.md > com M [0_cmd CMD2 |
OK || cancel

Figure 86: Cecilia GUI — domain #5 — record data connection creation

The types are now created.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 108 / 141

* o0
e o0

N s . ,
S s %0 ® IRT Saint Exupéry LIV-S085L01-001
=) SAINT Systemx
(T EXUPERY el st IRT SystemX ISX-S2C-LIV-1285
Issue 4
14.1.5 Function and color of the domains

The colors can be allocated to the domain in the below window:

General Properties

Type name |StateCOLE

Mame Color

State_OK
State_Lost

Byld 1 ¥

Mame |State Err |

| Save | | Close | !Logs

Figure 87: Cecilia GUI — domain #6 domain color

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 109 / 141

IRT Saint Exupéry LIV-S085L01-001

@\?\\\\ SAINT
(T EXUPERY

IRT SystemX ISX-S2C-LIV-1285

Issue 4
The colors for the links can be allocated in the below window:
& Cecilia WorkShop [52C_examples] - [m] x
File Library Edition MBSA FaultTree Tools Help
EEHE P RRMN - Qs MEAT BE AXTREIS LY P& Y--Fo I SR R BRSO P L B S
Borrojecs | & B OM_| LCOM_MON:2 =2
(& Operators Others
() Components 3 Types Content 7 Synchronizations [E] Altarica code Initial Configurations [Modified Events && Links colors Properties
g POLEN [= ‘\’;“‘ Define colors Last colors
- §
S HFEXEEN ErT
GenericOLE
= B TEENEENE | [[
=3 StateSwil
an EEEEEEEE | | [
ENEEEEEE | | [
EEEEEEEE | | [
EEEEREENE [[[
Preview
By 4 @
e o
Save Syntax Consistency Close ! Logs
H 2] model_COM_MON;2

Figure 88: Cecilia GUI —domain #7 links color

14.1.6 Modelling unit creation in the tools; contactor example

This chapter deals with how to build the modelling unit with the example of the COM/MON contactor. It describes
the GUI (Graphical User Interface)).

The first step in Cecilia consists in create and organize the model. Each model has to be divided in:
Project > System > Model > Equipment > Component > issue.

Then the first step to create the modelling unit has to be done at the component level:

File Library Edition MBSA FaultTree Tools Help

SHS s REMN QY 2yl WU HERAFER | DRT 8 &

&% Projects (%] Equipments |] Corwonentsl [Z) Types (2] Operators Others
] CoM_MON_Component

£ genericBlock - - s
o %m @) :Creste anew family X File Library Edition MBSA FaultTree Tools Help I
® i y j3 |
@] OLE Path JCOM_MON_Component & = 5
bt E SH& smERMACC QY Y |
e Sub-Famiy || i
-] Bool P
-] NoH = g 2 g Projects (%] Equipments (<) Components (5] Types (] Operators Others
@0 Comments Access rights ¢ &
3 Moitor b 3 COM_MON_Component
Dobs =3 Contactor
£ select e ;i ER=)
(21 specificBlock - _ Q1
(2] specificOperator e S
OK Cancel i

Figure 89: Cecilia GUI — modelling unit creation #1

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

110/ 141

IRT Saint Exupéry LIV-S085L01-001

IRT SystemX ISX-S2C-LIV-1285

(,‘R@ﬁ. SAINT
(T EXUPERY
Issue 4

Then right click on the component contactor to add a new issue of the instance (if there are more than on
component from the same family, i.e. more than two contactors in our case):

ﬁ Cecilia WorkShop [$2C_examples]
qile Library Edition MBSA FaultTree

‘ S RRM

B, Projects
Lx] Operator

() Components

i3 genericBlock

-] Bool

- NOH

CjoE

(-5 OLE _GetStarted
50

k=]

#-(3 funclg
(-0 funcld =
-0 funcC
[C Gene =
- testl | BH
(-7 testl |
() testl |

() genericOpera;

(£ Monitor

(=] Equipments
Others
= Types

5

®

Add family

Add Add a new issue

Edition
Remove
Properties

Freeze

£ 0bs By
-] GetStarte &

-] Obs @

Copy
Cut
Paste

) select
() spedficBlock

£ specificopera Expand all

Collapse all
Export

Figure 90: Cecilia GUI — modelling unit creation #2

There is the possibility to copy paste and modify and create a new issue, to replace. Then it is time to define the
issue of the component: the contactor itself.

[= COM_MON_Component/Contactor/Contactor; 1

== E=

Icons | Altarica code

§Genera|§| = uol @Slabesl & Events |

Contactor —__

Name :

Width : 80

Height: |80

Tcon fle : Definition of the transition
Draw border

" and of the assertions

[#] Move ports automatically when components are reshaped T

—Definition of the events

Resize T
e —Definition of the internal States
Properties T _
Createdat: 6/22/213:52PM (admin) T~ it
Modified at : 6/22/21 3:52 PM (admin) "D"gr'!"rl'l't'!'g"'r! Of the |/O
Version : 0
Comment :
I Tip! You can copy/paste any element
and modify it
Save Syntax Consistency Close

Figure 91: Cecilia GUI — modelling unit creation #3 — component defintion

The buttons highlighted in green allow to check the AltaRica code. To use the issue of the component in the model the
assertion has to be define. Please refer to §(e).

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

111/ 141

e

NN s wiilentety IRT Saint Exupéry LIV-S085L01-001
(&%\\\& SA‘INT qut mx aint Xupery
T EXUPERY e e IRT SystemX ISX-S2C-LIV-1285

Issue 4
(a) Create an internal state variable

To define an internal state variable of the model open the States tab:

1 €9 genercBiock/OLE GetStarted/contactor2 ==

General (] Ij0 [WarrStates G Events [Ieons] Altarica code

Mame Type Value
StateSuitch Types_COM_MON/TypeStateContactors. . [Ok

& ®][+
Name | |
Type |boo4 vl Value |ﬁ|se vl | Assign |
| Save | | Syntax | | Consistency | | Close |

Figure 92: Cecilia GUI — modelling unit creation #5 — States tab

There are predefined types. If you need specific type, as Types_COM_MON in the example above go to §0 to deal with
the types.

(b) Create events and transitions

To define the events that will impact the component, open the Events tab:

General [*]1If0 @states [cons 5] Altarica code

Name Comments FRB Given laws
stuck_open N
stuck_dosed - / - D
fail_oscilation g

Possibility to link the ~

@& Edition of events properties X
failure rate pe— betbuton
®@Lew Qrre O Hone
Double Law ol
Parameters
Attributes
< HEE
Name Type Valug
EREAE N
Name z
O Inspected O In-fight tested (@) None
[sve | [smtax | | Consstency | [Oose |
fit| 5= —

@ IRT Saint Exupéry & IRT Systemu< All rights reserved Confidential and property document

Figure 93: Cecilia GUI — modelling unit creation #6 — events definition

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 112 / 141

2ot IRT Saint Exupéry LIV-5085L01-001

\\\ SAINT qutemx
EXUPERY 2

IRT SystemX ISX-S2C-LIV-1285
Issue 4

(c) Populate the probability laws

The probability laws have to be populated in the Given Law field from the Event tab in the modelling unit definition

window as shown in Figure 93: Cecilia GUI — modelling unit creation #6 — events definition.

(d) Create the flows

Prior to define the flows, it is necessary to define the inputs and outputs of each component.

To define the inputs / outputs of the model open the I/0O tab:

CJ genericBlock/OLE_GetStarted/contactor; 1 o= ==

General ("1 1/O [@p States [Events [Icons [E] Altarica code

Name Type Onentation X Y

i_opening_cmd bool in 35 29]]
o_and Types COM MONfGen.. | out || & | 14 y Flow orientation

Only compatible connexion
will be allowed

S to cleﬂne

The posmon + manually Local variable are allowed
¢ « local »

= | [) =Y ==

I When you modify an existing value:

i_cmd - - . .
e Assign to take the modification into
ype predefine 1c0LEfI’vpe0LE;1_ Crientation in ~| X 0 Y 14 M

| Save Syntax Consistency Close
Figure 94: Cecilia GUI — modelling unit creation #4 — 1/0 tab

Then to define the flows, come back to the graphical view and trace the link between the ouput of the first component
and the input of the second component.

(e) Create an assertion

To create an assertion, open the AltaRica code tab of the component properties window. Please refer to §4.5 to deal
with assertion.

(f) Set the brick size and the flows position

The brick size has to be defined in the General tab by populating the below fields:

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 113 / 141

\\\ SAINT
XU PERY

O COM_MON_Cormpenent/Contactor/Contactor 1

i 1o States [Events [of] Icons Altarica code

MName : Contactor

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

(o [2 =

Width : g0
Height : 30
Icon file

Draw border

Move ports automatically when components are reshaped

Resize
Properties
Created at: 62221 3:52 PM (admin)
Modified at : 6/22/21 3:52 PM (admin)
Version : 0
Comment :
Save Syntax Consistency Close

Figure 95: Cecilia GUI — set the size of the modelling unit

The flow position has to be defined in the I/0 tab:

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

114/ 141

2ot IRT Saint Exupéry LIV-5085L01-001

\\\ SAINT qutemx
XUPERY

IRT SystemX ISX-S2C-LIV-1285

Issue 4
() genericBlock/OLE_GetStarted/contactor;1 = [(3w
General [11/0 States Events Icons Altarica code
MName Type Orientation X ¥
Types_COM_MOM/Gen...
i_opening_cmd bool in 35 29
o_cmd Types_COM_MOM/Gen... out 89 14

E.l 4 I oSz + | 4=

Mame |i_cmd

Type | predefine -~ icOLE/TypeCLE; 1 Orientation |in « | X||[0 ¥o[14 Assign

Save Syntax Consistency Close

Figure 96: Cecilia GUI — flows position

The position can be set either with predefined position or by populating the x,y coordinates.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 115 / 141

* o0
.
LA B8 A2 3

(lla@‘ SAINT qu tem X IRT Saint Exupéry LIV-S085L01-001
T EXUPERY e s IRT SystemX ISX-S2C-LIV-1285

Issue 4

(g) Create the conditional style

General [*]I/0 [States ﬂEvenls [1cons EE] Altarica code

Name Type Value
StateSwitch [Types_COM_MON/TypeStateContactor/s... |Ok
/'

Initial value

AL

Type bool + | Value |false

(h) Instanciate a « modelling unit »

The instantiation of the model unit is made through a drag and drop from the tree to the main window:

R Cecilia WorkShop (S2C_eamples] - 6 X
File Library Edition MBSA FaultTree Tools Help

[6Es smancc a7 vm S O ISRAMR BT o 8/A<L BIAFFrs N LULILl | = |

@ Types (@ Operators Others.
SProjcts 8 Equpments 0 Components
Content Atarica code. Properties

3 genericBlok ~ 7 8 & bd

]
%é"f Drag&Drop

Layers | Daplay Nodelabels

H[_'m-nu.mnu]

[6:24PM [6/22721

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 116 / 141

RS
es

(‘\\\ SAINT qute e IRT Saint Exupéry LIV-5085L01-001
EXU PERY IRT SystemX ISX-52C-LIV-1285

Issue 4

(i) Trace the links betwen « modelling unit »

Connect the modeling units, « components », « equipment » and observers

If necessary set configuration (States initial values), otherwise set to defined default values
Set synchronizations.

Note: flows types and orientation need to be compatible

= GetStarted/COM_MON/model_COM_MON;2 ==

Content #¥ Synchronizations Altarica code Initial Configurations Modified Events 4 Links colors Properties

Contactor
FC_Err CAT

FC_LOST MIN

() Create the observers (link with FC)

The observers are modeling artefacts used in the MBSA tools to calculate the Failure Conditions. It consists in a
component that is observing the state of the variable associated to the failure condition. By calculating the probability
of the different states of this observers, we can get the probability of the FC.

In our example the observers are defined as below:

FC1: Erroneous output (CAT)

NSy Observed value CMD=ERR
—

Variable CMD

Type: OK, ERR, LOST FC2 Loss of output (MIN)

Observed value CMD=LOST

Figure 97: Observers definition

In the Cecilia tool, the observer are the below components (FC_Err_CAT and FC_LOST_MIN):

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 117 / 141

o oo
5008

N 5 wie® aint Exupér - -
(I&%\\\ SAINT qutem IRT Saint Exupéry LIV-S085L01-001
(T EXUPERY L IRT SystemX ISX-52C-LIV-1285

Issue 4

U GetStarted/COM_MOM/model_COM_MON;2 = =

Content £ Synchronizations Altarica code Initial Configurations 3] Modified Events &g Links colors Properties

g

funcol Contactor
|: - > FC Err CAT
funcoZ FC _LOST MIN

Figure 98: Cecilia GUI — observers

The code inside the observer is the equation that lead to the observed variable to be the right value depending on the
failure condition. This code has to be written in AltaRica.

Refer to §5.2 to get the code.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 118 / 141

* o0

N g wiees o IRT Saint Exupéry LIV-5085L01-001
(,'&\\\\ SAINT qutemx it Bxupery
T EXUPERY o o IRT SystemX ISX-S2C-LIV-1285

Issue 4

(k) Launch a step by step simulation

To launch a step by step simulation use the following interface:

 or stop simulation

E Cecilia WorkShop [S2C_examples)
le Library Edition MBSA FaultTree Tools Help

Q@ v2vm BrFrC O > SRAAR|RBT 6 w4

AHE Y BERAo o

B Projects & Equpments)| S0 G

[£] Operators Others
) Components Bl Types Content £7 Synchronizations Altarica code Initial Configurations B Modified Events &} Links colors Properties
2] genericBlock

[,

L R et

Figure 99: Cecilia GUI — launching step by step simulation

Then to analyze and configure your step by step simulation, the following window has to be use:

o 2B EvW((PSRRI DR 8 b AL D BT N %I | ==

'v’ &b GetStarted/COM_MON/model COM_MON;2
:: %“" appe o
'/ ,“’,g:‘} - 7 Contactor - i @'C_lxx_crl‘ = assnsiss
8 ¥ lsolation B =
i Mgo.:»ng‘ 4 E!c_ms'r_nm foncDl ok <2
= L
Possibility to _ .
7 import a Double clicks triggers the event
simulation .xml
file generated
from -
computation e Vo Hone e
o Contactor.StateSwitch Stuck_Closed
funcO1.5tate State_OK
funcO2.State State_OK

9"9""‘%29?9"}9"2“}9

Figure 100: Cecilia GUI — analysing step by step simulation

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 119 / 141

@\?\\\\ SAINT
(T EXUPERY

({)] Calculate the Cut-Sets

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

To calculate the cut-sets the first step is to launch a sequence generation. Please use the below GUI :

B Cecilia WorkShep [S2C_examples]
File Library Edition MBSA FaultTree Tools Help

i Simulati > _
SR=F= v e vidym EvW () D ERFIR BRDH A R(aLL LA B F=E

Check syntax ... Alt+5

) Companents Uy Statistics ..

&% FaultTree generation (ABC) ... Alt+T

[T Operators @ Check properties ... At lel_COM_MORN;2

5, Projects I Altarica code Initial Configurations Modified Events g Links colors Properties

N
[cydle osdillation
4|

(27 ExampleLL @ Sequence generation (generic) .. Alt+G

s @+€]

By ‘
% Isolation g
(2] MBSA_Ex funcoZ i 4

= GetStarted ,E H -
é £5 COM_MON = ‘1Sequence generic generator Takes any stepper in parameter‘l “ontactor
- T
= Models - . FC _Err CAT
-B4] model_COM_MON @F = >

r A
LFC_LOST MIN

-

Save Syntax Consistency Close

| 2] model_COM_MOMN;2

9:04AM |B/25/21

Figure 101: Cecilia GUI — calculate Cut-Sets #1 launching sequence generation

Then configure the output:

‘@ Sequence generation X
Targets
EE®®E HE ¥
Target File Order
Saving
(@ File Overwrite v
Database |Ovenarite
General Filter events
EETEELE R [] Absorbent target
(O) Combination
@® Permutation Result Set As min-sequences ~
O Repetiton Resutformat 1n MCS format - | Minimum cutsets
Post-Processor L daomat 1| — Boolean equation (.xml format) to be imported
o L. xml file to support simulation
oK Cancel

Figure 102: Cecilia GUI

— calculate Cut-Sets #2 output configuration

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

120/ 141

@ﬁ. SAINT
(T EXUPERY

.

Systemx

* o0
.
et e e

Then the next step is to add one computation:

First step: Add one computation

#& Sequence generation

ﬁ Target selection

633 main
-3 Contactor
E1-(2) FC_Err_CAT

| @ icone= 1
| @& nput= Ok

5 output= false
= false

E!-[‘_‘] FC_LOST_MIN
() Isolation

SN EEEEEE—

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

Cutsets of this value
Regarding chosen
Configuration (States)
Note: possibility to set the
configuration during simulation

Post-Processor | None

oK Cancel |

Targets
== \@ EEE
Target File
taraet Output file
Saving
@ Fie Overnrite
Database |Overwrite
General Filter events
Generation type : [] Absorbent target
() Combination)
(@) Permutation [=ries: |As min-sequences
() Repetition Result format | In MCS format

-3 funco1
-6 funco2

ot £ syrcvonons () e code sl Conburanora Mosddedvents (ks s operses

cos wos 11 e_cut xeer

¥o_LoST_HINL

ayers | Duglay Nodelubels

Simtax Corsstency Cose

Figure 103: Cecilia GUI — calculate Cut-Sets #3 add on computation

Then the results are shown in the following window:

Compute cuts

4 ~ | order

Compute probabilities

Type :No probabilities compute
Time |1 hh |0~ imin 0 o sec

Compute events probabilities

Compute importance factors

Latent Spedific Risk

[] Reference calculation (to be stored in the application)
[Ignore previous reference calculation

OK | cancel

‘@ Nominal compute X

| ™

s Neminal compute : GetStarted/COM_MON/FC_CAT(1.0) : FC_Err_CAT.outputtrue o [[

Filter |None v |bel| |sort [byorder o |Limitat None CAA | Fields

Cut's proba... Events Comments Given laws FRE Inspected Attributes -
IContactor.stuck... | - | |- | P
funcO 1. fail_err fexponential 1.0000E-03 -
[funcOL.fail_err | lexponential 1.0000E-03 -
[funcO2.fail_err | fexponential 1,0000E-03 -

Info. [Cuts] o probabilties compute Cuts:2

Figure 104: Cecilia GUI — calculate Cut-Sets #4 Cut-Sets results

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

121/ 141

o oo
5008

NV celet aint Exupér - -
(é%\\\ SAINT qutem IRT Saint Exupéry LIV-S085L01-001
(T EXUPERY T IRT SystemX ISX-52C-LIV-1285

Issue 4

(m) Probabilities post traitment

14.1.7 Pictures import for icons

To import picture of icon you need to use the icon tab on the modelling unit window.

14.2 - Get Started with the tools — SimfiaNeo

This chapter deals with the basic notions to start modelling with AIRBUS PROTECT SimfiaNeo tool. Please be aware that
the full SimfiaNeo User Manual, including another Getting Started, is accessible from the menu Help> User manual.

Help

Welcome

(z) Help Contents

| User manual

#y Tipsand Tricks...
Cheat Sheets...

“& Check for Updates
L Install New Software...
gl Send Logsto Apsys support

About SimfiaNeo

Figure 105: SimfiaNeo GUI - open user manual

14.2.1 Introduction

Before modelling, it is recommended to come back to the questions to be asked before starting, by referring to §5 and
GetStarted kit.

The COM/MON pattern example is described in §5.2 and GetStarted.

14.2.2 Open an existing project
In SimfiaNeo, opening a model corresponds to the import functionality. To import a file, do: File> Import... then select
General> Existing Projects into Workspace then Next>.

SimfiaNeo

File Edit Modeling Validation Exploitation Documentation Window Help

New AlteShift=N> | 4 @ |2 53
[, Open Projects from File System..
Recent Files ¥
=11 Select -
trl+ Shifts |
Create new projects from an archive file or directory. H
ave Ctrl
e Select an import wizard:
ave Al Ctrie Shift+5.
type filter text
Revert
v (= General
Maove 1% Existing Projects into Workspace
& Rename.. f2 = Gt
Refresh I3 (= Othertosls
P Ctri+P
A Export Projects to Zip...
2 Impont...
= = 2 < Bac Finish
3 Bxport.. hoperties X [E]Image: N Back Next > Cancel
Properties Alt+Enter
SIEIERTER ? broperties available
Restart
Exit

Figure 106: SimfiaNeo GUI - import project #1

Next wizard enables to choose between:

- “Select root directory”: enables choosing a folder containing one or several unzipped SimfiaNeo projects

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 122 / 141

.o

(&Qﬁ SAJNT SLIStem o IRT Saint Exupéry LIV-S085L01-001
"% EXUPERY R

IRT SystemX ISX-S2C-LIV-1285

Issue 4

“Select archive file”: enables choosing a zipped (.zip, .tar, .tar.gz, .tgz, .jar) file containing one or several
SimfiaNeo projects

Import O X
Import Projects i
Select a directory to search for existing Eclipse projects. / y

-l
() Select root directory: Browse...
(@) Select archive file: as\ARPisecondiwith\fars\on.zid - | Browse...
Projects:
ARP4761_MoreComplex_MBSA_Example (ARP4761_M: Select All
Deselect All
< > Refresh
Options
Search for nested projects
Copy projects into workspace
[[] Close newly imported projects upon completion
[[1Hide projects that already exist in the workspace
Working sets
[Add project to working sets New...
Select...
@ <Back Next > Cancel

Figure 107: SimfiaNeo GUI - import project #2

Once having selected the project(s), click on Finish to import it.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

123 /141

o oo

N uleer ot aint Exupér - -
(é%\ﬁ SAINT SLIStem IRT Saint Exupéry LIV-S085L01-001
(T EXU PE RY T o arcuency IRT SystemX ISX-S2C-LIV-1285

Issue 4

14.2.3 How to create a new project

Open SimfiaNeo tool by clicking on SimfiaNeo.exe. Use the menu File> New> New SimfiaNeo project.

SimfiaMeo
File Edit Modeling Validation Exploitation Documentation Window Help
Mew Alt+Shift=N > (=5 Mew SimfiaMeo project
[} Open Projects from File System... = Project...
Recent Files > = Other.. Ctrl+N
Close Editor Ctrl+W

Clase All Editars Ctrl+Shift+W

Save Ctrl+5
Save As...

Save All Ctrl+Shift+5
Revert

Move...

Rename... F2
Refresh F5

* X

Print... Ctrl+P

Export Projects to Zip...
Import...

BE®

Export... roperties X [£] Images

Properties Alt+Enter

Switch Workspace B roperties available

Restart
Exit

Figure 108: SimfiaNeo GUI - create new project #1

Input a name for your Project and select Finish.

Mew SimfiaMeo project O X

New SimfiaNeo project
Create a new SimfiaNeo project ; .:’
Simfiaheo project configuration

Project name: COM_MONl |

@ < Back Next > Cancel

Figure 109: SimfiaNeo GUI - create new project #2

SimfiaNeo automatically creates a Project, System and Model with the same name. They can be seen in the Model
Explorer.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 124 / 141

o oo

N uleer ot aint Exupér - -
(é%\ﬁ SAINT SLIStem IRT Saint Exupéry LIV-S085L01-001
(T EXU PE RY T o arcuency IRT SystemX ISX-S2C-LIV-1285

Issue 4
Samfiahieo = COM_MON - o b 4
File Edit Diagram Madeling Vehbdation Explotstion Documentation Windaw Help
SR HEaveBEaB e f@E D | e a
B Motelbrplorer BT § = O & COMMON X =n
typefiltertest B-l¢élB-u-lef|a-|R-|RE B | 5 Palee
— Project
~ i COMMON 4~ i TS
[COMMON System > Tooks
@ Observers - -
N Brick
Diagram © InputConnector
® OutgaCennee..
& Trangle
Adet,
[0 Properties % =] Images mi=o
& COM_MON
B Libcaries [0 Leyers =n ~
T~ I Mentification . |dentification
. Fier text 5 B Userdata _
pe o Agpiied user data Narme' ki COM_MON
& COM_MON Description (3
Properties
Library
« Project Configuration
Dedault Mission Time (hours) [0
Project life [hours)) - ~

Figure 110: SimfiaNeo GUI - general overview

Top-level diagram of the Model is also automatically opened. Properties view is automatically updated depending on
currently selected element in Model Explorer, Diagram, Library...

14.2.4 Create a domain

Domains are managed through the Domains table. Open the table by selecting the menu Modeling> Open domains.

Simfialeo - COM_MON
File Edit Diagram Modeling Validation Expleitation Deocumentation Window Help
(& 2, {5 = Opencolors o @4 @ EE -
B Model Explorer | || & Openphases
o Opend
2 Open constants

type filter text M| P G- | &~

v 12 COM_MON

Figure 111: SimfiaNeo GUI - open domains table

Domains can be organized in folders, but this is not mandatory. Creation buttons are situated in the top-right corner of

the table.
@@ Domains of COM_MON Library % = 0
«e Domains of COM_MON Library [%N = E E
MName Domain Type Color Link Style Description
1 44eCMD JR—
2 @ State_OK Nominal Green
3 @ State LOST Failed Orange
4 @ State ERR Failed Red

Figure 112: SimfiaNeo GUI - domains table

Names of domains and values can be customized either directly in the table or through the Properties view when the
corresponding line/cell is selected in the table. Column named Type is used mainly for documentation purposes and can
be ignored when getting started.

Structured domains (for connectors containing several variables) can also be defined in this table. Each variable in the
structured domain is called a field.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 125 / 141

Teet e IRT Saint Exupéry LIV-S085L01-001

N « il
(,'2%\\\\. SAINT System>
(T EXUPERY T IRT SystemX ISX-52C-LIV-1285

Issue 4

14.2.5 Colors of the domains

Colors for Step-by-step simulation display can be chosen in the Domains table (see above) with a drop-down menu.

@@ Domains of COM_MON Library X = 0
«e Domains of COM_MON Library BB e X E E 0
Name Domain Type Link Style Description
1| 44eCMD _—
2 @ State_OK Mominal Green
® State LOST Failed {Orange |-
4 @ State_ERR Failed
Green ~
QOrange
Red
White
Yellow v

Figure 113: SimfiaNeo GUI - modify domains colors

Default list of colors is automatically provided in projects. Additional colors can be defined through the Colors table.
Open this table by selecting the menu Modeling> Open colors.

Simfialeo - COM_MON
File Edit Modeling Validation Expleit
L .= Opencolors E

B Model £ & Openphases

wype fiter ¢ e Open domains
14

Open constants
M

Figure 114: SimfiaNeo GUI - open colors table

Colors can be organized in folders, but this is not mandatory. Creation buttons are situated in the top-right corner of

the table.
=it Colors of COM_MON Library % = 0
i Colors of COM_MON Library B % B E E
MName Red Green | Blue Preview = Description

1| ERPuple 148 120|255 [

Figure 115: SimfiaNeo GUI - define colors

Colors are defined with a name and a RGB code.

14.2.6 Modelling unit creation in the tools; contactor example

This chapter deals with how to build the modelling unit with the example of the COM/MON contactor. It describes the
GUI (Graphical User Interface).

In SimfiaNeo, modelling units are called bricks, and are created directly in the model. They can then be added to the
Project Library if deemed necessary for reuse.

To create a new brick, open the Model Diagram (e.g. by double-clicking on the Model level in the Model Explorer on the
left side), select the Brick tool in the Palette and click in the Diagram.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 126 / 141

IRT Saint Exupéry LIV-S085L01-001

((E\\X\\\\ SAINT
(T EXUPERY

IRT SystemX ISX-S2C-LIV-1285

Issue 4
SimfiaNeo - COM_MON — o X
File Edit Diagram Modeling Validation Exploitation Documentation Window Help
A fuvaBisleef@ER e m Q
B ModelExplorer 5%, § = O & "COMMON X = o
[type filter text x|eErprifi-M- |2 &~ = 85 % %|B 7 [dFralette b
v & com_MON heao-X
~ 3 COM_MON pen 2.

» [/ COM_MON (g A oy Brick
ST diagram Create in diagram e [

O InputConmeter
® OutputConnec...

pkinkes:

(= Decorations

- Square
@ Circle
4 Triangle
AText

Figure 116: SimfiaNeo GUI - brick creation

Right after its creation, the new brick is automatically selected in the diagram, hence the Properties view at the bottom
of the screen displays information on this brick. Modify its name to “Contactor” and its generic behavior to “Custom”.

] Properties % =] Images 4 g =

General information MER<LILElY

A

2. Identification = Identification
Interr.\a!I states and I m
transitions/events [IETEs= B T

/‘@ Brick Style Description (%)

Inputs/Outputs @iy

Images and Colors

+ Class Behavior Generic behavior

Behavior (3 @[Custom] O MotRepairable (O Repairable O Virtual

Figure 117: SimfiaNeo GUI - general bricks information

(a) Manage internal state variables

State variables are managed in the Behavior tab of the Properties view. Dedicated table and buttons enable
creating/deleting variables, renaming them, switching their domain, and setting their value at initial time.

[Properties 3 [=] Images

€ Contactor 1 eror detected

(2] Identification + Behavior

e, Behavior
=& Propagation MName Domain Initial value
3 Brick Style stateSwitch D_Switch Ok
,—2 User data
ﬁ Add State Variable| | 3 Remove variable

Figure 118: SimfiaNeo GUI - state variables table

Predefined domains already exist. Domains created by the users are automatically added to the list of available domains.
Switching state variables domain usually display error messages in the interface as previously defined transitions
become not consistent with new domains. This is addressed in next step.

(b) Manage events and transitions

Events and transitions are managed in the Behavior tab of the Properties view. Dedicated table and buttons enable
creating/deleting events, renaming them, and customizing their probability/determinist law.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 127 / 141

o oo
L0 0 0

N % aint Exupér - -
(&%\\\ SAINT qutem IRT Saint Exupéry LIV-S085L01-001
(T EXUPERY T IRT SystemX ISX-52C-LIV-1285

Issue 4
[] Properties 3 =] Images g =
Contactor

2.} Identification = |3
A, Behavior
5 Propagation Name Domain Initial value Guard: .
4 Brick Style stateSwitch D_Switch ok stateSwitch = Stuck_Closed
B Userdata)

7@ Add State Variable ¥ Remove variable

MName Law Lambda

stuck_open Exponential 1.0E-6

stuck_closed Exponential 1.0E-6 Effects:

E\r'entS stateSwitch := Stuck_Closed
Effects
& Add event ¥ Remove event @ Add bucket

Figure 119: SimfiaNeo GUI - behavior tab

Selecting an event in the table on the left updates the contents in the fields Guard and Effects on the right. Guard field
is used to input the Guard of the corresponding transition. Effects field is used to input the actions of the corresponding
transition. In both fields, the shortcut Ctrl-Space enables using auto-completion feature.

Probability laws are filled directly in the Behavior tab (see above). Constants can be created in the Constants table (menu
Modeling> Open constants) to have several laws share the same numerical parameters.

(c) Create the connectors and links (flows)

Prior to link creation, it is recommended to create connectors on the bricks. Connectors can be created by using the
connector tools in the Palette of Diagrams, or by using the Propagation tab of the Properties view of a brick. In this tab,
dedicated table and buttons enable to create or delete connectors, rename them and define their domain. White dots
are input connectors while black dots are output connectors.

[T Properties » [=] Images

Contactor
2] Identification = Propagation
\ﬁ. Behavior
= Propagation Ol ©|x | T
S Name Domain Direction
£ Userdsts O inl D _Command In
O in2 D Isolation In
@ output D _Command Out

Figure 120: SimfiaNeo GUI - connectors table

To create the links, go in a Diagram, select the Link tool in the Palette, click on an output connector (black dot), then
click on an input connector (white dot). It is also possible to directly click on bricks instead of on connectors, in which
case new connectors are created.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 128 / 141

IRT Saint Exupéry LIV-S085L01-001

@\?\\\\ SAINT
(T EXUPERY

IRT SystemX ISX-S2C-LIV-1285

Issue 4
& *COM_MON x =\
BrBiv|lFlO-w-lmgla-E-@a|nw | m 3 Palette b
. FR— Al aD -\
AN / *-
. il (= Tools @
=] ¥ Brick

O InputConnector
. Dizomparatar @ OutputConnec...
¢ L *, Link
.) 9 (= Decoration

lem Square

@@ Circle
i Triangle
A Text

¥ | - Arrow

Figure 121: SimfiaNeo GUI - link creation

(d) Create an assertion

Assertions are filled in the Propagation tab of the Properties view of a brick. When selecting an output connector (black
dot) in the table on the left side, the right side section is updated to display and edit the assertion.

[Properties x [&] Images ME=e

Contactor_1

(2] Identification ~ Propagation

A Behavior |
< Pro ion O|le @|X E | 4+ Assertion Show all
= v e | . _ a
=5 Brick Style Name Domain Direction if Es‘tate: ;tstuck_npan)
b T hen lo
&, Userdata O iemd OLE In clse if (statel = stuck_closed)

O opening_cmd bool In then i_emd

® ocmd OLE Out else if opening_cmd // receive command to open the contactor

- then lost
else i_emd|

Figure 122: SimfiaNeo GUI - assertion edition

In this field, the shortcut Ctrl-Space enables using auto-completion feature.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 129 / 141

(}!{@\\ SA‘l NT Sl‘lstem;(’ IRT Saint Exupéry LIV-S085L01-001
T EXU PE RY weniur oe accue IRT SystemX ISX-S2C-LIV-1285
Issue 4

(e) Create the conditional style

Style of the brick is defined in the Brick Style tab of the Properties view of a brick. Default color and Default image drop-
down menus enable defining style in edition mode.

[Properties % [=]Images mE=a
Contactor_1
2.} Identification + Style
A, Behavior
= 7
= Propagation " [Allew to move cennectors on arrange all
F% Brick Style A Allow to resize the brick on arrange all
P, Userdata Default color White
Default image contactor w
Selectimage...
Brick conditional styles e X
A
Predicate Color Image
u INPUL EHONEGUS dnU N0 LU, | (OO S ENUNEDUS) diu | WIILE IMgye CondCionoiuseu_er

not opening_cmd

(statel = stuck_open) and

7 Stuck open e White Image contactorStuckOpen_ok
8 Stuck open and input lost E‘St::;i T;i;k’open] and White Image contactorStuckOpen_loss
9 Stuck open and input erroneo... (7 SETH Lpe: White Image contactorStuckOpen_err

(i_cmd = erroneous)

(statel = stuck_closed)
and (i_cmd = ok)

(statel = stuck_closed)

10 Stuck closed White Image contactorStuckClosed_ok

i Stuck closed and input lost and (i_cmd = lost) White Image contactorStuckClosed_loss
12 Stuck closed and input errone... (state.T = stuck closed) White Image contactorStuckClosed_err
and (i_cmd = erroneous)
13 Default White Image contactor v

Figure 123: SimfiaNeo GUI - style of a brick

Default conditional style for simulation is based on internal state variable. It can be customized by activating the bottom
table. Predicates are user-defined Boolean formula to determine the image and/or color of the brick. In this Predicate
field, the shortcut Ctrl-Space enables using auto-completion feature.

() Put a brick in Library

A brick that was created in a diagram can be added to the Library at any step. This is done with a right-click on a brick
in a diagram and selecting Library> Store in library.

&% COM_MON =
rEoM-No A s B wARXNKIBIA-K S~ F | a4
2 Corvgatar 1
7Y /e
i Edit >
Show/Hide >
Oiompter
£ of Layout >
L *
’ -— Format >
4 g
“L Rotate on right

A7 Rotate on left
Vertical symmetry
Horizontal symmetry

Library > =, Storein library

Create serial polynomial

]

[]

2% Create redundancy polynomial
¢ Arrange connectors positions

4 Goinside

Figure 124: SimfiaNeo GUI - store brick in Library

Insert the name to use in the Library to finish. This brick is now displayed in the project Library available in the bottom-
left corner.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 130 / 141

o oo
+ /¥ 2908

I§\\\\§ SAINT S stéfp)(IRT Saint Exupéry LIV-S085L01-001
($ EXUPERY l‘l b IRT SystemX ISX-S2C-LIV-1285

Issue 4

(g) Instantiate a brick

If a brick is already defined in Library, it can be instantiated in the model. This can be performed by following either of
the following methods:

e Drag-and-drop the brick from the Library view (bottom-left corner) to the diagram
e Right-click in an empty space of the diagram and select Library> Instantiate existing class
(h) Create the observers (link with FC)

Observers are managed through the Observers table. Open the table by double-clicking on the Observers (eye icon) in
the Model Explorer.

& COM_MON @ Observers of COM_MON_dema 3¢ = B8
@ QObservers of COM_MON_demo L 1 EE
~

Name Stochastic Evaluation Scope Computation configurations

1 @ FC1 MNone FC1 - CAT - Erroneous output
2 @FC2 | None FC2 - MIN - Loss of output v

Figure 125: SimfiaNeo GUI - observers table

Creation button is situated in the top-right corner of the table. Name of the observer needs to follow AltaRica variables
naming rules (mainly no spaces, and no digit as the first character). Stochastic Evaluation is kept to None (this option is
linked to Monte-Carlo simulation). When selecting an observer, its Boolean expression can be customized in the
Properties view. This expression takes the value true when the feared situation is reached. In this field, the shortcut Ctrl-
Space enables using auto-completion feature.

(i) Launch a step-by-step simulation

To launch the step-by-step simulation, use the menu Validation> Step by step simulation.

SimfiaNeo - COM_MON_demo
File Edit Diagram Modeling Validation Exploitation Documer
B2 4 o &% o Validate project
B Model Explorer = B g7l> Step by step simulation

=&

d %% Loops detection
=

g

Figure 126: SimfiaNeo GUI - start step-by-step simulation

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 131 / 141

IRT Saint Exupéry LIV-S085L01-001

IRT SystemX ISX-S2C-LIV-1285

@\?\\\\ SAINT
(T EXUPERY

Issue 4

SimfiaNeo - COM_MON_dema - o x

File Edit Diagram Modeling Validation Exploitation Documentation Window Help

devia@E-o8 LN R rov |t Q
¥ Events[tigg.. = O & COM_MON X = B & Hierarchical Variables (9= Variables =0
BE S-iive|l0-wrlmslarl@-laa fa gEme
type filber text type filter text
w (1 Random - e System Cument... Previousvall A |
~ [@ coM_MoN \I>. :r—/ — . | + [Contactor_1
ML O iemd ok ok
i fail e O opening_cmd false false
¥ fail_loss . 2= ¥ statel stuck_ep... nominal
ML ® oomd lost ok
7 :all.w . | DisComparater
Fail_loss
. on — ok
EY R Variables [
Available Graphical X values 3
v F1
events view ¥ statel nominal neminal
® ocmd ok ok
. (=3 @
< >
< Propagations BH=n
Output Value Previous
Contactorlo_cmd lost ok
History (trig. =0
P
@ Tuw @ Predicates =g
. A Name Value
! 3 FC2 true
N FC1 false
Triggered
Observers
events

< >

Figure 127: SimfiaNeo GUI - step-by-step simulation

Events can be triggered by double-click on the left, or with a right-click on bricks in diagrams. Simulation is exited by
using the Stop simulation (red square) button.

() Calculate the Cut-Sets

To compute the Cut-Sets, the first step is to define the computation options. To open the corresponding table, use the
menu Exploitation> Open sequences computation.

Simfiaheo - COM_MON_demo
File Edit Diagram Modeling Validation Expleitation Decumentation Window |
2 4 @ o ¥ B = 4 5 Opensequences computation
- Model Explorer = 5 & COMMO B2 Open stochastic configurations
% § o8- Eiv 2 Open userdata

|Z Open FMECA
type filter text x
Figure 128: SimfiaNeo GUI - open computation table

Creation buttons are situated in the top-right corner of the table.

& COM_MON 4f, Sequences computation of COM_MON_dema X = &
4% Sequences computation of COM_MON_demo g EER
. : Results state
Name Feared situation | Phase Max Order | Probability... Calcula... Last launch date

Sequences Probability | Check

1 ‘5 FC1 - CAT - Erronecus output FC1 reference 3 Mone T, 8/19/21, 6:12 PM... A) =
2] FC2 - MIN - Loss of output FC2 reference 3 None TB.C. 8/19/21, 6:12 PM... Ay e i

Figure 129: SimfiaNeo GUI - computation table

After creating a computation config, go to the Options tab of the Properties view to customize the computation options.
In particular, it is possible to define if you want only qualitative results or also would like the numerical probabilities. To
launch the computation, right-click on the line in the table and select Execute.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 132 / 141

;\\\) i Whe
I o Systerm

7] FC1- CAT - Ermoneous output - 3/13/23, 536 PM % = 0
1 FC1 - CAT - Erroneous output - 3/13/23, 5:36 PM B &
Completed .
Elements Order . Probability =
1 “—=F1.fail_err & F2.fail_err 2 9.999E-9
2 o= Contactor_1.fail_close & F1.fail_err 2 9.9995E-10

Figure 130: SimfiaNeo GUI - computation results

Results are stored in the project but can also be exported in Excel format.

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

133 /141

’ooo

\\\ ! IRT Saint Exupéry LIV-S085L01-001

FEXU?’AEIR; S Ll St e L = IRT SystemX ISX-52C-LIV-1285

Issue 4

14.3 -1- Modeling the command / monitoring pattern example in AltaRica 3.0

This part proposes to model and assess the command/monitoring pattern example (Com-Mon), introduced in part 5.2
and depicted in Figure 131, with the OpenAltaRica platform implementing the AltaRica 3.0 modeling language (the third

version of AltaRica).
Ct
Fi| @

Cmp
F2 . []
[

Figure 131: Com-Mon example

As previously explained, the Com-Mon is composed of two sensors F1 and F2, a comparator Cmp that checks the equality
of two inputs, finally a contactor Ct that is closed as long as the equality check is true, and when it is closed, it transmits
F1 output; otherwise, it transmits no output. The sensors have two failure modes: they may produce an erroneous
output, or they may produce no output at all. Finally, the safety requirements of interest for this pattern are:

e Failure condition FC_B1: an erroneous output which is catastrophic.
e Failure condition FC_B2: the output loss which is minor.

14.3.1 -1- Modeling the Com-Mon

The model of the Com-Mon is divided in several parts. First, it defines a domain, depicted in Figure 132, that is used to
type variables (state or flow variables). Then it defines classes representing components, depicted in Figure 133,
Figure 134 and Figure 135, that are instantiated in the main block, depicted in Figure 136, corresponding to the entry
point to the Com-Mon example.

domain FailureMode {OK, LOST, ERR}

// OK — normal behavior

// ERR - the sensor produces erroneous data
// LOST - the sensor produces no data

Figure 132: Definition of the domain

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 134 / 141

IRT Saint Exupéry LIV-S085L01-001

\\\ SAINT qutéﬁx
)(UHDEFrY oy o snekc

IRT SystemX ISX-S2C-LIV-1285

Issue 4

class Sensor

// definition of the state variable

FailureMode mode (init = OK);

// definition of the output flow variable
FailureMode output (reset = LOST);

// definition of events

event failureloss (delay = exponential (1.0E-4));
event failureErr (delay = exponential (1.0E-5));

// definition of transitions

transition
failureLoss: (_mode == OK) -> mode := LOST;
failureErr: (_mode == OK) -> mode := ERR;

// definition of the assertion
assertion

output := mode;

end

Figure 133: Definition of the class Sensor

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 135 / 141

\\\ SAINT
EXU PERY

class Contactor

// definition of flow variables

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

FailureMode input, output (reset = LOST);

Boolean closeCondition (reset = false);

// definition of the state variable
Boolean open (init = false);

// definition of the event

event openCT (delay = Dirac(0.0)) ;
// definition of the transition

transition

openCT: not open and not closeCondition ->

// definition of the assertion
assertion
output := switch ({
case open : LOST
default : input};
end

Figure 134: Definition of the class Contactor

class Comparator

// definition of flow variables

FailureMode inputl, input2 (reset = LOST);

Boolean output (reset = false);
// definition of the state variable
Boolean working (init = true);

// definition of the event

event failure (delay = exponential (1.0e-5));

// definition of the transition
transition

failure: working -> working :=
// definition of the assertion

assertion

else true;

output := if working then (inputl == input2)

end

Figure 135: Definition of the class Comparator

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

(\\\\ SAINT Sl.lSte m X & IRT Saint Exupéry LIV-5085L01-001
EXU PERY IRT SystemX ISX-S2C-LIV-1285

Issue 4

block ComMon
// components of the Com-Mon
Sensor F1l, F2;
Comparator Cmp;
Contactor Ct;

// definition of connections between components

assertion
Ct.input := Fl.output;
Ct.closeCondition := Cmp.output;
Cmp.inputl := Fl.output;
Cmp.input2 := F2.output;

// definition of failure conditions

observer Boolean FC Bl = (Ct.output == ERR);

observer Boolean FC B2 = (Ct.output == LOST);
end

Figure 136: Definition of the main block ComMon

14.3.2 -1- Assess the Com-Mon

Within the OpenAltaRica platform, this AltaRica 3.0 model of the Com-Mon example is assessed by using the generator
of critical sequences. There are two parts to realize this assessment: a first one compiling the mode, and a second one
realizing the generation of the critical sequences.

(a) Compilation of the model

The compilation of the model produces only one main block with only atomic elements inside: parameters, state and
flow variables, events, transitions and the assertion, named a GTS (Guarded Transition System, see [REF A] for more
explanations in the AltaRica 3.0 jargon. More precisely the compiler first instantiates all classes, then it flats the
hierarchy, and finally it produces the GTS model. Some checks and optimizations are also realized during this process.
The compiled model, meaning the GTS model, of the AltaRica 3.0 model of the Com-Mon example is depicted
Figure 137.

domain FailureMode {OK, LOST, ERR}

block ComMon
Boolean Cmp. working (init = true);
FailureMode Cmp.inputl (reset = LOST);
FailureMode Cmp.input2 (reset = LOST);
Boolean Cmp.output (reset = false);
Boolean Ct. open (init = false);
Boolean Ct.closeCondition (reset = false);
FailureMode Ct.input (reset = LOST);

FailureMode Ct.output (reset = LOST);

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 137 / 141

RS
‘ooo

qutemx

(\ SO SAINT
EXUPERY

IRT Saint Exupéry LIV-S085L01-001
IRT SystemX ISX-S2C-LIV-1285

Issue 4
FailureMode F1l. mode (init = OK);
FailureMode Fl.output (reset = LOST);
FailureMode F2. mode (init = OK);
FailureMode F2.output (reset = LOST);
event Cmp.failure (delay = exponential (1e-05));
event Ct.openCT (delay = Dirac(0.0));
event Fl.failureErr (delay = exponential (1e-05));
event Fl.failureloss (delay = exponential (0.0001));
event F2.failureErr (delay = exponential (1e-05));
event F2.failureloss (delay = exponential (0.0001));
observer Boolean FC Bl = Ct.output == ERR;
observer Boolean FC B2 = Ct.output == LOST;
transition
Cmp.failure: Cmp. working -> Cmp. working := false;
Ct.openCT: not Ct. open and not Ct.closeCondition
-> Ct. open := true;
Fl.failureLoss: Fl. mode == OK -> Fl. mode := LOST;
Fl.failureErr: Fl. mode == OK -> Fl. mode := ERR;
F2.failurelLoss: F2. mode == OK -> F2. mode := LOST;
F2.failureErr: F2. mode == OK -> F2. mode := ERR;
assertion
Cmp.output := if Cmp. working then (Cmp.inputl == Cmp.input2)
else true;
Ct.output := if Ct. open then LOST else Ct.input;
Fl.output := Fl. mode;
F2.output := F2. mode;
Ct.input := Fl.output;
Ct.closeCondition := Cmp.output;
Cmp.inputl := Fl.output;
Cmp.input2 := F2.output;

end

Figure 137: GTS model of the Com-Mon

(b)

Generation of critical sequences

Two computations are realized: a first one to get all sequences of events leading to the value ‘true’ of the observer

‘FC_B1’, depicted Figure 138, and a second on
‘FC_B2’, depicted Figure 139.

Cmp.failure Fl.failureErr

e to get all sequences of events leading to the value ‘true’ of the observer

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares

Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

138/ 141

(‘\\\ SAINT qute 4 X IRT Saint Exupéry LIV-5085L01-001
EXU PERY IRT SystemX ISX-52C-LIV-1285

Issue 4

Cmp.failure F2.failureloss Fl.failureErr
Cmp.failure F2.failureErr Fl.failureErr

Figure 138: Critical sequences for the observer 'FC_B1'

Cmp.failure Fl.failureloss

Cmp.failure F2.failureloss Fl.failureloss
Cmp.failure F2.failureErr Fl.failureloss
Fl.failurelLoss Ct.openCT

Fl.failureErr Ct.openCT

F2.failureLoss Ct.openCT

F2.failureErr Ct.openCT

Figure 139: Critical sequences for the observer 'FC_B2'

14.4 BBl The ONERA library

In order to ease the reader understanding, we use the generic ONERA library for all the presented simple examples in
this document. This section aims to provide information about the modelling unit of the library we use, in particular
their icons meaning.

The ONERA library is available here: https://forge.onera.fr/projects/mbsa

14.4.1 Quick introduction
The ONERA library contains two families of nodes

“Blocks” model nodes which may fail
- “logical blocks” model nodes which represent logical functions or connectors of flows.

Blocks and operators aim at

- Producing a value
- Observing / testing a value
- Selecting a value.

Three types of values can be handled

- Type Bool : {true, false}.
- Type OLE : {ok, lost err}
- Type NOH : {null, ok, high}

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 139 / 141

https://forge.onera.fr/projects/mbsa

s ifenTess’ IRT Saint Exupéry LIV-S085L01-001
f\\\ SAINT System>
EXU PERY s IRT SystemX ISX-S2C-LIV-1285
Issue 4
14.4.2 Main icons description

Icons are associated to model modelling units to ease the understanding of the model during simulation

Figure 140 describes the general philosophy of the colour chart for the icons used in this document (from the ONERA

library).
Description Example Meaning
Green @ (State=ok) and (Input=0k)
Dark red @ (State =ok) and (Input

=lost)

Light red @ (State =ok) and (Input =err)
Crossed and dark red E State =lost
Crossed and light red E State =err

Figure 140 Information about ONERA icons colour chart

14.4.3 Flows colours

In simulation mode, the colour chart of the flows used in this document is the described Figure 141:

Mame Color
ok
lost
err

Figure 141 Information about ONERA types colour chart

14.5 The document examples description

This section aims to describe the examples used to support the document.
The COM/MON pattern example that is used to support the present document

Refer to chapter 5.2 for description of the example and to 14.1 and 14.2 for modeling in the tools.

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 140 / 141

I@k SAINT S stéﬁ\ . IRT Saint Exupéry LIV-S085L01-001
(¥ EXUPERY "‘I;_.,, o IRT SystemX ISX-S2C-LIV-1285

Issue 4

End of document

This document is the property of the S2C Project Participants : The IRT Saint Exupéry, and the IRT SystemX, IRIT, CNRS, Satodev, Airbus, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, Samares
Engineering, DGA, ONERA, .SupMeca.

Licence Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 141 / 141

