

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 1 / 97

State of the Art of the S2C Project

Warning: This State of the Art has been mainly done at the beginning of the project in 2019.

It doesn't reflect the situation in 2023.

D ATE: 07/04/2022

Summary
This deliverable aims at providing the state of the art of the project. One part addresses consistency
between systems engineering and safety and a second part addresses the state of the art for current
MBSA methodologies and tools & MBSA dissemination.

Author(s)

Function(s) & name(s) IRT SystemX

IRT Saint Exupéry

S. Delavault

Checker(s)

Function(s) & name(s) WP Leaders

S. Guilmeau

Approver

Function & name Project Leader J. Perrin

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 2 / 97

Evolutions

Version Date Modified § Modification summary Modified by

0 05/02/2020 All Creation All

1 01/07/2020 All Completion of state of the art.

Remarks from Partner on V0

Internal IRT remarks

All

2 13/10/2021 Refer to margin
marks

Completion of state of the art.

Remarks from Partner on V1

Internal IRT remarks

All

3 07/04/2022 All

§6.3

Update of table contents

Typo correction

Headers: Update of header with the new
IRT Saint Exupéry logo

§6.3:

 Update to add new MBSA use case
from S2C members

Update of the return of experience

Simon
Delavault

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 3 / 97

Table of contents

Evolutions .. 2

Table of contents .. 3

List of Tables ... 4

List of Figures .. 4

List of symbols, acronyms and abbreviations ... 6

1 Introduction .. 7

1.1 Context of the project ... 7

1.2 Purpose and organization of the document .. 8

1.3 Referenced documents ... 9

2 Key concepts ... 13

2.1 What is inconsistency? .. 14

3 Consistency management – theoretical concepts .. 20

3.1 Linking engineering artifacts (Matching and mapping) ... 20

3.2 Detection of inconsistencies .. 21

3.3 Diagnosis of inconsistencies .. 22

3.4 Handling inconsistencies ... 22

4 Consistency methods and methodologies .. 23

4.1 Towards standards, norms and guidelines .. 23

4.2 Models and viewpoints ... 27

4.3 Consistency approaches for engineering models .. 32

4.4 MBSE/MBSA consistency ... 37

4.5 MBSE/FTA consistency .. 44

4.6 SA/SA consistency.. 44

4.7 Comparison of methods .. 44

5 How Tools/Platforms answer consistency issue ... 49

6 MBSA methodologies and tools .. 53

6.1 Key definitions and Concepts .. 53

6.2 Introducing dependability using models ... 59

6.3 Using MBSA propagation models in industry .. 64

6.4 Review of modelling languages of propagation models for safety ... 76

6.5 AltaRica MBSA modelling methods ... 88

6.6 S2C Lot 4 Modeling Guide and Validation Report ... 90

7 MBSA Dissemination State of the art .. 91

7.1 Formations ... 91

7.2 Existing groups, conferences: industrials, academics .. 93

Appendix A Principles of MBSA computation .. 94

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 4 / 97

List of Tables

Table 1: Some properties of unique model and two models approaches .. 30

Table 2: Some characteristics, benefits and difficulties of the approaches .. 30

Table 4: Comparison of tools .. 51

Table 5 : Dependability using models ... 61

Table 6 : Availability models ... 63

Table 7 : Testability models .. 64

Table 8 : Members domain and activities ... 69

Table 9 : Members MBSA usage ... 70

Table 10 : MBSA for analysis ... 72

Table 11 : MBSA tools usage ... 73

Table 12 : Members MBSA experiences ... 74

Table 13 : Structural constructs .. 78

Table 14 : The three versions of Altarica .. 83

Table 15 : Summary of expressive power characteristic ... 85

Table 16 : Summary of structural constructs .. 85

Table 17 : Summary regarding autonomy and graphical characteristics .. 86

Table 18 : Summary of processing algorithm .. 88

Table 19 : Dissemination actions .. 91

Table 20 : MBSA trainings available .. 92

List of Figures

Figure 1: Positionning the activities of the project ... 8

Figure 2 : Horizontal / vertical dimension concept ... 15

Figure 3 : Syntactic / Semantic concept .. 16

Figure 4: Classification of inconsistency types illustrated as a type definition hierarchy using a simplified class diagram
syntax (Herzig, 2015) ... 18

Figure 5: Orchestration of consistency activities .. 20

Figure 6: Cases of semantic overlapping ... 21

Figure 7: Norms of the sub comity ISO JTC1/SC7 – Software and Systems engineering .. 24

Figure 8: ISO/IEC/IEEE 15288 processes overview .. 25

Figure 9: ISO 10303-233 Scope ... 26

Figure 10: Concerns, viewpoints and models in the ISO/IEC/IEEE 42010 ... 27

Figure 11: Overview of unique model approach ... 29

Figure 12: Overview of two-model approach ... 29

Figure 13: A simplified view of approaches to heterogeneous models integration ... 31

Figure 14: Framework for inconsistency management proposed by (Nuseibeh, Easterbrook, & Russo, 2000) 36

Figure 15: The proposed approach in (Hehenberger, Egyed, & Zeman, 2010) ... 36

Figure 16: Basic architecture of the technology demonstrator in (Feldmann, et autres, 2015) 37

Figure 17: Overview of S2ML method from (Legendre, Lanusse, & Rauzy, System Engineering and Dependability:
Methodology of Model Synchronization between System Architecture Models and Risk Analysis, 2019) 39

Figure 18: Collaborative space principles (left) – A collaboration space example including Safety concerns 40

Figure 19: Two stakeholders collaborating via modeling tools ... 40

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 5 / 97

Figure 20 - Overview of Systems Traceability, extracted from Dassault Systèmes support (version R2016x) In version of
the platform (R2018x) used for the experimentation, the System Synthesis App is not available to the user, all access
are made via SysTRA ... 41

Figure 21 - Overview of the SAVI program approach ... 42

Figure 22 - Overview of the SAVI consistency checking process... 43

Figure 23 - Overview of the SAVI Safety environment .. 44

Figure 24: Example of deterministic model (left) and non-deterministic model (right) ... 55

Figure 25: Example of static model ... 56

Figure 26: Example of dynamic model .. 56

Figure 27: Composition of nodes .. 57

Figure 28: Atomic node in AltaRica ... 57

Figure 29: A basic AltaRica atomic node (description view) ... 58

Figure 30: A basic AlataRica model (simulation view) The input of node “A” is set as nominal for the sake of simplicity of
the example. In a model, it should be linked to an upstream node. .. 58

Figure 31: Example of a model with an observer.. 58

Figure 32: Reformulated version of the model defined by Figure 29 ... 59

Figure 33 : Intrinsic availability and the operational availability... 62

Figure 34 : AltaRica propagation - Selected dates about languages and tools ... 66

Figure 36 : AltaRica propagation in industry – Overview of operational developments and certification projects 68

Figure 37: An example of simple flows (left hand) and structured flow (right-hand)... 78

Figure 38: Principle of Monte Carlo simulation .. 94

Figure 39: Example of Monte Carlo simulation for availability computation ... 94

Figure 40: Computation of time of each stochastic event. The computation is based on the inverse of cumulative
distribution function (integral) of probability law .. 95

Figure 41: Example of the set of sequences (right part) possible in a given model (left part) ... 96

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 6 / 97

List of symbols, acronyms and abbreviations

AADL: Architecture Analysis and Design Language

ACTL: Action Computation Tree Logic

API: Application Programming Interface

CCA: Common Cause Analysis

CTL: Computation Tree Logic

DAL: Design assurance level

DL: Description Logics

ESACS: Enhanced Safety Assessment for Complex Systems

FC: Failure Conditions

FHA: Functional Hazard Analysis

FMEA: Failure Modes and Effects Analysis

FMECA: Failure Mode Effects and Criticality Analysis

FMI: Functional Mock-up Interface

FMU: Functional Mock-up Unit

FTA: Fault Tree Analysis

INCOSE: International Council on Systems Engineering

ISAAC: Improvement of Safety Activities on Aeronautical Complex Systems

ISML: Intention-Specific Modeling Languages

LTL: Linear Temporal Logic

MBSA: Model-Based Safety Analysis

MBSE: Model-Based Systems Engineering

OMG: Object Management Group

OSLC: Open Services for Lifecycle Collaboration

OWL: Web Ontology Language

P&O: People and Organization

PDES: Product Data Exchange Specification

PLM: Product Lifecycle Management

PSSA: Preliminary System Safety Assessment

RCA: Root Cause Analysis

RDF: Resource Description Framework

REST: REpresentational State Transfer

SIL: Safety Integrity Level

SSA: System Safety Assessment

STEP: Standard for the Exchange of Product Model Data

TGG: Triple Graph Grammars

UML: Unified Modeling Language

ZRA: zonal risk assessment

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 7 / 97

1 Introduction

1.1 Context of the project

The S2C project was born thanks to a strong industrial need to improve current development processes and
to ensure consistency between safety analyses and system design, which today requires a significant effort.

Indeed, the development of systems like aircrafts is made difficult by two major factors: the inherent
complexity of such system and the complexity of the organization required to build and maintain them. A
large number of stakeholders are involved throughout the lifecycle. They have various concerns that are not
necessarily consistent with each other. Each stakeholder has its own viewpoints and descriptions, focused
on his concerns and based on the use of dedicated languages, formalisms, and tools. These viewpoints are
highly interrelated, which produce overlaps. Clearly, these overlaps and all elements mentioned above may
possibly introduce inconsistencies.

In the S2C project, we will focus on the interactions between two particular disciplines: systems engineering
and safety analyses. The challenge is to develop methodologies to manage inconsistencies and to maintain a
coherent state over the development cycle. These methodologies should be validated through a
representative case study supporting by tools demonstrator in order to define tooling specification.

The main objectives are to:

 Improve confidence in safety analysis by aligning and maintaining consistency with system definition
models.

 Provide safety specialists with more efficient means to understand and analyze complex systems.

 Facilitate the use of model-based approaches in compliance with the requirements of certification
bodies (for the MBSA approach, there are no requirements issued by certification bodies).

 Reduce the number of iterations between system definition and related safety analyses, in order to
limit costs and delays, by enabling efficient MBSE/MBSA interfaces or MBSE/FTA interfaces.

 Control changes during the product development cycle; reduce risks due to redesign.

In order to address these issues, the project was divided into 4 work packages:

 WP1: Definition of a global process for ensuring and maintaining system/safety consistency all along
the life cycle

 WP2: Methods and means of implementing and maintaining system/safety consistency for the
integrated system and system levels (horizontal links)

 WP3: Methods and means of setting and maintaining consistency of safety data between different
system levels (vertical links)

 WP4: Modeling methodology for safety

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 8 / 97

Figure 1: Positionning the activities of the project

The S2C project is mainly focused on the aeronautics domain.

In this context, we have to take into account certification requirements and constraints of aircraft systems in
order to meet the project objectives listed above. The Safety global process and approach, deemed to answer
to certification requirements and contraints, is the Guidelines for Development of Civil Aircraft and Systems
[ref SAE ARP4754 rev.A / Eurocae ED-79A]. We will use also the Guidelines and Methods for Conducting the
Safety Assessment Process on Civil Airborne Systems and Equipment [ref SAE ARP4761 /--]. These processes
support certification of aircraft systems .

1.2 Purpose and organization of the document

This deliverable aims at providing the state of the art of the project scope. One part addresses consistency
between systems engineering and safety, through the following paragraphs:

 Key concepts (§2)
 Theoretical activities that have to be led to manage consistency (§3)
 Some existing consistency methods (§4)
 Tools and Platforms to answer consistency issue (§5)
 Synthesis of methods and tools for consistency management in S2C (§6)

The other part addresses the state of the art for current MBSA methodologies and tools & MBSA
dissemination, through § 7 and Appendix A.

https://en.wikipedia.org/wiki/Type_certificate

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 9 / 97

1.3 Referenced documents

1.3.1 S2C referenced documents

Title Reference

S2C Glossary NT-2016-168

S2C 3DExperience experiment IRT Saint Exupéry NT-S085L02-015

IRT SystemX ISX-S2C-DOC-351

S2C Lot 4 – Modelling Guide and Validation
Report

IRT Saint Exupéry LIV-S085L01-001

IRT SystemX ISX-S2C-LIV-1001

1.3.2 External referenced documents

Title Reference

[ARP4754A/ED-79A] ARP4754 Rev A Issue 1996-11, Revised 2010-12 :
Guidelines for Development of Civil Aircraft and Systems

[ARP4754B/ED-79B] ARP4754 Rev B Issue 1996-11, Revised 2022-04 :
Guidelines for Development of Civil Aircraft and Systems

[ARP4761] Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and
Equipment

[MOISE] LIV-S-014-S2.21-61-457 (issue V1) from the IRT Saint
Exupery document base. This document is accessible by
any employee of finished MOISE member and by the
restricted team of S2C.

[ISC] ISX-IS-ISC-LIV-0310-v6.1-L1.1 from the IRT SystemX.
Collaborative Platform Requirements (in French).

1.3.3 Referenced publications

A. Arnold, A. G. (2000). he AltaRica formalism for describing concurrent systems. IOS Press Inf. 40, issue 2-3, 109-124.

A.Rauzy. (2008). Guarded Transition Systems: a new States/Events Formalism for Reliability Studies. Journal of Risk and
Reliability, 495--505.

Adeline, R. (2011). Méthodes pour la validation de modèles formels pour la sûreté de fonctionnement et extension aux
problèmes multi-physiques. Ph.D. dissertation, Toulouse, ISAE.

AFNORNFX60-500. (s.d.). Terminologie relative à la fiabilité, maintenabilité, disponibilité.

AFNORNFX60-503. (s.d.). Introduction à la disponibilité.

Alain Griffault, A. V. (2004). The Mec 5 model-checker. Computer Aided Verification. Boston, United States.

AP233SE website. (s.d.). Consulté le 08 24, 2016, sur http://homepages.nildram.co.uk/~esukpc20/exff2005_05/ap233/

B. Kaiser, P. L. (2003). A new component concept for fault trees. 8th Australian workshop on Safety critical systems and
software.

Basole, R. C., Qamar, A., Park, H., Paredis, C. J., & McGinnis, L. F. (2015). Visual Analytics for Early-Phase Complex
Engineered System Design Support. IEEE Computer Graphics and Applications, 35, 41-51.

Batteux M, P. T. (2018). ALTARICA WIZARD: AN INTEGRATED MODELING AND SIMULATION ENVIRONMENT FOR
ALTARICA 3.0. Congrés Lambda Mu 21 « Maîtrise des risques et transformation numérique : opportunités et
menaces ». Reims.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 10 / 97

Batteux M., P. T. (2017). AltaRica 3.0 assertions: The whys and wherefores. Proceedings of the Institution of Mechanical
Engineers , Part O: Journal of Risk and Reliability.

Batteux, M., Prosvirnova, T., & Rauzy, A. (2019). Model Synchronization: A Formal Framework for the Management of
Heterogeneous Models.

Benjamin Aupetit, M. B.-M. (2015). Improving performance of the {AltaRica} 3.0 stochastic simulator. Proceedings of
Safety and Reliability of Complex Engineered Systems: ESREL 2015.

Birolini, A. (2010). Reliability Engineering: Theory and Practice.

Bitetti, L., De Ferluc, R., Mailland, D., Gregoris, G., & Capogna, F. (2019). Model Based Approach for RAMS Analyses in
the Space Domain with Capella Open-Source Tool.

Boehm, B., & In, H. (1996). Identifying quality-requirement conflicts. Proceedings of the Second International Conference
on Requirements Engineering, (pp. 218-).

Boiteau, M. D.-P. (2006). he AltaRica Data-Flow language in use: Assessment of Production Availability of a MultiStates
System. Reliability Engineering and System Safety, 747-755.

Bouissou M. (2005). Automated Dependability Analysis of Complex Systems with the KB3 Workbench: the Experience
of EDF R&D.

Bouissou M, V. N. (1991). Knowledge Modelling and Reliability Processing: Presentation of the FIGARO Language and
Associated Tools. SAFECOMP’91. Trondheim.

Broy, M., & Ştefănescu, G. (2001). The algebra of stream processing functions. Theoretical Computer Science, 258, 99-
129. doi:https://doi.org/10.1016/S0304-3975(99)00322-9

Cambridge online. (s.d.). Récupéré sur https://dictionary.cambridge.org/fr/dictionnaire/anglais/inconsistency

Czarnecki, K., & Helsen, S. (2006). Feature-based survey of model transformation approaches. IBM Systems Journal, 45,
621-645.

Deschamps, F. (2014). Definition and application of a troubleshooting methodology on complex electronic hardware.
9e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement. Dijon.

Dominique Riera, J. A. (2018). Et si on faisait du retour d'expérience sur la testabilité ? ongrès Lambda Mu 21 « Maîtrise
des risques et transformation numérique : opportunités et menaces ». Reims.

Easterbrook, S. (1991, 9). Handling Conflict between Domain Descriptions with Computer-Supported Negotiation.
Knowl. Acquis., 3, 255–289. doi:10.1016/1042-8143(91)90007-A

Easterbrook, S., Finkelstein, A., Kramer, J., & Nuseibeh, B. (1994). Coordinating distributed ViewPoints: the Anatomy of
a Consistency Check. Concurrent Engineering, 2, 209-222. doi:10.1177/1063293X9400200307

Egyed, A. (2011). Automatically Detecting and Tracking Inconsistencies in Software Design Models. IEEE Transactions on
Software Engineering, 37, 188-204.

Egyed, A., Zeman, K., Hehenberger, P., & Demuth, A. (2018). Maintaining Consistency across Engineering Artifacts.
Computer, 51, 28-35.

Ehrig, M., & Sure, Y. (2004). Ontology Mapping - An Integrated Approach. (pp. 76-91). Springer Verlag.

Emmanuel Clement, D. R. (2018). ANALYSE DES PERFORMANCES DE DIAGNOSTIC D'UN SYSTEME AU MOYEN D'UNE
MODELISATION ALTARICA 3.0. Congrès Lambda Mu 21 « Maîtrise des risques et transformation numérique :
opportunités et menaces ». Reims.

EXPRESS. (s.d.). Récupéré sur Logiciel eXpress de DSI internationnal: https://www.dsiintl.com/products/express/

Extendsim. (s.d.). Récupéré sur Power tool for simulation: https://extendsim.com/

Feldmann, S. (2019). Diagnosis and Resolution of Inconsistencies in Heterogeneous Models of Automated Production
Systems.

Feldmann, S., Herzig, S. J., Kernschmidt, K., Wolfenstetter, T., Kammerl, D., Qamar, A., . . . Vogel-Heuser, B. (2015).
Towards effective management of inconsistencies in model-based engineering of automated production
systems. IFAC-PapersOnLine, 28(3), 916-923. Récupéré sur http://dx.doi.org/10.1016/j.ifacol.2015.06.200

Finkelstein, A. C., Gabbay, D., Hunter, A., Kramer, J., & Nuseibeh, B. (1994, 8). Inconsistency Handling in Multiperspective
Specifications. IEEE Trans. Softw. Eng., 20, 569–578. doi:10.1109/32.310667

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., & Goedicke, M. (1992). Viewpoints: A Framework For Integrating
Multiple Perpsectives In System Development. International Journal of Software Engineering and Knowledge
Engineering, 02, 31-57. doi:10.1142/S0218194092000038

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 11 / 97

Gibb, A. G., & Isack, F. (2001). Client drivers for construction projects: implications for standardization. Engineering
Construction and Architectural Management, 8, 46-58. doi:10.1046/j.1365-232x.2001.00184.x

Giese, H., & Wagner, R. (2009). From model transformation to incremental bidirectional model synchronization.
Software & Systems Modeling, 8, 21-43.

Glabbeek, R. J., & Weijland, W. P. (1996, 5). Branching Time and Abstraction in Bisimulation Semantics. J. ACM, 43, 555–
600. doi:10.1145/233551.233556

Gudemann, M. &. (2010). A Framework for Qualitative and Quantitative Formal Model-Based Safety Analysis.
Proceedings of IEEE International Symposium on High Assurance Systems Engineering.

Harel, D., & Rumpe, B. (2004, 10). Meaningful Modeling: What’s the Semantics of “Semantics”? Computer, 37, 64–72.
doi:10.1109/MC.2004.172

Hehenberger, P., Egyed, A., & Zeman, K. (2010). Consistency checking of mechatronic design models. Proceedings of the
ASME Design Engineering Technical Conference, 3(PARTS A AND B), 1141-1148.

Heitmeyer, C. L., Jeffords, R. D., & Labaw, B. G. (1996, 7). Automated Consistency Checking of Requirements
Specifications. ACM Trans. Softw. Eng. Methodol., 5, 231–261. doi:10.1145/234426.234431

Herzig, S. J. (2015). A Bayesian Learning Approach To Inconsistency Identification in Model-Based Systems Engineering.
Ph.D. dissertation, Georgia Institute of Technology.

Herzig, S. J., & Paredis, C. J. (2014). A Conceptual Basis for Inconsistency Management in Model-based Systems
Engineering. Procedia CIRP, 21, 52-57. doi:https://doi.org/10.1016/j.procir.2014.03.192

Herzig, S. J., Qamar, A., & Paredis, C. J. (2014). An Approach to Identifying Inconsistencies in Model-based Systems
Engineering. Procedia Computer Science, 28, 354-362. doi:https://doi.org/10.1016/j.procs.2014.03.044

Hoare, C. A. (1978, 8). Communicating Sequential Processes. Commun. ACM, 21, 666–677. doi:10.1145/359576.359585

INCOSE. (2010). Integrating Systems Engineering Information with AP233.

ISO 10303-233:2012. (s.d.). Consulté le 08 24, 2016, sur
http://www.iso.org/iso/catalogue_detail.htm?csnumber=55257

ISO 10303-239:2005. (s.d.). Consulté le 08 24, 2016, sur
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=38310

ISO/IEC/IEEE 24765 Systems and software engineering — Vocabulary. (2017, 9). ISO/IEC/IEEE 24765:2017, 1-522.

ISO/IEC/IEEE Systems and software engineering -- Architecture description. (2011, 12). ISO/IEC/IEEE 42010:2011(E)
(Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000), 1-46.

ISO15026. (1998). Technologies de l'information — Niveaux d'intégrité du système et du logiciel.

ISO15288. (2015, 5). ISO/IEC/IEEE 15288:2015 Systems and software engineering — System life cycle processes.

J., J., Chilenski, & Kerstetter, M. S. (s.d.). SAVI AFE 61S1 Report - Summary Final Report.

J., J., Chilenski, & Ward, D. T. (s.d.). SAVI AFE 61 Report - Summary Final Report.

Jackson, M. (1997, 1). The Meaning of Requirements. Ann. Softw. Eng., 3, 5–21.

Kabir, S., Aslansefat, K., Sorokos, I., Papadopoulos, Y., & Gheraibia, Y. (2019). A Conceptual Framework to Incorporate
Complex Basic Events in HiP-HOPS.

Kehren, C. (2005, 12). Systems architectures formal safety patterns. Theses, Ecole nationale superieure de
l'aeronautique et de l'espace. Récupéré sur https://tel.archives-ouvertes.fr/tel-00011496

Khuu, M. (2008). Contribution à l’accélération de la simulation stochastique sur des modèles AltaRica Data Flow.
Université de la Méditerranée (Aix-Marseille II).

Königs, A. (2005). Model Transformation with Triple Graph Grammars. IN MODEL TRANSFORMATIONS IN PRACTICE
SATELLITE WORKSHOP OF MODELS 2005, MONTEGO.

Lefebvre, A. (2014). Contribution à l’amélioration de la testabilité et du diagnostic de systèmes complexes : Application
aux systèmes avioniques.

Legendre, A. (2017). Ingénierie système et Sûreté de fonctionnement : Méthodologie de synchronisation des modèles
d’architecture système et d’analyse de risques. Ph.D. dissertation.

Legendre, A., Lanusse, A., & Rauzy, A. (2019). System Engineering and Dependability: Methodology of Model
Synchronization between System Architecture Models and Risk Analysis. INSIGHT, 22(4), 28-30.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 12 / 97

Lisagor, O., Kelly, T., & Niu, R. (2011). Model-based safety assessment: Review of the discipline and its challenges. The
Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety, (pp. 625-632).

Lisagor, O., Sun, L., & Kelly, T. (2010). The illusion of method: Challenges of model-based safety assessment. 28th
international system safety conference (ISSC).

Lynch, N. A., & Tuttle, M. R. (1989). An introduction to input/output automata. CWI Quarterly, 2, 219-246.

Machrouh, J., Blanquart, J.-P., Baufreton, P., Boulanger, J.-L., Delseny, H., Gassino, J., . . . Deleuze, G. (2012, 2). A cross-
domain comparison of software development assurance standards. Embedded Real Time Software and Systems
(ERTS2012). Toulouse. Récupéré sur https://hal.archives-ouvertes.fr/hal-02171454

Marco Filax, T. G. (2014). Short & tutorial proceedings of the 4th international symposium on model based safety
assessment. IMBSA 2014.

Maxime Monnin, B. I. (2007). Méthodologie pour l'évaluation de la disponibilité opérationnelle des systèmes d'armes
en présence de défaillance, de dommage et de régénération. 2èmes Journées Doctorales / Journées Nationales
MACS. Reims.

Meng Huixing, B. A. (2016). Production performance of an offshore system by applying AltaRica 3.0. Lambda-Mu 20th,
IMdR, Institut pour la Maîtrise des risques. Saint-Malo.

Mens, T., Van Der Straeten, R., & D'Hondt, M. (2006). Detecting and Resolving Model Inconsistencies Using
Transformation Dependency Analysis. Dans O. Nierstrasz, J. Whittle, D. Harel, & G. Reggio (Éd.), Model Driven
Engineering Languages and Systems (pp. 200-214). Berlin: Springer Berlin Heidelberg.

Meštrović, A., & Meštrovi´c, A. (2014). Semantic Matching Using Concept Lattice Croatian speech technologies View
project Semantic Matching Using Concept Lattice.

Michel Batteux, T. P. (2018). From Models of Structures to Structures of Models. 4th IEEE International Symposium on
Systems Engineering. Rome, Italy.

Milner, R. (1982). A Calculus of Communicating Systems. Berlin, Heidelberg: Springer-Verlag.

NASA. (2017). NASA Systems Engineering Handbook - NASA SP-2016-6105 Rev2: Design Test Integrate Fly. CreateSpace
Independent Publishing Platform. Récupéré sur https://books.google.fr/books?id=VqabtAEACAAJ

Nuseibeh, B., Easterbrook, S., & Russo, A. (2000). Leveraging inconsistency in software development. Computer, 33(4),
24-29.

OASIS. (s.d.). PLCS FAQ. Récupéré sur https://www.oasis-open.org/committees/plcs/faq.php

OMG. (2018). Semantics of a Foundational Subset for Executable UML Models (fUML™), v1.4. Récupéré sur
http://www.omg.org/spec/FUML/1.2.1/

Open-Altarica. (s.d.). Logiciel Open-Altarica. Récupéré sur https://www.openaltarica.fr/

Papadopoulos, Y., Walker, M., & Kabir, S. (2018). Dynamic system safety analysis in HiP-HOPS with Petri Nets and
Bayesian.

Papadopoulos, Y., Walker, M., Parker, D., Rüde, E., Hamann, R., Uhlig, A., . . . Lien, R. (2011). Engineering Failure Analysis
& Design Optimisation with HiP-HOPS.

Pasquire, C. L., & Gibb, A. (2011, 11). Considerations for assessing the benefits of standardisation and pre-assembly in
construction.

Pierre Bieber, J.-P. B. (2008). Integration of formal fault analysis in ASSERT: Case studies and lessons learnt. Proceedings
of 4th European Congress Embedded Real Time Software, ERTS 2008. Toulouse.

Pierre-Antoine Brameret, A. R.-M. (2015). Automated generation of partial Markov chain from high level descriptions.
Reliability Engineering and System Safety, 179--187.

Pollari, G., & Shaw, N. (2017, January). System Architecture Virtual Integration (SAVI) Project: IntermodelError Checking
and Consistency Reviewand Demonstration. INCOSE international workshop.

Product Life Cycle Support. (s.d.). Consulté le 08 24, 2016, sur http://www.plcs.org/ap239/

Prosvirnova, T. &. (2015). Automated generation of minimal cut sets from AltaRica 3.0 models. International Journal of
Critical Computer-Based Systems.

Rauzy, A. (2002). Mode automata and their compilationinto fault trees. Reliability Engineering and SystemSafety.

Rauzy, A. (2004). An experimental study on iterativemethods to compute transient solutions of large markovmodels.
Reliability Engineering & System Safety.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 13 / 97

Redman, D. (2014). Importance of Consistency Checking in the SAVI Virtual Integration Process (VIP).

Redman, D. (s.d.). The System Architecture Virtual Integration Program (SAVI).

Rieke, J., Dorociak, R., Sudmann, O., Gausemeier, J., & Schäfer, W. (2012, 1). Management of Cross-Domain Model
Consistency for Behavior models of Mechatronic Systems. Proceedings of the International Design Conference
– DESIGN.

Romain Bernard, J.-J. A. (2007). Experiments in model-based safety analysis: flight controls, Proceedings of IFAC
workshop on Dependable Control of Discrete Systems. Cachan.

S3000L. (2014). International pocedure specification for Logistic Support Analysis (LSA). ASD (AeroSpace and Defence
Industries Association of Europe), AIA (Aerospace Industries Association).

Spanoudakis, G., & Finkelstein, A. (1997). Reconciling requirements: a method for managing interference, inconsistency
and conflict. Annals of Software Engineering, 3, 433-457.

Spanoudakis, G., & Zisman, A. (2001). Inconsistency Management in Software Engineering: Survey and Open Research
Issues. 329-380.

Sylvain Breton, P. L.-C. (2018). SYSTEM-ANALYST -UN OUTIL MBSA POUR L'ANALYSE DES RISQUES, LIBRE DE DIFFUSION
ET COMPATIBLE AVEC ARBRE-ANALYSTE ET OPEN- ALTARICA. Congrès Lambda Mu 21, « Maîtrise des risques et
transformation numérique : opportunités et menaces ». Reims.

T.Prosvirnova, M. P.-A.-M. (2013). The AltaRica 3.0 project for Model-Based Safety Assessment. York.

TEICHTEIL-KÖNIGSBUCH, F. I. (2011). Lazy forward-chaining methods for probabilistic model-checking. Advances in
Safety, Reliability and Risk Management.

Van Der Straeten, R., & D’Hondt, M. (2006). Model Refactorings through Rule-Based Inconsistency Resolution.
Proceedings of the 2006 ACM Symposium on Applied Computing (pp. 1210–1217). New York, NY, USA:
Association for Computing Machinery. doi:10.1145/1141277.1141564

Van Der Straeten, R., Mens, T., Simmonds, J., & Jonckers, V. (2003). Using Description Logic to Maintain Consistency
between UML Models. Dans P. Stevens, J. Whittle, & G. Booch (Éd.), «UML» 2003 - The Unified Modeling
Language. Modeling Languages and Applications (pp. 326-340). Berlin: Springer Berlin Heidelberg.

Ward, D. T., Redman, D. A., & Lewis, B. A. (2013). An Approach to Integration of Complex Systems: The SAVI Virtual
Integration Process. Proceedings of the 2013 ACM SIGAda Annual Conference on High Integrity Language
Technology (pp. 43–46). New York, NY, USA: Association for Computing Machinery.
doi:10.1145/2527269.2527275

Wouters, L., & Gervais, M. (2011, 8). xOWL: An Executable Modeling Language for Domain Experts. 2011 IEEE 15th
International Enterprise Distributed Object Computing Conference, (pp. 215-224). doi:10.1109/EDOC.2011.13

Wouters, L., Creff, S., Bella, E. E., & Koudri, A. (2017, 4). Collaborative systems engineering: Issues challenges. 2017 IEEE
21st International Conference on Computer Supported Cooperative Work in Design (CSCWD), (pp. 486-491).
doi:10.1109/CSCWD.2017.8066742

Wouters, L., Creff, S., Bella, E. E., & Koudri, A. (2017, 12). Towards Semantic-Aware Collaborations in Systems
Engineering. 2017 24th Asia-Pacific Software Engineering Conference (APSEC), (pp. 719-724).
doi:10.1109/APSEC.2017.92

Xavier Quayzin, E. A. (2009). Performance Modeling of a Surveillance Mission. Proceedings of the Annual Reliability and
Maintainability Symposium, RAMS'2009. Fort Worth.

Y. Papadopoulos, J. A. (1999). Hierarchically Performed Hazard Origin and Propagation Studies. International Conference
on Computer Safety, Reliability, and Security (SafeComp).

Xavier de Bossoreille, Pierre Darfeuil, Frédéric Deschamp, Christophe Frazza, Jean Gauthier, Mathilde Machin, Tatiana
Prosvirnova, Christel Seguin , Estelle Saez; (2021). Altarica strategies for modelling failure propagation in
dynamic systems, Lambda Mu 2023

2 Key concepts

This chapter gives definitions of some key concepts for the project. We estimated that it is important to have
a common and shared understanding of these concepts. The two concepts selected so far are independence

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 14 / 97

and inconsistency. The aim is to enrich this chapter as the project progresses. What is independence from
the ARP point of view?

Both ARP4754A and 4761 are defining the notion of “independence” in a quite similar way. The ARP4761
definition of the independence is:

INDEPENDENCE: (1) A design concept which ensures that the failure of one item does not cause a failure of
another item. (Derived from JAA AMJ 25.1309.) (2) Separation of responsibilities that assures the
accomplishment of objective evaluation.

The ARP4754A gives the following definition:

INDEPENDENCE: 1. A concept that minimizes the likelihood of common mode errors and cascade failures
between aircraft/system functions or items, 2. Separation of responsibilities that assures the accomplishment
of objective evaluation e.g. validation activities not performed solely by the developer of the requirement of
a system or item.

The ARP4754B introduces the MBSA but does not modify the definition of independence.

These definitions includes two concerns: the first one is related to the product and more specifically the
architecture of the product, the second one implies organizational constraints on the designing and
development process.

In the S2C Project, the focus is on the second concern. Indeed, we will consider in WP1 and WP2 studies two
different actors (Safety and System Engineer) and we will describe the best process to ensure System and
Safety consistency based on these different actors. The responsibilities are clearly shared and an
organizational aspect of independence is directly taken into account. We consider although in S2C project
that system engineer and safety analyst will work on different artefacts (model, analysis …) deducted and
constructed from the same root requirements but without any direct and implicit relation between them.
Common pitfalls of such an approach is the analysis of a former version of design or the misunderstanding of
the design. This approach probably reinforces inconsistencies risk but there is no doubt that it is compliant
with independence requirement.

Concerning the first concern (architecture independence), it will be addressed as part of the safety analysis
to be performed (WP4).

2.1 What is inconsistency?

Based on the Cambridge dictionary definition (Cambridge online, s.d.), inconsistency is defined as “a situation
in which two things do not match and are opposed”.

(Spanoudakis & Zisman, Inconsistency Management in Software Engineering: Survey and Open Research
Issues, 2001) defines it as “a state in which two or more overlapping elements of different software models
make assertions about aspects of the system they describe which are not jointly satisfiable”

(Herzig, A Bayesian Learning Approach To Inconsistency Identification in Model-Based Systems Engineering,
2015) defines it as “a state of conflict in which, under an interpretation, two or more related statements are
accepted as true, that cannot jointly be true.”

These definitions of inconsistency remain to be instantiated and specified for the S2C project, but we can
note that the two last definitions are widely used in the literature as a reference.

Moreover, some literature points out notions of source or cause of inconsistencies, in particular:

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 15 / 97

 Incompleteness: emphasizes the fact that a part is present on one side and absent on the other side
whereas it should be present;

 Ambiguity: concerns the multiplicity of possible interpretations, e.g an MBSE model cannot be
correctly interpreted that can lead to an error of MBSA modeling;

 Contradiction: discrepancy between MBSE and MBSA parts that reflects something different;

 Incompatibility: non agreement to MBSE and/or MBSA methods development rules or to
certification recommendations which could imply inconsistency between the two models;

In order to deal with these inconsistencies, it is firstly necessary to be able to qualify them. This means
identifying the dimensions related to consistency activities and the types of inconsistencies. The literature
resulting from work on consistency engineering provides some answers to these needs to qualify
inconsistencies.

2.1.1 Dimensions of consistency

 Identifying the dimensions of the inconsistencies enables the classification of these inconsistencies in order
to know how they can be managed afterwards. (Herzig, A Bayesian Learning Approach To Inconsistency
Identification in Model-Based Systems Engineering, 2015) sums up a number of dimensions issued from
various other works .

Horizontal / Vertical

Abstraction levels relationships (e.g. vertical axes could mean a "refinement" relationship, and
horizontal axes could mean a relationship between System Engineering and discipline engineering
(e.g. Safety)

Horizontal dimension refers to consistency between different models at the same level of
abstraction, and expressing different viewpoints. Whereas vertical dimension deals with the
consistency of the models in different levels of abstraction and that must be consistent (Generally,
this dimension addresses the consistency of models that are refined from a higher to a lower level of
abstraction).

These dimensions are closely linked to the issues addressed by S2C. The horizontal dimension, which
deal with consistency between the MBSE and MBSA models, will be addressed in lot 2. While the
vertical dimension addresses the problem of lot 3, which is how to ensure consistency between the
MBSA/FTA models of the different systemic levels.

Figure 2 : Horizontal / vertical dimension concept

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 16 / 97

Syntactic / Semantic is about abstract and/or concrete syntax conformance and semantic alignment

Designing a complex system like aircrafts needs collaboration between different stakeholders.
These stakeholders build models using different tools, and each tool has a specific syntax and
semantics. The challenge is that some or all of these models should be consistent. Except that
having a common syntax (saying things in the same way) and aligning semantics is not an easy thing
to do.

(Herzig, A Bayesian Learning Approach To Inconsistency Identification in Model-Based Systems
Engineering, 2015) affirms that syntax usually facilitates communication. Except that a syntax that
may seem "obvious" to one person, is not necessarily obvious to another person or to a computer.
The problem is here, we need the same semantic interpretation (the correct understanding) of the
syntactic structure to be consistent. The semantic interpretation is especially complicated because
sometimes two semantically identical things can be expressed in two different ways syntactically:
e.g. “01/17/1986" and “The third Friday in the first month of the year 1986" refer to the same date,
but are syntactically very different. One solution to address this problematic of syntactic and
semantic consistency is the use of meta-modeling. A meta-model can help to have a syntactic
representation of a semantic domain and semantic mapping.

Figure 3 : Syntactic / Semantic concept

Structural / Behavioral

With the terms structural and behavioral consistency, either structural or behavioral aspects of models are
described (Van Der Straeten, Mens, Simmonds, & Jonckers, 2003). For instance, structural inconsistencies
may refer to missing components in one of the models (System or Safety), whereas behavioral inconsistencies
arise if incompatible behavior description are observed between the system’s model and the safety analysis.

The major part of the work towards inconsistency management in the literature focuses on the structural
consistency, cf. Chapter 4.3.

To compare behavioral models in a meaningful manner, one needs to assume that these models have
semantics (therefore well defined, explicit and shared). Semantics are not only useful in defining behavioral

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 17 / 97

aspects (Harel & Rumpe, 2004): both behavior and structure need unambiguous semantics. Behavioral
semantics are typically much harder to define. This is because deciding upon a specific semantic domain of
discourse requires deciding upon the kinds of things we want our language to express. For example, standard
semantic domains used for describing behavioral semantics are trace semantics (Hoare, 1978), input/output
relations (Lynch & Tuttle, 1989), and streams and stream processing functions (Broy & Ştefănescu, 2001).
In the consistency literature, few works focused on behavioral checking, mainly: the behavioral
incompatibility description in the software domain in UML by van Der Straeten et al. (Van Der Straeten, Mens,
Simmonds, & Jonckers, 2003), the work of Rieke et al. (Rieke, Dorociak, Sudmann, Gausemeier, & Schäfer,
2012) on managing consistency between behavioral models of the mechatronic system.
Dealing with the notion of consistency, one need may be to assume some equivalence notion (when are two
models the same?).
Communities working on formal methods have proposed a wide variety of equivalence notions e.g., trace
equivalence, bisimulation (Milner, 1982) (two models may be identical under trace equivalence but are
different when considering stronger notions of equivalence), branching bisimulation (Glabbeek & Weijland,
1996), etc. In these works, researchers have worked on different notions of equivalence for FSM and timed-
automaton (e.g., trace equivalence, bi-simulation, branching bi-simulation, listed above), not considering
stochastic timed automaton.

Besides, in the safety context, Kehren (Kehren, 2005) worked towards the comparison of three notions of
equivalence relation to identify compatibility between architectural patterns, namely bisimulation,
simulation equivalence, and simulation preorder. The author concludes that the stronger the abstraction is,
the less it preserves the properties of the initial model. Thus, if the bisimulation strongly preserves CTL
(Computation Tree Logic), the simulation only weakly preserves ACTL (Action Computation Tree Logic). As far
as simulation equivalence is concerned, it strongly preserves ACTL and therefore LTL (Linear Temporal Logic).
The bisimulation seems to be too restrictive in terms of abstraction and the simulation too weak in terms of
preserving properties. In this work, simulation equivalence is therefore chosen to validate the substitution
of a real architecture by a safety architecture pattern. This one, although weaker than the bisimulation,
strongly preserves the logic while admitting a correct level of abstraction.

Evolution - Version management: concerning consistency management during all the life cycle of the
product

 Change management

 Version management

 Iterative management

In S2C, we are interested in change and version management. Consistency will be analyzed and addressed
on versions identified of models.

2.1.2 Types of inconsistencies

Orthogonal to the dimensions of inconsistencies introduced before, different types of inconsistencies can be
found in the literature. A classification, taken from (Herzig, A Bayesian Learning Approach To Inconsistency
Identification in Model-Based Systems Engineering, 2015), is reproduced in Figure 4: Classification of

inconsistency types illustrated as a type definition hierarchy using a simplified class diagram syntax .

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 18 / 97

Figure 4: Classification of inconsistency types illustrated as a type definition hierarchy using a simplified class diagram syntax

(Herzig, 2015)

A distinction is made by the author between strong inconsistencies and weak inconsistencies:

- Strong inconsistencies have a profound effect on the value of both a set of models and the artifact
intended to be described, since it is impossible for the described system to exist in any logical (or
rational) world.

- In contrast to this, a violation of a best practice, guideline or style guide has an impact on the value
of the models and the system, but it is not necessarily impossible for the system to be deployed.

Note that the author consider all guidelines and standards to be weak inconsistencies, in contrast, in the
aeronautic context, norms and standards do not only provide guidelines but also rules to be fulfilled, and
therefore should be considered as strong inconsistencies.

Considering consistency in a unique (single) model, this work summarizes concerns in different domains. For
example, well-formedness, description identity, application domain, development compatibility and
development process compliance rules are, according to Spanoudakis and Zisman (Spanoudakis & Zisman,
2001), important. Well-formedness rules are classically fulfilled by the models to be legitimate models of the
respective modeling language (i.e. model conformance to its definition, i.e. the metamodel, with potentially
additional constraints, like expressed in OCL for example). Well-formedness is concerned with a unique
model (cf. Section 4.2.1.1). Well-formedness violations can be both syntactic and semantic in nature.

On the opposite, composing models (cf. multiple models approach in Section 4.2.1.2) can reveal semantic
incompatibilities or logic contradiction between models. Contradicting statements are a specialization of
logical contradictions, in that two propositions are compared. Related to this are the class of inconsistent
predictions: given identical prior beliefs and observations, as well as identical causal assumptions, predictions
are inconsistent if they yield a different result.

Semantic incompatibility from the Figure refers to the issue of incompatible interpretations. That is, it is
impossible to construct a consistent interpretation when forming the composition of two or more models.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 19 / 97

Considering rules, introduced before, application domain rules refer to relations that must hold between
individuals in the specific application domain. Finally, development process compliance rules describe
practices, guidelines or standards that need to be followed by the models (cf. Section 4.1).

What is considered as an inconsistency here is the violation of a standard practice, best practice, convention
or guideline. Guidelines and best practices are important for a variety of reasons: for instance, for capturing
expert knowledge and the readability and maintainability of development artifacts (e.g., coding or style
guidelines, and part numbers). Instead of defining classes related to style guide violations and violations of
best practices, these classes of inconsistencies are abstracted further and the classes of domain-, application,
company- and user-specific inconsistencies are suggested.

Contrary to some classifications from the related literature, model evolution inconsistencies are not taken
into account in Figure 4: Classification of inconsistency types illustrated as a type definition hierarchy using a simplified

class diagram syntax . The rationale for this is that only the state of the most up-to-date information should be
considered when checking for inconsistencies. Process-related inconsistencies were also not made explicit,
since these are considered inconsistencies with respect to a particular model of the process.

Finally, other types can be found in the literature, bringing precisions about the concerns of the approach,
e.g. the SAVI integration effort (more details in Section 4.4.6) identifies at least six types of consistency (Ward,
Redman, & Lewis, 2013): (1) interface consistency, (2) compositional consistency, (3) constraint consistency,
(4) behavioral consistency, (5) version consistency, and (6) verification consistency.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 20 / 97

3 Consistency management – theoretical concepts

Inconsistency management provides an alternative view on the problem of consistency management, where
the goal is to either prove the consistency of a set of models, or to ensure that inconsistencies are never
introduced (e.g., by enforcing constraints during construction of a model).

In this chapter, we will list all the activities required to achieve an efficient consistency management
throughout the development cycle of a system.
These activities are inspired from the work of (Spanoudakis & Zisman, Inconsistency Management in
Software Engineering: Survey and Open Research Issues, 2001) on consistency management in software
engineering “Inconsistency Management in Software Engineering: Survey and Open Research Issues”. They
are grouped according to four macro activities which are:

1. Linking engineering artifacts (Matching and mapping)

2. Detection of inconsistencies

3. Diagnosis of inconsistencies

4. Handling inconsistencies

Figure 5: Orchestration of consistency activities

3.1 Linking engineering artifacts (Matching and mapping)

The linking engineering artifacts activity consists in identifying, specifying and referencing the links between
engineering domains and the alignment between their processes. Matching is the process that produces
correspondences between artefacts; a mapping is a relationship, i.e., a constraint that must hold between
their respective instances. For the mappings to be generated, a fundamental requirement are the matches
between the elements of the schemas. These matches can be either generated automatically through a
matching process, or can be manually provided by an expert user.

More globally, this activity concerns the semantic overlaps between engineering artifacts.

(Meštrović & Meštrovi´c, 2014) presents in the following figure an example of what is meant by semantic
overlaps.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 21 / 97

Figure 6: Cases of semantic overlapping

Figure 6 shows three possible relations between two words (w1, w2) that have semantic overlapping. In the
first case (a) word w1 can replace word w2 in any context and vice versa. In the second case (b) word w2 can
be replaced with word w1 in any context, but not vice versa since word w1 has a more general meaning. In
the third case (c) both words w1 and w2 have some additional meaning and therefore can be replaced with
each other only in certain contexts. These cases actually reflect the relationships between two synonyms or
hyperonym and hyponym described as relations of equivalence, less specific and more specific respectively.

Semantic overlaps between models or part of models (that consider multiple viewpoints) that express views
on the system under study, exist when the models “incorporate elements which refer to common aspects of
the system under development” (Spanoudakis & Zisman, 2001), i.e. that they represent different views of
the same information. It is generally achieved by formalizing dependency links between these artifacts that
have been constructed in isolated way. The objective is to identify these overlaps that allows to connect
initially disjointed spaces whose internal consistency is assumed. All the newly relationship could imply the
highlighting of potential inconsistencies.

More generally, this activity of matching can be broken down into three facets (knowledge, engineering
artifacts, and processes). In detail, the breakdown is as follows:

 Alignment of business vocabularies: defining a vocabulary shared by the domains / stakeholders
involved in the collaboration, and linking it to the specific lexicons. Needs range from the definition
of thesauri and synonymous dictionaries to more formal ontological representations and associated
alignments.

 Matching and mapping engineering artifacts at different levels:
- Alignment of the languages used in the business lines: choice of common formalisms, and/or

mapping between formalisms,
- Matching of collaborative artifacts: mapping models of different natures and granularities,
- Specification of inter-business matching rules: elicitation and formalization.

 Specification of the orchestration of the engineering processes:
- Defining the phasing (activities) of engineering process
- Defining the interactions (criteria for stopping modeling, interfaces)
- Defining the synchronization (the time of verification of consistency).

3.2 Detection of inconsistencies

The objective of this activity is to detect contradictions between assertions concerning engineering artifacts
(engineering data), process or any other elements. External constraints or rules to be fulfilled can be defined,
and thus be checked for this purpose.

This activity can be broken down into:

 Detection of contradictions between assertions, with two main approaches:

 Expert inspection (consistency review), potentially collaborative,

 Tool-based analyses (e. g. model checking, rule checks).
 Detection of deviations in the implementation and execution of process orchestration (control of

compliance with procedures, etc.) that could raise a suspicion of inconsistency on artifacts.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 22 / 97

3.3 Diagnosis of inconsistencies

Once inconsistencies are detected (detection step - previous section), an analysis of them is required. This is
the objective of the activity of diagnosing inconsistencies. This activity is divided into three main tasks:

 Identification of the source of the inconsistency (locate the inconsistency);
 Identification of the cause of the inconsistency;
 Identification of the impact of the inconsistency.

3.4 Handling inconsistencies

The handling of inconsistencies is considered a central activity of inconsistency management. This activity
concerns:

 the identification of possible actions to address an inconsistency,
 the assessment of the costs and benefits that would result from the application of each of these

actions,
 the assessment of the risks that would result from not resolving the inconsistency,
 the arbitration of the actions to be carried out,
 the implementation of actions (e.g. reconciliation of artifacts)

Transverse to these phases, there are technical fact management and version management associated with
this processing management associated with this processing.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 23 / 97

4 Consistency methods and methodologies

This chapter reviews academic and industrial works to address consistency in a model-driven and SE/SA context.

The core problem systems engineering in a complex heterogeneous environment is concerned with is
managing design artefacts inconsistency in order to retain the eventual correctness of the product, cf. def. in
(ISO/IEC/IEEE 24765 Systems and software engineering — Vocabulary, 2017) . Therefore, the correctness of
the product is approximated with the correctness of its descriptive models (e.g. design artifacts).
Inconsistency management argues that carrying out the engineering process and design artifacts consistently
helps achieving the correct product and increases the efficiency of the process.

In this context, consistency is about sharing and relating knowledge adequately of the system under study
and organize the processes efficiently.

First, one way to prevent inconsistencies is to consider sharing and alignment of knowledges and practices
(vocabulary and rules) through standards, norms and guidelines (Section 4.1). On another side, in a model-
based context, different approaches are observed to represent viewpoints as expressed in (ISO/IEC/IEEE
Systems and software engineering -- Architecture description, 2011), i.e. the unique model approach or the
heterogeneous models reconciliation (Section 0), which introduces variability in the methods to “assemble”
the models and raises different issues considering consistency. Besides, considering methods and tools to
help manage inconsistency, different kind of concerns and therefore approaches can be found in the
literature, see Section 4.3. Next, a focus is made on the consistency between systems engineering and safety
analysis, formalized as MBSA (Section 4.4) or fault trees (Section 4.5). The vertical dimension is then explored
between two systemic levels of safety analysis (Section 4.6).

Finally, a comparison of these methods is provided in Section 0.

Left apart from this chapter is the human inspection, generally formalized as a review, e.g. which can be
performed by a pair (NASA, 2017), seen in a collaborative modeling context [ISC], or dedicated to consistency
as described in Section 4.3.1.3.

4.1 Towards standards, norms and guidelines

First, it is a question of defining a knowledge, vocabulary and rules shared by the domains / stakeholders of
the different spaces/communities/teams. One way to prevent inconsistencies is to consider sharing and
alignment of knowledges through standards, norms and guidelines (best practice, convention, etc.), and
therefore reduce the disparity among stakeholders. This section provides an overview of standards and
guidelines related to our context: model-based, systems and safety engineering.

Standardization is the wide use of components, parts, procedures, or processes in which there is regularity,
repetition, and a successful practice and predictability (Gibb & Isack, 2001), (Pasquire & Gibb, 2011). Some
of the items can be standard by their nature (generic standardization) or as assigned by the legislation
of a country (national standardization). Both clients and suppliers may have standard processes or products.

Systems engineering and processes

A plethora of norms and standards exists on the domain, Figure 7 shows a representation of the norms
considered at the ISO sub-comity ISO JTC1/SC7 considering Software and Systems engineering.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 24 / 97

Figure 7: Norms of the sub comity ISO JTC1/SC7 – Software and Systems engineering

On the Systems engineering and process side, the ISO/IEC/IEEE 15288:2015 (ISO15288, 2015) establishes a
common framework of process descriptions for describing the life cycle of systems created by humans. It
defines a set of processes and associated terminology from an engineering viewpoint. These processes can
be applied at any level in the hierarchy of a system's structure. From this point of view, Safety is considered
as a concern impacting technical processes.

This standard groups the activities that may be performed during the life cycle of a system into four process
groups as depicted in Figure 8:

i) Agreement Processes: acquisition and supply processes;
ii) Organizational Project-Enabling Processes: concerned with ensuring that the resources needed

to enable the project to meet the needs and expectations of the organization’s interested parties
are met;

iii) Project Processes: concerned with managing the resources and assets allocated by organization
management and with applying them to fulfil the agreements into which the organization or
organizations enter;

iv) Technical Processes: concerned with technical actions throughout the life cycle. They transform
the needs of stakeholders first into a product and then, by applying that product, provide a
sustainable service, when and where needed in order to achieve customer satisfaction.

Each of the life cycle processes within those groups is described in terms of its purpose and desired outcomes
and list activities and tasks which need to be performed to achieve those outcomes.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 25 / 97

Figure 8: ISO/IEC/IEEE 15288 processes overview

Data Exchange Standard

On the interoperability and exchange side, the ISO organization started a STEP (Standard for the Exchange of
Product Model Data) project in 1984 for Product modeling of industrial data. The actual designation of the
STEP standard is: ISO 10303 Industrial Automation Systems - Product Data Representation and Exchange.

STEP aims are to provide a mechanism that is capable of describing product data throughout the life cycle of
a product, independent from any particular system and suitable not only for neutral file exchange, but also
as a basis for implementing and sharing product databases and archiving.

The AP233 standard (ISO 10303-233:2012; AP233SE website, s.d.), which is the AP for Systems Engineering,
was developed since 1996 by many organizations (OMG, OASIS, INCOSE, ISO, and PDES) including the
involvement of industrial companies, tool-vendors, and research centers.

The scope of AP233 has been summarized in (INCOSE, 2010) as follows:

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 26 / 97

Figure 9: ISO 10303-233 Scope

AP233 uses many elements from other AP information models as Configuration Controlled Design (AP203),
Engineering Analysis (AP209 E2) and Product Lifecycle Support (AP239/PLCS).

For information, this last one, AP239 standard (ISO 10303-239:2005; Product Life Cycle Support, s.d.; OASIS,
s.d.) is the one sharing a significant number of modules with AP233 as it covers:

- Identification and composition of a product design from a support viewpoint,
- Definition of documents and their applicability to products and support activities,
- Identification and composition of realized products,
- Configuration management activities, over the complete life cycle,
- Properties, states and behavior of products
- Activities required to sustain product function,
- Resources needed to perform such activities,
- Planning and scheduling of such activities,
- Capture of feedback on the performance of such activities, including the resources used,
- Capture of feedback on the usage and condition of a realized product,
- Definition of the support environment in terms of support equipment, people, organizations, skills,

experience and facilities,
- Definition of classes of product, activities, states, people, organizations and resources.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 27 / 97

Safety Standards and guidelines in the project context

Concerning safety, the work by (Machrouh, et al., 2012) provides a cross-domain comparison of software
development assurance standards, indeed that of civil aviation (aeronautics' DO-178/ED-12), automotive
(ISO 26262), space (ECSS-Q-ST-80C), process automation (IEC 61508), nuclear (IEC 60880) and railway (EN
50128).

Efforts are provided by various groups to align standards concerning safety. Let’s cite the IEC 63187 -
Framework Safety for Defense applications with CD in late 2020, and IS in mid-2023.

Dealing with guideline, obvious in the domain, the Aerospace Recommended Practice established industry
practices to achieve the compliance with regulatory requirements. It have been developed over many years
to ensure a common and shared approach in order to provide an acceptable level of Safety for civil aircraft.
The panel is composed of: the Safety Assessment Process Guidelines & Methods (ARP 4761), the Aircraft &
System Development Processes (ARP 4754 / ED-79), the Safety Assessment of Aircraft in Commercial Service
(ARP 5150 / 5151), the Guidelines for Integrated Modular Avionics (DO-297/ED-124), the Electronic Hardware
Development Life-Cycle (DO-254 / ED-80), and the Software Development Life-Cycle (DO-178B/ED-12B).

4.2 Models and viewpoints

Stakeholders have concerns, e.g. system design or safety analysis, that can be framed by specific viewpoints
or express on the same one. The last case is exemplified by the ESACS and ISAAC approach (Lisagor, Kelly, &
Niu, 2011), where some design models expressed in specified languages can be extended with safety
component “injections”. Although it is not clear whether the extended model is then used by the design or
that the two models evolves in parallel, the viewpoint is here unique, defined in the same tool.

Considering distinct viewpoints, in a model-based context, different ways are observed to represent
viewpoints as expressed in (ISO/IEC/IEEE Systems and software engineering -- Architecture description,
2011). Figure 10 provides a representation of concepts extracted from the standard.

Figure 10: Concerns, viewpoints and models in the ISO/IEC/IEEE 42010

On the one hand, viewpoints can be translated into layers on top of a main structure, e.g. from a technical
concern the Sirius approach on top of the EMF. Which results in the Systems Engineering context in Capella,
that defines Systems Engineering as the core structure, and the other technical processes (engineering
specialties) as viewpoints. This approach can lead to difficulties when a viewpoint expressed as a layer needs
to modify the core structure.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 28 / 97

On the other hand, viewpoints can be traduced into distinct models. With this approach, which allows
freedom in expressing each viewpoint, the key point become the reconciliation phase (model composition
or merge). Indeed, these models can be heterogeneous (the literature consider heterogeneity between
diagrams kinds into a language, between languages, between technological spaces and between technical
spaces – i.e. disparate models; each one having is specific issues), can be distributed, and can therefore rely
on different languages and tools. The reconciliation phase in this second approach can be facilitated by the
use of standards, norms and guidelines (cf. Section 4.1) to reduce the “distance” between the viewpoints.

Some key points to distinguish these two approaches are:

- The moment when the viewpoints are reconciled, and consequently,
- The constraints imposed to the stakeholders to express their concerns (more or less

freedom).

In the following, considering model-based approaches in the SE/SA context, these two modeling approaches
are described:

- “Unique model” approach: Building a model relying on the same structure used for both purposes,
the core model being defined by the Systems Engineering. This model can be addressed with a single
viewpoint (model “injection” extension) or by multiple ones (layers on top of the main structure);

- “Multi-models” approach: build two models more independently (one per concern).

4.2.1.1 Unique model approach

One intuitive way to ease consistency management between two engineering domains is to enrich an existing
model with information enabling to study the same system in another domain. In the following, we call this
approach “unique model” and we illustrate it on in the case of system design and safety analysis consistency.
We distinguish two possible unique model approaches:

- The base model used is a simulation design model. It is extended with failure modes (i.e. safety
information). Typically, in an electrical model simulating voltage from 0V to 5V, a failure mode is
added, which results in applying a 0V voltage. The values used in the model are the values that can
be measured in the system. This approach is presented and discussed in (Lisagor, Kelly, & Niu, 2011).

- The base model used is an architecture model without systematic behavior definition. It is enriched
with a safety layer is added to define a safety behavior in each model element. Typically, an electrical
wire enabling voltage is assigned to an enumerated domain {nominal, erroneous, lost} modeling the
deviation from the nominal behavior rather than the actual values that could be measured in the
system. Moreover, safety computations use only the safety behavior and disregard the original SE
behavior, if one is defined. In (Papadopoulos, et al., 2011) a MBSA model defined from the structure
of a Simulink model is presented, and more recently (Bitetti, De Ferluc, Mailland, Gregoris, &
Capogna, 2019) presents a Capella model enriched with failure rates to enable dependability
computations. More related works can be found in Chapter 1, Section 4.1 of (Legendre, Ingénierie
système et Sûreté de fonctionnement : Méthodologie de synchronisation des modèles d’architecture
système et d’analyse de risques, 2017).

In the following, we focus the unique model with a safety layer. Figure 11: Overview of unique model approach
illustrates it: an “unique model” gathers information used for architecture description and safety analysis. As
a consequence, both SE architect and SA specialist contribute to the same model. The language used for this
model is based on MBSE with some extension to support safety analysis. Typically, some properties, specific
to dysfunctional behavior are added to the model elements. For example, failure modes are added to physical
elements.

From the unique model, a MBSA model is generated to be processed by MBSA tools and thus to get cutsets
and probabilities. This intermediate MBSA model is automatically generated and is not associated to any
modeling activities. From a process point of view, it is not a model but an intermediate technical artifact.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 29 / 97

Figure 11: Overview of unique model approach

As the model structure is completely shared, this approach does not raise any structural consistency issue.
Nevertheless, each structural element has two different behaviors, one from the SE point of view, and the
other for SA analysis. The consistency between the SE and SA behaviors should be ensured.

A unique model intents to cover at the same time the needs and concerns of both architecture and safety
points of view. In particular, the model addresses the expressiveness requirements of both architecture and
safety. This may be complicated to achieve from a tooling point of view. Moreover, this raise some
organizational and cultural issues when a tool is imposed to different teams with great experience in other
tools. To overcome this difficulty, an approach with two models is possible.

4.2.1.2 Multi-models approach

On the other side, SE and SA viewpoints can be expressed in distinct models. This approach is called “multi-
models” approach. Mainly, these models are built from a tooling point of view, and therefore activity
dependencies, more independently, i.e. that they are not based on a common structure imposed by one of
the parties.

To illustrate it in the MBSE/MBSA context, a simple view of the approach is illustrated in Figure 12: Overview

of two-model approach: one MBSE model and one MBSA model that require a method to keep them consistent,
both from structural and behavioral points of view.

Figure 12: Overview of two-model approach

In the multi-models approach, the MBSA model is the support of modeling activities such as assumptions,
validation, etc. and thus is fully considered as a model in the process.

Having a distinct structure for MBSE model and MBSA models is a source of inconsistencies to manage.
Nevertheless, it also enables to have different structures for both models. For example, the bleed air flow
normally runs from engines to air conditioning system. In case of failures, and only in case of failures, the air
flow may run reversely. As this behavior is only dysfunctional, due to the different concerns of systems
engineering and safety, the backward flow may not be mentioned in the MBSE model whereas it is necessary
in MBSA model. It results in a directed flow in MBSE model and a bidirectionnal flow (or two directed flows)
in MBSA model, i.e., a structural difference1. This difference is not an inconsistency, as it represents the same
system part, from different point of views. Thus, the possibility to have distinct (and possibly different
structures) is crucial to separate concerns and have a complete safety model.

1 Note that in this example, a backflow protection may be necessary and then shall be modeled in both MBSE and MBSA
domains.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 30 / 97

4.2.1.3 Qualification and synthesis

Between the two “extreme” approaches presented in previous sections, intermediate approaches are
possible. We first present a simple or simplistic comparison of these approaches before deepen it.

“Table 1: Some properties of unique model and two models approaches” presents some properties of both
approaches. An intermediate approach would exhibit a different combination of properties: a unique model
copied in two files2 with different writing rights is a possible example; a common structure language with the
possibility to define different structures for SE and SA (raising structure consistency issues) is another one.

Table 1: Some properties of unique model and two models approaches

 Unique model Two distinct models

Storage (if stored as file) 1 file 2 files

Writing rights SE and SA have writing rights on
the whole model

SE and SA and only writing rights
on their respective files

Language used for structure
description

Common to SE and SA Usually different for SE and SA

Structure description Completely identical for SE and
SA

May be different for SE and SA

It is unclear whether the unique model approach is compliant with independence requirement mentioned in
Section 0. A unique model approach would limit the capability to address the specific concerns of respective
concerns of system and safety modeling, as structural difference is complicated to manage in approach. On
the contrary, unique model approaches eases version comparison and checking that both safety and
architecture cover the same system scope without oversight (i.e., completeness).

During development of complex systems in complex organizational context, systems and safety teams cannot
work on only one model file without possibility of duplicate it to work on different branches and version. As
a consequence, the extreme form of unique approach (presented in Table 1: Some properties of unique model

and two models approaches) with only 1 file is not applicable. Indeed, SE and SA models have different life
cycles. In particular in some development phases, the SA analyst works based on a “baseline” of MBSE model,
i.e., a frozen version, that is not up to date to the latest changes done by SE architect. This desynchronized
work is required because a (safety) analysis takes some time to be performed. During this time, any external
change is not desired. As a consequence, it is mandatory to have a duplication of the MBSE model (as
separate files, or as versions or as branches in a version management tool) and manage some issues of
consistency, including structural consistency. This “light unique model approach” with several branches
requires to manage both structural and behavioral consistency between branches. For example, performing
version merging is necessary in some steps.

Table 2 summarizes some characteristics of both approaches. Concerning the unique model, the benefits are
clearly on the reconciliation phase (and consistency facilities), as it imposes constraints through the tooling
which, as a result, induces constraints on the sequencing of the activities and the freedom in expressing the
safety analysis. It is not clear whether the unique model approach is compliant with independence
requirement mentioned in Section 0. Concerning the multi-models approach, the benefits of the
independence between the realizations are at the expense of difficulties in the reconciliation phase.

Table 2: Some characteristics, benefits and difficulties of the approaches

2 For simplification of the explanation, and amplification of the problems, the description do not consider data-bases, a
current approach in the industry.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 31 / 97

 Unique model Two distinct models

Activity dependencies System design before safety
analysis

No constraints

Independence (ARP) To be confirmed Yes

Reconciliation between System
and Safety viewpoints

Reconciliation de facto, done
when defining the language of
the tool

Reconciliation to do,

Needs support (method and
tools)

4.2.1.4 Approaches to models integration and viewpoints reconciliations

In the case of multi-models, one can distinguish the type of approaches to integrate these models, which can
schematically be summed up in:

- Model Mappings and Linking Support: the models are linked among each other’s through mappings
or trace links for example, see Figure 13 part a);

- Integrated Modeling Languages and Formats: the models are projected onto a common formalism
(e.g. language, metamodel, ontology), see Figure 13 part b);

- A combination of the two, the projected/abstracted models are linked among each other’s through
mappings or trace links for example, see Figure 13 part c);

-
Figure 13: A simplified view of approaches to heterogeneous models integration

Considering projection and abstractions of models, several approaches exist:

1. Projection onto a metamodel (i.e. building a metamodel pivot and the associated transformations),
an example in our immediate context is the Teepee/Interop approach (more details in Chapter 5);

2. Projection onto a shared ontology, an example in our immediate context is the KUBIK/Languages
Federation approach (more details in Section 4.4.4);

3. Projection onto a dedicated language, an example in our immediate context is the S2ML approach
(more details in Section 4.4.3).

Considering mapping relationships and/or rules, approaches in our immediate context are:

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 32 / 97

1. Using traceability links (with a pre-defined typology of links), cf. the 3DExperience approach of
Dassault Aviation in Section 4.4.5;

2. Defining a dedicated mapping language, cf. the MOISE approach in Section 4.4.1.

For additional bibliographical references on the subject, we refer to a recent thesis from Feldman (Feldmann,
Diagnosis and Resolution of Inconsistencies in Heterogeneous Models of Automated Production Systems,
2019) that summarizes in chapter 4.1 a related work towards approaches to Integrate Heterogeneous
Models.

4.3 Consistency approaches for engineering models

This section introduces different approaches from the related literature, which provide concepts, methods
and technics related to inconsistency management in various domains: software, systems engineering,
production and mechatronics. In the following, first, are described approaches to help define
correspondences between multiple models; then approaches to (Semi-) automate inconsistency
management (for the detection and the identification activities); finally, existing management frameworks
are described.

4.3.1 Approaches to build relations between multiple models

Models defined separately by different teams with different concerns in mind, expressing viewpoints on the
system under study, have to be combined in some way. This section present some literature oriented towards
helping (providing automation) the users and conceivers to perform such a task.

As noted in (Herzig, A Bayesian Learning Approach To Inconsistency Identification in Model-Based Systems
Engineering, 2015), much research related to the detection of semantic overlap (which may be partial) of
models has been conducted in a variety of domains. And that however, the fully automated inference of such
model relationships remains an open challenge.

In the related literature, four distinct classes of approaches define correspondences between models (with a
focus on overlap identification) can be identified: the exploitation of representation conventions; the use of
a unifying, domain-spanning ontology; the human inspection; and similarity analysis.

4.3.1.1 Exploitation of Representation Conventions

The exploitation of (syntactic) representation conventions is the “oldest [sic] and most commonly used form
of detecting a model overlap” (Spanoudakis & Zisman, Inconsistency Management in Software Engineering:
Survey and Open Research Issues, 2001). Approaches in this class are typically based on (syntactic) unification
algorithms. These approaches mainly applied on models (instance level) can also be applied at the definition
level.

Generally, unification algorithms perform a syntactic matching between terms, some approaches are
introduced:

- predicate matching, based on symbolic equality of the predicates, as employed by Finkelstein et al.
in (Finkelstein, Gabbay, Hunter, Kramer, & Nuseibeh, 1994) for instance, when working with
distributed databases of logical expressions. Similar work is conducted by Easterbrook et al. in
(Easterbrook, Finkelstein, Kramer, & Nuseibeh, 1994);

- overlap identification based purely on name matching is employed for consistency checking of
requirements using model checking techniques in (Heitmeyer, Jeffords, & Labaw, 1996);

- utilizing the correspondences defined as part of specifying model (Czarnecki & Helsen, 2006)
(definition of a syntactic correspondence between elements of a meta-model), or graph

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 33 / 97

transformations (Königs, 2005) (e.g. triple graph grammars – TGGs -, which also define syntactic
correspondences among (meta-)model elements).

4.3.1.2 Use of Unifying, Domain-Spanning Ontologies

Using a common, shared ontology is a second approach to enabling the identification of overlap between
models. This approach requires the authors of the models to tag model elements with elements from a
common ontology shared among all stakeholders. Examples are (Boehm & In, 1996), or Hehenberger et al.
in (Hehenberger, Egyed, & Zeman, 2010) for the specific case of developing mechatronic systems.

4.3.1.3 Human Inspection

A third approach to identifying overlap is the use of human inspection (Herzig, A Bayesian Learning Approach
To Inconsistency Identification in Model-Based Systems Engineering, 2015). Typically, approaches designed
for identifying model overlap using human inspection methods implement some forms of aid to the
stakeholder responsible for identifying inconsistencies (e.g., through visual aids, or various ways of
representing the models). Examples are:

- the Synoptic system presented in (Easterbrook S. , 1991), which investigates various methods
including the provision of visual aids for browsing models, graphical selection of elements from two
partial models, and the recording of overlap;

- similar approaches are provided in (Jackson, 1997).

As highlight in (Spanoudakis & Zisman, Inconsistency Management in Software Engineering: Survey and Open
Research Issues, 2001), identifying overlap using human inspection can be very exact, but is also highly labor
intensive and time consuming; particularly when developing highly complex systems using (expectedly)
highly interrelated models.

However, there are a number of ongoing research efforts, particularly geared towards visualizing and
enabling the analysis of large data sets (such as sets of heterogeneous models), more details in (Basole,
Qamar, Park, Paredis, & McGinnis, 2015).

Within a development process, this human inspection can be formalized by reviews (and more particularly
consistency reviews), that act on different granularity of models, on different pre-defined scope to set up
and justify the consistency state of the models combination (status of the dependencies, completeness and
correctness of the consistency analysis).

4.3.1.4 Similarity Analysis

Equivalences, common elements, or relations between models (or views in a model) may be detected using
similarity analysis. Similarity analysis exploits the fact that modeling languages incorporate constructs which
imply or strongly suggest the existence of certain semantic overlap relations (Spanoudakis & Zisman,
Inconsistency Management in Software Engineering: Survey and Open Research Issues, 2001). For instance,
the fact that two model elements carry the same name does not entail their semantic equivalence, but
merely serves as evidence to suggest their equivalence.

As noted by (Herzig, A Bayesian Learning Approach To Inconsistency Identification in Model-Based Systems
Engineering, 2015), similarity analysis is one of the very few techniques where abductive and inductive
inference is employed rather than relying on deductive reasoning. However, most approaches using similarity
analysis use ad-hoc methods for measuring similarity (e.g., weighted sums, arbitrary scores, incorporation of
weak assumptions), hence putting their general applicability in model-based approaches in question.

Some examples are:

- In (Spanoudakis & Finkelstein, 1997), the authors analyze structural similarity of models to identify
overlap based on the weighted bipartite graph matching problem;

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 34 / 97

- Similarity analysis for semantic overlap identification has also been used in research related to
ontology matching and database schema matching. For instance, Ehrig and Sure use a series of
similarity rules (e.g., equal names, equal types, equal sub-concepts) and calculate a weighted
similarity score from these (Ehrig & Sure, 2004).

- (Herzig, A Bayesian Learning Approach To Inconsistency Identification in Model-Based Systems
Engineering, 2015), where a probabilistic learning approach support in semi-automatically
identifying semantic overlaps between models is presented.

4.3.2 Approaches to (Semi-)Automated Inconsistency Management

Detection and identification of inconsistencies may be helped by a tooling support. As summarized recently
by Feldman (Feldmann, Diagnosis and Resolution of Inconsistencies in Heterogeneous Models of Automated
Production Systems, 2019), approaches to (Semi-)Automated Inconsistency Management can broadly be
classified into three different categories:

Approaches that make use of logical reasoning and theorem proving aim at a formal knowledge base in
terms of a set of axioms, from which the (in-)consistency of a set of models can be formally concluded. A
seminal work from Finkelstein et al. (Finkelstein, Gabbay, Hunter, Kramer, & Nuseibeh, 1994) make use of
first-order logic to diagnose inconsistencies within multi-view software models such as class diagrams,
sequence diagrams, etc. In order to capture the links between the different entities within the models, they
manually add statements to the models. Whether an inconsistency occurs or not is inferred by an automated
theorem prover. Another example is the work by Van Der Straeten et al. (Van Der Straeten, Mens, Simmonds,
& Jonckers, 2003), where a UML profile is introduced to express both consistency between models within
the same version (horizontal consistency) and between different versions of the same model (evolution
consistency). By means of Description Logics (DLs), different types of consistency can be checked within the
UML profile, e.g., structural inconsistencies between class, sequence and class diagrams such as classless
instances or dangling references as well as incompatible behavior definitions between state charts and
sequence diagrams.

Rule- and pattern-based inconsistency management approaches, where (in-)consistency rules and patterns
are used to describe the circumstances under which a model is (in-)consistent. Similarly to approaches above,
rule-based inconsistency management aims at applying a rule base that describes either the sufficient
conditions that a model must satisfy for it to be considered consistent (Hehenberger, Egyed, & Zeman, 2010)
– that is, rules are used as positive constraints (e.g. Egyed et al. (Egyed, Zeman, Hehenberger, & Demuth,
2018))– or as negative constraints(e.g. Mens et al. (Mens, Van Der Straeten, & D'Hondt, 2006)), which
represent the sufficient conditions that indicate an inconsistency (Herzig, Qamar, & Paredis, 2014). Examples
of pattern-based Approaches are: i) Herzig et al. (Herzig & Paredis, 2014), (Herzig, Qamar, & Paredis, 2014),
that propose a framework for the diagnosis of inconsistencies, in which graph patterns are used to define
inconsistency diagnosis rules, or ii) the ontological integration approach from Wouters et al. (Wouters, Creff,
Bella, & Koudri, 2017) described in more details in Section 4.4.4. These approaches relies on Semantic Web
Technologies, the latter providing an extension to behavioral considerations. Behaviors can be represented
using a wide variety of ways, such as state machines, activities, processes and algorithms. In xOWL, behaviors
are represented as algorithmic structures containing actions executed on the ontologies. xOWL is inspired
from the OMG fUML language (OMG, 2018), and implements an imperative paradigm enhanced with some
features borrowed from the functional paradigm (the language is also able to manipulate lambda
expressions). In a Systems of Systems engineering context, some experiments where performed to illustrate
behavioral consistency at IRT SystemX between a state-machine (expressed in SystemArchitect NAFV3) and
scenarios in Papyrus SysML. In the approach, the state machine (behavior definition) is interpreted as rules;
scenarios are then run and their conformity checked, making possible to detect incompatible behavior
definitions between state charts and sequence diagrams.

Model synchronization approaches, it is aimed at avoiding inconsistencies through synchronizations
between the models under investigation. Contrary to logical reasoning and theorem proving approaches, in
which a formal system needs to be formulated as the basis to manage inconsistencies, as well as rule- or

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 35 / 97

pattern-based approaches, which make use of a flexible set of rules or patterns, model synchronizations aim
at unidirectional or bidirectional transformations between the models involved in the engineering process.
Consequently, in such approaches, transformation rules are formulated that capture, how entities in one
model are related to entities in another model. One example for such synchronizational approaches is the
concept of Giese et al. (Giese & Wagner, 2009), where the authors make use of so-called Triple Graph
Grammars (TGGs) to specify bidirectional syn- chronizations between models. Another is the one from Rieke
et al. (Rieke, Dorociak, Sudmann, Gausemeier, & Schäfer, 2012) with an extension towards managing
consistency between behavioral models of the mechatronic system.

4.3.3 Existing Inconsistency Management Framework

S2C is designed to deal with the consistency between system engineering and safety. These two disciplines
can rely on the use of models. It would therefore be interesting to see the works that has been carried out
with the aim of addressing the coherence between different heterogeneous models.

What appears to be the first published conceptual frameworks related specifically to what has later become
known as inconsistency management were developed by Finkelstein (Finkelstein, Kramer, Nuseibeh,
Finkelstein, & Goedicke, 1992) (Finkelstein, Gabbay, Hunter, Kramer, & Nuseibeh, 1994) . In this work was
introduced the Viewpoint-Oriented Systems Engineering (VOSE) framework, the core principle is the use of
viewpoints to partition the system specification (e.g., functional hierarchy and system block diagram),
development method (e.g., “top-down” and “bottom-up”) and formal representations used to express the
system specifications.

Another work on a consistency management approach was carried out by (Nuseibeh, Easterbrook, & Russo,
2000). The framework defines several activities related to identify and solve inconsistencies. It can be noted
that these activities are close to the activities we have listed above, which are the result of the work carried
out by (Spanoudakis & Zisman, Inconsistency Management in Software Engineering: Survey and Open
Research Issues, 2001).

The objective of this approach is to define rules for consistency in order to check consistency. Once an
inconsistency has been detected, it is diagnosed, its cause identified, and the inconsistency is classified.
Thereafter, the inconsistency is handled, which may result in the resolution (or “fixing”) of the inconsistency,
or in tolerating it (e.g., if the cost of fixing exceeds the benefits). Tolerating can include ignoring and
circumventing the inconsistency. Then, the last activity in the process is the monitoring of the consequences
of a particular handling action.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 36 / 97

Figure 14: Framework for inconsistency management proposed by (Nuseibeh, Easterbrook, & Russo, 2000)

A later work presented in (Hehenberger, Egyed, & Zeman, 2010) addresses the need to have an automatic
analysis of the consistency of a set of engineering data that are represented in the form of models. The
application case was a mechatronic system. The objective was to make electronic models, control models,
mechanical models and software engineering models consistent. For this purpose, an approach inspired from
the software engineering has been developed.

Figure 15: The proposed approach in (Hehenberger, Egyed, & Zeman, 2010)

Figure 15 shows the approach developed. It shows two possible paths of reasoning.

 The first path is from the “Modeling Tool” to the “Rule Detector”. In this "Rule Detector" we identify
the set of consistency rules that we want to check. This module can also decide which subset of
consistency rules has to be evaluated when the model changes. It then goes to the "Consistency
Checker" which does the reasoning. We can consider this “Consistency Checker” as an inference
engine. The results of this "Consistency Checker" are then reinjected in the "Modeling Tool".
Nevertheless, it is unclear whether it modifies the model, give a consistent model for comparison or
other feature

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 37 / 97

 The second path aims to address the consistency of a specific perimeter of a model. To do this, an
intermediate brick between the "Modeling Tool" and the "Rule Detector" has been developed. This
is what is called "Model Profiler" which allows us to determine a "Scope" and to play a set of rules
adapted to this scope of the model.

This approach has been tooled and experimented on a mechatronic module. An ontology of this module has
been developed in order to apply the approach.

A last related work is an approach presented in (Feldmann, et al., 2015). This approach is summarized in the
following figure.

Figure 16: Basic architecture of the technology demonstrator in (Feldmann, et autres, 2015)

The model management brick allows a model transformation in order to move to an integrated technical
space. It is a transformation to an RDF representation which is then stored in the triple store which represents
the knowledge base. The inference mechanism brick is to identify inconsistencies in the knowledge base. And
it is in the control and representation brick, the queries are managed and the results can then be interpreted
and visualized for the user.

4.4 MBSE/MBSA consistency

 This part is a review of practices of consistency between design and safety. The scope of this version is limited
to models usable for the PSSA context, and more precisely, failure conditions (FC) assessment. For design,
we consider MBSE models (and not description or requirements in natural language). For safety, we consider
only failure propagation models (see definitions of Section 2). We mainly focus on the structure of models.
The review is not exhaustive and focuses on the works of project members and recent works.

4.4.1 Capella safety viewpoint and coupling with Safety Architect

The Capella safety viewpoint is a Capella extension enabling model based safety analysis, based on a Capella MBSE
model, with the Safety Architect tool (developed by All4Tec). In a co-engineering context, it supports also an iterative
model based safety analysis workflow, thanks to a “diff” capability, enabling multiple safety analysis iterations, between
Capella and Safety Architect. The objective of the coupling between Capella and Safety Architect tools is to ease the

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 38 / 97

update of MBSA (Safety Architect) model following a new version of MBSE (Capella) model. The toolchain is an internal
tool by both Thales and All4Tec.

Through the Capella safety viewpoint, the safety engineer identifies a critical path for each failure condition. This path
can be defined in the functional architecture (it is a Capella functional chain), in the physical architecture (Capella
physical path) or in both architectures linked by allocations (based on a functional chain). Elements involved in critical
path, i.e., a subset of the MBSE model, are then exported to Safety Architect. Inside these elements, the safety engineer
models failure modes and propagations, using Safety Architect. Then, the tool produces fault trees. When changes are
done in the MBSE model, the toolchain highlights the modifications, enabling the safety engineer to efficiently update
the safety model, without losing the added failure modes and propagations.

This method is a hybrid between unique model and two models approaches. Indeed, as safety analysis begins in the
MBSE model, by defining critical paths, the independence between system design and safety analysis is partial. When
safety analysis requires elements specific to dysfunctional behavior and absent from the MBSE model (such as the
example of backflow in section 4.2.1.2), the addition of corresponding elements in the MBSA model is not taken into
account, encouraging MBSE model modification for safety concerns.

The mapping between MBSE elements and MBSA elements is fully automated. If a textual justification is required, it is
recorded and traced in a requirement management tool, enabling to link justification to a model or a model element.

4.4.2 MOISE MBSE/MBSA method

The MOISE project from IRT Saint Exupéry has defined a method for consistency between MBSE and MBSA models. The
objective of the method is to assist safety model review by system architect. This method belongs fully to the category
of “multi-model”. Dimensions considered are (cf. Section 2.1): horizontal, semantic, structural, and evolution.

Models integration and viewpoints reconciliations and approach to inconsistency management

The approach promotes the use of filtering from the original models and the use of limited transformations (like flows
to ports, ..).

The method defines objects that are dedicated to consistency and called “synchronization points”. Each synchronization
point links 0 or more MBSA model elements with 0 or more MBSE model elements. Thus, the method supports structural
differences and their justification: the structural differences are not seen as inconsistencies provided that they are
justified. Each synchronization point contains a justification and a consistency status.

The status of the synchronization point intends to keep trace of validation (done during the review) and to ease version
management: when a new model version is released, the status of the synchronization points that are linked to updated
model elements is changed to point out the need of re-validation of model elements.

The behavior is seen as attached to output ports and only formalized in MBSA model. The validation of behavior is part
of the validation done in review.

This method is defined through a meta-model linking model element types and consistency objects. It has been applied
through a table format. Though completeness and correctness rules have been defined, no tooling is offered to check
them. The method is further described in [MOISE].

The MBSE model element types that are taken into account are: functional breakdown, functional ports, “functional to
physical” allocations, physical elements and physical ports.

4.4.3 S2ML method

In (Legendre, Ingénierie système et Sûreté de fonctionnement : Méthodologie de synchronisation des modèles
d’architecture système et d’analyse de risques, 2017), a method to assist interactions between several engineering
domains is presented. The presented case study proposes a concrete application of the method for MBSE/MBSA
consistency. The MBSE/MBSA method is deepen in (Batteux, Prosvirnova, & Rauzy, 2019). It fully belongs to the category
of “multi-model”. Dimensions considered are (cf. Section 2.1): both horizontal and vertical, syntactic and semantic, and
structural.

Models integration and viewpoints reconciliations and approach to inconsistency management

The two models are both transformed in a common formalism: the S2ML language that focuses on the structure of
models and omits their behavior. Then the two transformed models are compared (as shown in Figure 17). If an MBSE
element and an MBSA element have the same name they are considered as consistent. The detected inconsistencies

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 39 / 97

(structural differences) highlighted. The user can either modify one of the two models to solve them or establish some
manual matching between model elements. On top of 1-1 matching, it is possible to declare that 1 model element is
consistent with N>1 model element or that 1 model element has no equivalent in the other model.

Figure 17: Overview of S2ML method from (Legendre, Lanusse, & Rauzy, System Engineering and Dependability: Methodology of
Model Synchronization between System Architecture Models and Risk Analysis, 2019)

The case study for MBSE/MBSA consistency addresses the following MBSE model element types: use cases, functional
breakdown, allocations, physical elements and physical ports.

With respect to the MOISE method, this method underlines the need to have a pivot language to compare MBSE and
MBSA structure.

The tooling is limited to Excel report generation without safeguard on user inputs. As a consequence, highlight of
structural difference is textual. Transformation of models are not tooled.

4.4.4 An ontological integration approach (KUBIK experiment)

This section describes an ontological integration approach based on the report of an experiment on a collaborative
space solution for which a prototype tool was implemented at the IRT SystemX under the name of KUBIK, integrating
the OpenAltaRica tool3 for a demonstration in 2016 (illustration Figure 18 – right). Dimensions considered are (cf.
Section 2.1): both horizontal and vertical, semantic, structural and behavioral, and evolution.

Models integration and viewpoints reconciliations

The approach relies on a digital collaborative space based on the federation of modeling languages (Wouters, Creff,
Bella, & Koudri, 2017), i.e. heterogeneous languages handled by the different engineering and business domains , as
illustrated in Figure 18 – left. The collaborative space, aims to meet the challenges of collaborative systems engineering
(Wouters, Creff, Bella, & Koudri, 2017), i.e.: Building the Collaboration, around a shared Vocabulary; Building the
Collaboration, and Orchestration; Controlled Exposition of the artefacts; Preserve consistency with Domain Rules; and
allow Networks of Collaborations.

3 https://www.openaltarica.fr/

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 40 / 97

Figure 18: Collaborative space principles (left) – A collaboration space example including Safety concerns

The heterogeneity of the business domains, as well as the heterogeneity of the languages supporting them, results in
difficulties concerning:

1. the explanation of the business domains (Domains Voc. in Figure 18 – left side),
2. the elicitation of the projections of the business domains in the languages (in the technical spaces),
3. as well as the semantic alignment in the collaborative space (according to the distance between these business

domains).

The collaboration space (cf. Figure 18 – right side) is an application integration platform that allows different engineering
and business domains, via their tools, to share and exchange data during the systems development cycle.

This space is built around the modeling languages federation (Wouters, Creff, Bella, & Koudri, Towards Semantic-Aware
Collaborations in Systems Engineering, 2017), which from a language and MBSE point of view, proposes to reduce the
languages to a "homogeneous" representation of the information (projection onto an ontological support (Wouters &
Gervais, xOWL: An Executable Modeling Language for Domain Experts, 2011)), assuming a possible translation in a
common logic. The semantic projection captures the modeling intention: capture of the usage of the language by its
denotation, formalization of Intention-Specific Modeling Languages - ISML, and ontology mapping techniques. Figure
19 illustrates these principles where two stakeholders collaborates via two modeling tools through projections onto
the collaborative space (semantic reasoning, at the center of the Figure).

Figure 19: Two stakeholders collaborating via modeling tools

In the experiment illustrated Figure 18 – right, Requirements and their criticality level where considered in the Doors
tool, the MBSE model was represented in Papyrus tool (activity diagrams where used to represent the organic
architecture), MBSA related model was performed in Open Altarica tool, and some alternative physical descriptions in
FreeCAD to allow trade-offs. Considering the MBSE/MBSA part, note that only structural modeling elements were
projected onto the ontological space (at the physical modeling level). One important observation of this experiment
was a higher complexity in the projection mapping between MBSE and MBSA compared to MBSE and other engineering
specialties, enforcing our belief on the fact that automatic transformations between the two domains is costly and not
a solution.

Approach to inconsistency management

The current approach is related to pattern-based automation ones (cf. Section 4.3.2). Following a semantic-web
approach, the inconsistency detection is based on native services:

- specification of rules on top of SPARQL Protocol and RDF Query Language (SPARQL), for the purpose of
specifying inconsistency diagnosis patterns and of matching them against the models, e.g. in our example rules

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 41 / 97

are set to check whether any critical function (e.g. SIL4 or DAL A) is covered by the safety analysis to ensure
risk mitigation, and that the cut orders are acceptable,

- inference of new information based on rules,
- queries and impact analysis, combined with artifact versioning.

4.4.5 Dassault Aviation approach (3DExperience)

This section describes the tooled approach followed by Dassault Aviation, based on the philosophy of the 3DExperience
platform (details on the platform can be found in [S2C 3DExperience experiment] and in Chapter 5).

Dimensions considered are (cf. Section 2.1): both horizontal and vertical, semantic, structural, and evolution.

Models integration and viewpoints reconciliations

The levels of collaboration defined by the 3DExperience approach are shown in Figure 20 as follows:

0. interoperability (import/export of files),
1. federation (addition of navigation services, traceability and review),
2. integration (life cycle, configuration, P&O, simulation - e. g. FMU, research,…).

As introduced in Section 4.2.1.4, the approach falls into the category: Using traceability links (with a pre-defined

typology of links). Indeed, "System Traceability “ (SysTRA) allows to access external modeling content build with

authoring tools, and provides traceability services (links, coverage analysis, etc.).

On top of SysTRA, using its facilities, Dassault Aviation has developed a bridge to the MBSA tool Cecilia, making it
possible to expose MBSA elements and relate them to MBSE elements. We do not have more details about it.

Traceability and reviews for consistency purpose are then performed.

Figure 20 - Overview of Systems Traceability, extracted from Dassault Systèmes support (version R2016x)

In version of the platform (R2018x) used for the experimentation, the System Synthesis App is not available to the user, all access
are made via SysTRA

4.4.6 SAVI approach

The System Architecture Virtual Integration (SAVI) program (J., Chilenski, & Ward, SAVI AFE 61 Report -
Summary Final Report) is a multi-year program intended to implement the capability to virtually integrate
complex hardware/software systems before designs are committed to physical form. The SAVI program is
led by the Aerospace Vehicle Systems Institute (AVSI), a cooperative research environment.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 42 / 97

SAVI aims at providing a methodology for managing the exponentially increasing complexity of modern
aerospace systems. The following descriptions are based on publicly available documents provided by the
institute.

Dimensions considered are (cf. Section 2.1): both horizontal and vertical, syntactic and semantic, structural,
and evolution.

Models integration and viewpoints reconciliations

As indicated in the docs, the SAVI program is an attempt to provide a solution to increasingly complex
hardware and software used in critical aerospace systems posing integration problems nearing the limits of
complexity effectively handled by the current system acquisition process. The scope is broad. Figure 21
illustrates two of the core elements of SAVI, the Model Data Exchange Layer and the Model Repositories, and
how they interact with other elements to allow virtual integration of a system of systems.

The SAVI Program is developing the definitions for the Model Repository (the data structure needed for
information storage and analysis) and the Model Data Exchange Layer (the data transformations needed for
information interchange) These components enable multiple business entities to exchange diverse forms of
information utilizing multiple tools SAVI's model oriented approach encourages frequent and early system
validations (virtual integrations) to help reduce rework, and thereby cycle-time and cost. Tools chains
(integration of multiple tools) is built to enable new and more effective integration checks and analyses.

Found in (J., Chilenski, & Kerstetter, SAVI AFE 61S1 Report - Summary Final Report), SAVI explores the use of
standards (e.g. ISO 10303-239, STEP AP-239, Data Exchange Specification – DEX), but also inter-model
consistency checking seems to rely on ontological approaches like the one presented in (Herzig & Paredis, A
Conceptual Basis for Inconsistency Management in Model-based Systems Engineering, 2014) or (Herzig,
Qamar, & Paredis, An Approach to Identifying Inconsistencies in Model-based Systems Engineering, 2014).

Figure 21 - Overview of the SAVI program approach

Approach to inconsistency management

As found in (Redman, Importance of Consistency Checking in the SAVI Virtual Integration Process (VIP), 2014),
the virtual integration is an early and continuous integrated analysis, with the following characteristics:

- Proof-based (consistency checked – but not all with formal models);

- Component-based (hierarchical models);

- Model-based (annotated models).

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 43 / 97

 Illustrates the SAVI consistency checking process in the “Discovery & Processing” activity, based on rules and
tolerances (Pollari & Shaw, 2017). Few details are provided in public documents. The Figure highlights that
consistency between two models exists when the dependence relations between those two models are
satisfied (Some dependence relations can be detected automatically, some tools are using patterns to assist;
some dependence relations will – always- require manual identification). Fidelity of consistency is
proportional to the effort put into consistency modeling. Two levels of verification are defined: i) consistency
checks at a fine dependency level, and ii) verification check at the global level (conformance to higher level
checks – rules).

Figure 22 - Overview of the SAVI consistency checking process

Work towards Safety

Final reports and presentations cited before define the focus for Safety within the SAVI V 1.0A, as:

- Exercised in V. 1.0A FTA, FHA, FMECA, PSSA
- Identified, but not exercised: RCA, CCA, SSA

Taken from (J., Chilenski, & Ward, SAVI AFE 61 Report - Summary Final Report): “The process so far includes
generation of the fault tree analysis (FTA) based upon an assumed set of hazards presented as inputs to the
process using a spreadsheet-based Functional Hazard Analysis (FHA). A Failure Modes and Effects Analysis
(FMEA) has been demonstrated but a full-blown failure modes, effects, and criticality analysis (FMECA) has
not been demonstrated. Other safety analyses like the common mode analysis (CMA), the zonal safety
analysis (ZSA), and evaluation of a system's development or design assurance level (DAL) have not yet been
demonstrated from the SAVI model set”.

Relying on information found in (Redman, The System Architecture Virtual Integration Program (SAVI)) and
illustrated by Figure 23, the systems and software architecture is build using the AADL formalism, a unique
model approach (as described in Section 4.2.1.1), with transformations to safety analysis spaces. No more
details are provided.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 44 / 97

Figure 23 - Overview of the SAVI Safety environment

4.5 MBSE/FTA consistency

To ensure consistency between MBSE and FTA, in the end of comprehensive review, two possible approaches have been
identified:

- Building a fault tree following a method that keeps trace of MBSE breakdown and add traceability between on
the one hand leafs and gates of the tree and on the other hand elements from MBSE model. E.g., in [MOISE]
appendix B about Medini.

- Decomposing fault tree based on MBSE model breakdown. This approach can be seen in Component Fault
Trees and Safety Architect (alone without Capella connector).

Note that the difference between unique model or multi-model approaches is still efficient when discussing MBSE/FTA:
Medini and Safety Architect can be classified as “multi-model” methods whereas CFT defines an unique model.

In this case, dimensions considered are (cf. Section 2.1): both horizontal, and structural.

4.6 SA/SA consistency

This section will describe in further version the existing approaches to ensure consistency between the different safety
analyses.

Dimensions considered are (cf. Section 2.1): vertical, structural, and evolution.

4.7 Comparison of methods

The organization of this comparison follows the consistency activities described in Chapter 3: The definition
of correspondences between artefacts (Heterogeneous models considerations, Definition of
correspondences between artefacts), the detection of inconsistencies, the diagnosis of inconsistencies, and
Inconsistency handling.

First, the kind of modeling approach is reported, i.e. if the approach considers multiple models or not (cf.
unique vs. multi-model distinction in Section 0). In the case of heterogeneity, one may distinguish the kind
of approaches to integrate these models (cf. Section 4.2.1.4), which can be:

- Integrated Modelling Languages and Formats: the models are projected onto a common formalism
(e.g. language, metamodel, ontology);

- Model Mappings and Linking Support: the models are linked (without projection, abstraction or
filtering) among each other’s through mappings or tracelinks for example.

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry,
et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 45 / 97

Then, considering the definition of correspondences between artefacts, the matching part (to identify
overlaps or to identify links between artefacts) can be manual or be focused on providing automation
support, i.e.:

- Help (semi-automation/automation);
- Manual

As soon as, these correspondences are made is also listed, which can be: i) when defining the language (or
building the collaboration tool, i.e. at metamodeling level), ii) when building the collaboration, iii) when
considering the models during a project.

Next, considering the detection of inconsistencies, two concerns are revealed: i) the kind of approach

followed and if it provides automation, and ii) the inconsistency type considered (structural or behavioral,

see Section 2.1). The approaches found in the literature are: visual inspection (review), or based on some

framework (automation): Logical Reasoning and Theorem Proving; Rule- and Pattern-Based approaches;

Model Synchronizations (more details in Section 4.3.2).

For the last two activities, the diagnosis of inconsistencies (identifying/classifying of located inconsistencies)
and Inconsistency handling (Ignore, tolerate, resolve), are identified the following characteristics: whether
the approach considers the activity, if it is manual, and what service if considered when existing (e.g. for
resolving the inconsistency, a modification of one/many models can be considered in a way).

“” provides a synthesis of the methods in light of the above characteristics. Methods considered in the
MBSE/MBSA scope are the following (detailed in Section 4.4)4: Capella Safety viewpoint, MOISE method,
S2ML method, Ontological integration approach (identified as KUBIK for short in the table), and DA approach
(3DExp). Some other approaches from domains like Systems Engineering, Software or mechatronics are also
included to highlight distinct approaches (details in Section 4.3).

4 The SAVI approach is not considered as we have less details

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry, et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM,
AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 46 / 97

Methods

Models
considerations

Approach

Definition of
correspondences between

artefacts

 [When], automation

Detection of
inconsistencies

Approaches and automation

 Detection of
inconsistencies

Approaches and
automation

Diagnosis of
inconsistencies

Considered / service (if
relevant)

Inconsistency
handling

Considered / service (if
relevant)

Thales/All4T
ec

Section 4.4.1

Unique model
with

viewpoints

[Conceiver: When building
the language + User: When

filling the model]

Manual

Manual (review) +
Automation (Well-

formedness conformance
checking)

- Not considered Direct modification
of the model

MOISE

Section 4.4.2

Multi-models
Mappings

[User: When defining
correspondences between

models - CPs]

Manual

Manual (review)+

Automation (Well-
formedness conformance

checking)

Structural Not considered Tolerate
(justifications)

S2ML

Section 4.4.3

Multi-models
Integration via

Languages

[Conceiver: When building
the collaboration + User:

When defining
correspondences between

models]

Manual + Semi-automation

(Comparison on names and

structure)

Automation (Diff
checking),

Locating

Structural ? Concretization phase
(resolve) or

justification (i/t/r)

KUBIK

Section 4.4.4

Multi-models
Integration via

Languages +
Mappings

[Conceiver: When building
the language federation for

the collaboration+ User:
When defining

correspondences between
models]

Manual

Automation (Rule- and
Pattern-Based
approaches)

Locating

Structural + some
behavioral

Rule reasoning

Impact analysis service

Identifying (labeled
rule)

Not considered

LIV-S085L01-001

ISX-S2C-LIV-1001

Version: V3

 Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : l’IRT Saint Exupéry, et de l’IRT SystemX, IRIT, CNRS, , Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM,
AIRBUS Protect, Samares Engineering, DGA, ONERA, SATODEV .SupMeca.

 47 / 97

5 (Herzig, A Bayesian Learning Approach To Inconsistency Identification in Model-Based Systems Engineering, 2015)
6 (Van Der Straeten & D’Hondt, Model Refactorings through Rule-Based Inconsistency Resolution, 2006), (Van Der Straeten, Mens, Simmonds, & Jonckers, 2003)
7 (Giese & Wagner, 2009)
8 (Rieke, Dorociak, Sudmann, Gausemeier, & Schäfer, 2012)

DA approach
(3DExp)

Section 4.4.5

Multi-models
Mappings

[User: When defining
correspondences between

models]

Manual

Manual (review) ? Not considered Not considered

Herzig5 Multi-models
Integration via

Languages +
Mappings

[Conceiver: When building
the language projection+

User: When defining
correspondences between

models]

Manual

Automation (Rule- and
Pattern-Based
approaches)

Locating

Structural Rule reasoning

identify/classify

Not considered

Van Der
Straeten6

None [Conceiver: When building
the language]

-

Logical reasoning
(specification)

Locating

Structural + some
behavioral

Logical reasoning
(specification)

identify

Rule-based
inconsistency

resolution

Giese et al.7 Multi-models
Integration via

Languages

[Conceiver: When building
the languages integration]

Automation
(synchronization-based

approach)

Structural model synchronization

identify

Resolution
(bidirectional

transformation
technique of triple
graph grammars)

Rieke et al.8 Multi-models
Integration via

Languages

[Conceiver: When building
the languages integration]

Automation
(synchronization-based

approach)

Structural + some
behavioral

model synchronization

identify

Resolution
(incremental model

synchronization)

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 48 / 97

In conclusion, some points can be highlighted:

• The approaches are conceptually and technically (underlying framework) different;

• Consistency activities are not fully covered, efforts are specifically made on relating artefacts and

detection inconsistencies (less on diagnostics and resolving, which can require some substantial

efforts);

• Some approaches tend to provide automation to matching and inconsistency detection;

• Few considerations of behavioral consistency checking (hard problem in itself).

All the methods are missing focus on prevention of inconsistencies to appears, i.e. activities related to

defining and establishing the collaboration (building a shared vocabulary, a shared vision of the

collaboration, and an alignment of the process - more details in Section 3.1).

Approaches could be observed in terms of:

- Impact on existing practices (additional workload needed to implement the method, impact on

existing processes);

- Efforts/ Benefits for certification purpose;

- Comprehensibility;

- Scalability and performance.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 49 / 97

5 How Tools/Platforms answer consistency issue

In this section, we will present the way the different existing platforms support consistency issue. The
purpose is here to list all functionalities of the platforms in relation with consistency needs: traceability aids,
consistency rules and verification, review capabilities, …

The evaluation of the tools was based on three categories

• Generic services that position the context of use of each tool

• Services that support and facilitate collaboration

• Services that respond to the different consistency activities:

• Linking engineering artifacts (Matching and Mapping)

• Detection of inconsistencies

• Diagnosis of inconsistencies

• Handling of inconsistencies

The tools we investigated are:

 3DX: it's a commercial tool with a fully integrated and equipped collaboration context, linked to a
Product Lifecycle Management (PLM) platform. In this context, the platform is widely used for the
management, piloting and various engineering tasks. For our evaluation needs, we relied on the
services offered by version 2016x

 SECollab: it’s a commercial tool presenting a collaborative context based on a platform for specific
use (the collaborative review) and connected to dedicated tools for the use of certain services
(management of actions or change requests for the review for example). The version evaluated here
is the V3.1.1

 Teepee: a dedicated integration management platform, which is a research prototype, built to face
heterogeneity of data, methods and tools to provide unambiguous communication in the so-called
Extended Enterprise. The platform provides digital continuity along the development process and
relies on Interoperability principles, publication and federated data controlled exposition.

The following table represents an overview of the consistency services offered by the 3 platforms 3DX,
SECollab and Teepee. We have organized this table according to 3 main categories of services:

 Generic services that position the context and purpose of each tool

 Services that support and facilitate collaboration

 Services that respond to the different consistency activities listed in chapter 3

 3DX SECollab Teepee

Generics

Plateform kind PLM platform + regrouping
several heterogeneous apps

Specific review plateform Heterogeneity
management (integration)

Licence commercial commercial Free for S2C members for
research use, commercial
for other uses

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 50 / 97

 Collaboration

Data Integration kind Import/export of PLM
object + direct bridges to
tools

Import/export of files+

OSLC tool connectors
Direct bridges to tools or
connection from files

Distributed REST API

Model rendering and view Copy of the rendering and
view of the original tool

Copy of the rendering and

view of the original tool
Rendering as defined by
viewpoint definition
Context specific view
(autolayout)

Technological stacks PLM objects (oracle based)+
specific (proprietary) RDF
support

neo4j REST API (format csv)

Connectors list (limitated
to SE/SA)

Native applications and
Several connectors (listed in
the figure below). These
include:

 DOORS

 ReqIF

 RFLP

 System Architect

 Rhapsody

 Magic Draw

 Cecilia

 Office

 DOORS

 MEGA

 System Architect

 Rhapsody

 Capella

 MagicDraw

 Enterprise

Architect

 Office

Limited to defined
viewpoints:

 Capella

 MagicDraw through
TeamWorkCloud (block
method)

 MagicDraw through
TeamWorkCloud
(activity method)

 Modelio through
Constellation

 Excel

 SimfiaNeo

Possibility to develop new
connectors (sdk)

Yes (and without software
editor's intervention)

Yes (and without software
editor's intervention)

Yes (and without software
editor's intervention)

 Consistency activities

Linking engineering artifacts (Matching and Mapping)

Alignment of business
vocabularies

No native service available No native service available No native service available

 Alignment of the
languages used in the
business lines: choice
of common
formalisms, and/or
mapping between
formalisms,

 Matching of
collaborative artefacts

 Specification of inter-
business matching
rules

 No native service
available

 No native service
available

 No native service
available

 No native service
available

 No native service
available

 No native service
available

 Dedicated viewpoints
defined as a common
vocabulary and
provided in the REST
API. Mapping
between formalisms
and common
vocabulary is done in
the connector.

 No native service
available

 No native service
available

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 51 / 97

Table 3: Comparison of tools

Specification of the
orchestration (or
choreography) of the
engineering processes

Project Management App
(activities and workflows)

No native service available No native service available

Definition of
correspondences between
artefacts (mapping)

Traceability service (links)

App: SysTra

Traceability service (links) Traceability service (alias)

Detection of inconsistencies

Detection of contradictions
between assertions (e.g.
with definition and
execution of consistency
rules)

No native service available +

Possible implementation
(semantic browser) but still
not easy to use by non-
expert user

Yes but still not easy to use
by non-expert user

No (hardcoded in the
tool)

Detection of contradictions
between assertions with
expert inspection
(consistency review)

Yes

(Collaborative review with
the use of SysTra and review
path)

Yes

(Native collaborative
review)

Yes

(Review of the result of
integration)

Detection of deviations in
the implementation and
execution of process
orchestration (control of
compliance with
procedures, etc.)

Validation and approbation
routes (on activities,
product lifecycles) – no
deviation allowed

No native service available No native service available

Diff functionality (two
versions of the same
model)

Yes (textual and graphical) Yes (textual and graphical) No native service available

Diagnosis of inconsistencies

Identification of the source
of the inconsistency

No native service available
(but we can use the diff as a
solution)

No native service available
(but we can use the diff as a
solution)

No native service available

Identification of the cause
of the inconsistency

No service available No service available No native service available

Identification of the impact
of the inconsistency

No native service available
(but traceability link can
help to identify the impact)

No native service available
(but traceability link can
help to identify the impact)

No native service available

Handling of inconsistencies

Data synchronization
between private space
(specialized modeling tool)
and public space (platform)

No (the edition is done in
the tool of speciality and
then published to the
platform)

No (the edition is done in
the tool of speciality and
then published to the
platform)

No (the edition is done in
the tool of speciality and
then published to the
platform)

Versioning Yes Yes Yes

Technical facts
management

Yes Yes, connection with JIRA No native service available

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 52 / 97

As a conclusion, it can be observed that:

- Methods and tools focus on dealing with the heterogeneity of viewpoints and data with different
approaches,

- The tools are built for distinct purposes and are technically different (framework to assemble the
model), and services available to the users,

- Native services to address all consistency activities are missing (assistance and automation), more
specifically to help detect and diagnose inconsistencies:

o Initials steps of managing the information is generally performed (Linking engineering
artifacts, providing integration, views, …), but

o Assistance and automation (tooling) approaches can bring benefits to inconsistency
management activities like: matching, detection, diagnosis and handling.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 53 / 97

6 MBSA methodologies and tools

6.1 Key definitions and Concepts

This section gives elements to understand the MBSA state of the art, fundamental concepts but also vocabulary details.

6.1.1 Definitions

Artifact:

Term from the Unified Modeling Language utilization for “the specification of a physical piece of information that is

used or produced”….”by deployment and operation of a system.” 9

This term is used to characterize a type of node in AltaRica modeling language.

(Minimal) Cut set

A cut set (also called failure set in ARP4761) is a set of failures that brings the system to reach a failure condition.

A minimal cut set is minimal, in the sense that, if a failure is removed from the set, the failure condition is not reached.

In models, failures are modeled by events, a cut set is then a set of events.

Failure logic modeling (FLM):

This approach is based on the notion of failure modes and failure mode flows. This safety analysis method is also build
using the development of formal and semi-formal languages to enable specification, composition, and analysis of system
failure behaviour. Their ‘topology’ closely resembles that of typical design models. Overall, FLMs can be seen as a
‘modular’ variant of the fault trees. It’s a not fully automated process, indeed Failure Logic Models (FLMs) are manually
constructed by the safety engineers. The FLM approach focuses on faults rather than constructing a model of a system
dynamics.

The term and definition of FLM are taken from (Lisagor, Sun, & Kelly, 2010) and (Papadopoulos, et al., 2011). Most MBSA
methods of S2C members do not fulfill this definition of FLM, nor other approaches defined by Lisagor. That is the reason
why, we propose a new definition that cover these MBSA methods:

Failure Propagation Model (FPM):

The safety process captures, using a modeling language, the architecture, the failure mode models, the safety-relevant
functional behavior (e.g., reconfigurations, monitoring, etc.); failure condition formulae and possibly additional data
depending on the analysis objective.

The resulting analytical model is called a “Failure Propagation Model” [From ARP4761 rev A DRAFT]. This model can be
used to compute quantitative and/or qualitative safety indicators.

Failure propagation models are, in some way or another, computable. Several mathematical formalisms are used in
dependability analysis to support the computations, mainly Markov chains, Petri nets or finite state machines, each with
different variants. These types of underlying formalisms are important for the qualification of computation tools.

Functional and Dysfunctional modeling (FDM):

The purpose of this definition is to define the project approach and to provide a framework for project members’ use
MBSA. This MBSA approach is based on the notion of modes and flows in order to model system dysfunctional and
functional* behavior. Modeled functional behaviors are a subset of functional behavior selected because of their impact
on the safety analysis. These models ‘topology’ closely resembles that of typical design models modeling selected
functional and dysfunctional behaviors. These models support a sound and complete computation of the causes of
feared events.

(*it deals with nominal behavior abstracted).

9 https://en.wikipedia.org/wiki/Artifact_(UML)

https://en.wikipedia.org/wiki/Artifact_(UML)

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 54 / 97

MBSA (Model Based Safety Analysis):

A technique that models system content and behavior in order to provide safety analysis results. MBSA employs an
analytical model called a Failure Propagation Model (FPM) [From ARP4761 rev A DRAFT].

(System) Modelling:

A method to represent systems in a conceptual model that defines the structure and behaviour of a system. The main
objective is to obtain a standardised representation of a current definition of the system as a base to support the work
of the development process.

Modeling language:

“A modeling language is any artificial language that can be used to express information or knowledge or systems in a
structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components
in the structure. A modeling language can be graphical or textual.” 10

Resource:

“An entity that is utilized or consumed during the execution of a process.

Note 1: Resources may include diverse entities such as personnel, facilities, capital equipment, tools, and utilities such

as power, water, fuel and communication infrastructures.

Note2: Resources may be reusable, renewable or consumable.” (definition from (ISO15288, 2015))

10 https://en.wikipedia.org/wiki/Modeling_language

https://en.wikipedia.org/wiki/Modeling_language

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 55 / 97

6.1.2 Basic concepts

Deterministic or non-determinist computation:

“A deterministic algorithm is an algorithm which, given a particular input, will always produce the same output”11. To
compute results (cutset, sequence, probabilities) from a MBSA model, we can use either a deterministic algorithm or a
non-deterministic algorithm, typically Monte-Carlo simulation (see definition below).

Deterministic or non-deterministic model:

A model is deterministic if, given a set of events (according to models, a set with a defined sequence or a set with timed
instants for each event), the state of the model is determined. In other words, the outcome of a transition from one
model state to another is only determined by the event name for all model runs. Figure 24: Example of deterministic
model (left) and non-deterministic model (right) Figure 24 shows an example of non-determinism: from a given state
(A), the same event (E1) may lead to different states (B or C).

Figure 24: Example of deterministic model (left) and non-deterministic model (right)

Let note that the determinism of models is not strongly related to the determinism of computation. A deterministic
model can be computed in a non-deterministic manner and reversely.

Mathematical formalisms:

A mathematical formalism is a form that enables to solve mathematically the problem defined by the model. In general,
the model, expressed in modeling language, is transformed in a mathematical formalism before computation.

Failure propagation models are, in one way or another, computable. Several mathematical formalisms are used in
dependability analysis to support the computations, mainly Boolean equations, Markov chains, Petri nets or finite state
machines, each with different variants. The modeling engineer needs only the knowledge of the modeling language and
its semantics. The knowledge of the detailed formalism is required to develop the computation engine. Even though
one can use those different formalisms without knowing in details their mathematical justification, it is necessary to
understand how to use them properly. In addition, the knowledge of underlying formalisms becomes compulsory in the
framework of the qualification of computation tools.

In the following of the document, we are mainly interested in the type of results and the modeling aspects available to
the safety engineer that are in some extent independent from the underlying computational framework.

To be completed: based on ONERA input, a description of main mathematical formalisms will be available in a future
version.

Model run / trace:

A model run (also called “trace”) is a sequence of states of the model (a state of the model is a combination of values
of state variables). From one state to a second one, a transition occurs.

11 https://en.wikipedia.org/wiki/Deterministic_algorithm

https://en.wikipedia.org/wiki/Deterministic_algorithm

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 56 / 97

Monte Carlo:

“Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on

repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems

that might be deterministic in principle.” 12

Static or dynamic MBSA modeling:

Let consider an MBSA model that is an asynchronous discrete-event model. By asynchronous, we mean that 2 events
cannot occur at the same time.

Such a model is called static if the occurrence order of the events has no influence on the resulting state. For example,
in Figure 25, we consider a model with two possible events E1 and E2. Both sequences (E1, E2) and (E2, E1) result in the
same state (State D). The model is static if it verifies this property for all possible sequences in the model.

Figure 25: Example of static model

In the same context of MBSA asynchronous discrete-event model, a model is called dynamic if it exists at least one
couple of sequences that are constituted with the same events and result in different states. For example, in Figure 26,
the sequences (E1, E2) and (E2, E1) are constituted with the same events and result in different states: (E1, E2) results
in State E and (E2, E1) results in State F.

Figure 26: Example of dynamic model

This definition addresses overall model behavior. It does not allow to easily deciding whether a given model is static or
dynamic (more precisely it would require to use model-checking techniques).

Consequently, a practical definition of static and dynamic is sometimes used: a model is static if it has a very simple
state machine and a behavior mainly encoded in assertions. This definition is not well formed, there is no expert’s
consensus about it and is a working topic of S2C project. Nonetheless, it introduces the important distinction between
the “behavioral staticity” and the “syntactical staticity”. A model can contain complicated state machines (syntactically
dynamic) and, once compute for a given feared event, exhibit only sequences that can be gather in cutsets (behaviorally
static). The syntactic staticity is important for computation. The computation algorithm used for (syntactically) static
models is the Boolean equations and is faster than any algorithm computing (syntactically) dynamic models.

12 https://en.wikipedia.org/wiki/Monte_Carlo_method

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 57 / 97

To sum up, behavioral staticity is theoretical and well defined, whereas syntactical staticity has to be defined and has
operational importance.

6.1.3 An introduction to AltaRica DataFlow

This section presents briefly and simply the basics of AltaRica DataFlow, with shortcuts and simplifications to ease
understanding by beginners in AltaRica. They match industrial practices in a graphical editor, following the “Functional
and dysfunctional modeling” as defined in Section 6.1. For a complete, precise and academic presentation of AltaRica,
please refer to Section 6.4.2.1.

AltaRica DataFlow is a modeling language. The main element of the language is a “node”. A node can model a
component, a function or any intended artifact. Nodes have input/output ports that can be linked to each other. A node
can contain sub-nodes, then it is called hierarchical, otherwise it is atomic. Figure 27 illustrates these concepts.

Figure 27: Composition of nodes

As illustrated in Figure 28, an atomic node contains:

- One state machine, defined by state variables and transitions. Each transition is associated to an event. When
a transition is triggered, the state changes, i.e., the value of one or several state variables change.

- One assertion, modeling the dependency of output to inputs and state variables. The assertion aims to assign
to each output ports a value according to the value of input ports and state variables. A common practice is to
define one assignment per output port, resulting in the common abuse of language that one assertion is one
assignment (instead of the set of assignments of the node). As a whole, assertions model the propagation of
the failure modes (or more generally information) throughout the model.

Figure 28: Atomic node in AltaRica

As a basic example, one can consider the atomic node shown by Figure 29. In the initial state defined by “stateVar =
nominal”, the event “failure” is enabled (i.e., it is triggerable). Let consider that the input value of the flow is “nominal”.
Then the output is nominal at initial state. When the event ”failure” is triggered, the “stateVar” value changes to “failed”.
Following the assertion, the output is then set to “failed”, propagating the failure out of the node.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 58 / 97

Figure 29: A basic AltaRica atomic node (description view)

Consider now that this first node “A” is linked to a node “B” that has the state machine and assertion shown in Figure
30. The output of “A” is propagated to the input of node “B”. Following the assertion of “B”, its output is set to “failed”
and propagation continues in the downstream nodes.

Figure 30: A basic AlataRica model (simulation view)

The input of node “A” is set as nominal for the sake of simplicity of the example. In a model, it should be linked to an upstream node.

The objective of MBSA is to generate cut sets or sequences to perform a safety analysis of a failure condition. The failure
condition is defined in the model as an observer, as illustrated in Figure 31.

Figure 31: Example of a model with an observer

To understand how a model behaves as a whole, consider Figure 32. All computations are based on this reformulation
of the model where:

- state variables values are combined to give overall model states;
- transitions are NOT combined with one another (asynchronous assumption);
- decomposition in nodes is flattened (more generally, all structures, as defined in Section 6.4.1.2, are flattened);
- assertions are expressed only in states variables. For example, note the observer is expressed in terms in state

variables.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 59 / 97

Figure 32: Reformulated version of the model defined by Figure 31

To compute cut sets from this reformulated model, we search for sets of events that lead, from the initial state to states
where the observer is true (i.e., failure condition is reached).

The basic example follows the “Functional and dysfunctional modeling” approach, as shown by the explicit modeling of
the nominal state. In this simple example, there is no need to model some reconfigurations but they can be taken into
account for more complex systems.

Modeling in AltaRica involves three viewpoints:

- The description view (Figure 29), or edition view, that enables to build the model
- The simulation view (Figure 30) that enables to execute a scenario in the model, mainly in the objective to

validate that the model represents the system of interest. A simulation step is defined by the occurring of an
event, the resulting propagation through flows and assertion is regarded as instantaneous.

- The result view shows the cut sets or sequences generated from the model, enabling to assess the safety of
the system of interest. Depending of the model complexity, the model is static or dynamic, and different results
are computed: cut sets for static models, sequences for dynamic models.

Of course, models are usually more complex than this simple example. The following points are an illustration of this
complexity:

- A variable can have more than 2 possible values (“nominal” and “failed”)
- Different variables can have different sets of possible values
- An atomic node contains more state variables and more transitions
- The condition to trigger an event can take into account input variables the condition to trigger the transition

“failure” is “stateVar = nominal”, so no input variable is taken into account
- An event is associated to probability laws
- Two events defined in different nodes can be synchronized, i.e. they occur at the same time. This enables

communication between nodes in another manner than flows between nodes. This is the only exception to the
asynchronous assumption.

- The result view shows the cutsets or sequences generated from the model, enabling to assess the safety of the
system of interest. Depending of the model complexity, the model is static or dynamic, and different results
are computed: cutsets for static models, sequences for dynamic models.

In general, the expressiveness of AltaRica, notably of state machines, enables to model functional behavior (required
for safety analysis). This capacity is essential to support the “Dysfunctional and functional modeling” defined in Section
6.1.1.

6.2 Introducing dependability using models

S2C project focuses on safety. This section intent is to provide a more global vision of modelling potential by focusing
on dependability other aspects.

The propagation modeling approach characteristic gives the opportunity to explore different attributes of
dependability.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 60 / 97

This section provides a list of attributes covered by dependability, and selects the ones where it is relevant to use an
MBSA type model. Then an overview of topics with associated tools is provided in order to provide some illustration of
applications.

6.2.1 Relevant parts of dependability

We can find dependability in multiple communities. We choose, in this section to present dependability in the
framework of LSA and its multi-domain standard [S3000L]. LSA is wider than dependability, as a consequence, we limit
the scope to dependability and subjects that are related to dependability models.

Dependability is considered to be covered by following concepts: Reliability, Availability, Maintainability, Safety and
Testability. This list is completed by attributes from the list of “considerations” influencing and justifying the design in
[S3000L].

Selected considerations, with definition extracted from (S3000L, 2014) are listed hereafter:

- Availability
“Availability is the measure of the degree to which an item is an operable and ready-for-use state at the start
of a mission or operation, when the mission or operation is called for at an unknown time.
Reliability, maintainability and supportability all contribute to the availability of the product.”
Several estimators of availability can be calculated such as inherent availability, i.e., foreseen availability
regarding the system itself, achieved availability, i.e., the observed availability during operations and
operational availability, i.e., foreseen availability regarding the system as operated within repair and logistic
context (refer to (S3000L, 2014) for full definitions).
The last one is the most difficult to be estimated as takes into consideration time to repair and reliability of
course, but also preventive maintenance, repair team availability, stocks …
The complex models have the most interest for operational availability. This attribute is detailed in §6.2.3.

- Reliability
“Reliability is a prime driver of support resources. It is related to the duration or probability of failure-free
performance of a product under stated conditions, or the probability that an item can perform its intended
function for a specific interval under stated conditions. “.
Modeling of availability is close from reliability ones. Hence, reliability is analyzed as a part of availability
domain. Most of time, the reliability is expressed by MTBF (Mean time between failure).

- Maintainability
“Maintainability is the measure of the ability of an item to be retained in or restored to a specified condition,
when maintenance is performed by personnel having specified skill levels, using prescribed procedures and
resources, at each prescribed level of maintenance and repair.”
The main director of maintainability is the Mean Time To Repair (MTTR) which is the main indicator. Models,
as considered in this document, are not considered to be used often for this limited purpose. Most of the time,
maintainability, during the design phase, is performed using Maintenance Task Analysis as defined in [S3000L].
MTTR is estimated by analysis of mechanical design models (such as CATIA models), plans or maintenance
procedure. Formally, there are models (like Markov) but for the moment, their use in industrial context is very
infrequent.

- Supportability
“Supportability is the measure of the degree to which all resources required to operate and maintain the Product
are provided in sufficient quantity. Supportability encompasses all elements of ILS support resources such as
technical information, support equipment, spare or personnel”.
This attribute is considered, in this state-of-the-art document, as a contributor to operational availability in
order to have a model close to reality constraints. Hence this topic is covered by availability subject.

- Testability
“Testability is a design characteristic which allows the status (operable, inoperable, or degraded) of an item
and the location of any faults/failures within the item to be confidently determined in a timely fashion”.
This attribute leads to several tests and application of MBSA type tools in order to assess the level of testability
of an equipment, system or system of system. At present, no prevalent industrial solution is simple to use.
You will find more details in §6.2.4 with tool example and publications.

- Cost effectiveness
“The design and the choices involved in design have a cost implication for the LCC (Life Cycle Costs) , which can
be broken into design/development, production/procurement, operational and disposal costs. Comparative
analysis between different alternatives and costs are necessary to balance availability and LCC.”

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 61 / 97

This attribute is linked with availability models, indeed to judge of the cost effectiveness it is necessary to check
balances between system effectiveness mainly availability) and LCC. This attribute will be addressed during
availability analysis.

- Safety from (ISO15026, 1998)

“The expectation that a system does not, under defined conditions, lead to a state in which human life, health,
property, or the environment is endangered.”

Note this section will not deal with safety as it is addressed in the ones following.

Based on this preview of the attributes of dependability, Availability and Testability will be addressed in §6.2.3 and
§6.2.4.

6.2.2 Model usages of S2C members

The contributors of S2C are using advanced models in several dependability activities. The table below provides an
overview of the type of applications per domain.

Table 4 : Dependability using models

 Domain Types of applications

Dassault-
Aviation

Aeronautics

Civil, business and military
aviation,

Operational availability

Safran
Helicopter
engines

Aeronautics, missile and
railway To be completed

Liebherr-
Aerospace
Toulouse

Aeronautics
To be completed

Thales SA Aeronautics, space, transport,
digital identity and security,
defense and security

To be completed

APSYS Aeronautics, space, naval,
automotive, air traffic
management, energy, nuclear
and industry

 Safety

 Reliability

 Availability

 Supportability/Costs
effectiveness

with Simfia, SimfiaNeo and
Simlog tools

LGM Aeronautics, railway, naval,
defense, energy,
telecommunications, air traffic

 Operational availability
(GRIF, Extend)

 Testability (eXpress)

 Mission reliability (GRIF,
tools from OAR platform)

ONERA Aerospace and defense  Reliability

 Operational availability

 Testability

DGA Aeronautics, aerospace, naval,
terrestrial, drones, missiles, air
traffic control, testing
facilities, systems of systems
for civil and military
applications

 Safety (80%)

 "Operational effectiveness"
(10%)

 Accident investigation
(10%)

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 62 / 97

The “types of applications”, in Table 4, is not exhaustive. When the applications, associated methods and tools will be
provided, the next sections will be completed with member’s information.

6.2.3 Modelling for operational availability analysis

Usually, the type of availability modeling is based on Reliability block Diagram, Markov chain and Petri nets use.

The concept of availability implies three other concepts:

 Reliability which deals with the frequency of failures,

 Maintainability which characterizes maintenance times,

 Logistics which deals with all the material, personnel and spare resources, documentation and maintenance
policy implemented.

The following graph (extract from Standard (AFNORNFX60-500) translated) highlights the intrinsic availability and the
operational availability:

Figure 33 : Intrinsic availability and the operational availability

The (AFNORNFX60-503) standard gives as definition:

 Intrinsic: qualifies a value determined under the supposedly ideal maintenance and operating conditions.

 Operational: qualifies a value determined under the given maintenance and operating conditions.

An example of the modeling approach is detailed in (Maxime Monnin, 2007) by presenting methodological principles of
a system modeling integrating failures, damages and regeneration (recovery) for the evaluation of the availability in
operational mission. Modeling is supported by the formalism of Stochastic Activity Networks.

Petri nets are a typical method to perform operational availability analysis. AltaRica is also used to perform availability
analysis in (Meng Huixing, 2016) using stochastic tool from (Open-Altarica, s.d.). This study shows the application of the
AltaRica 3.0 modeling language for assessing the production availability of a Floating Production Storage and Offloading
system (FPSO) in order to identify the sensitive parameters and crucial components with respect to the production
availability.

Software originally from production simulation using flow could be used for more complex simulation (for example
(Extendsim).

The table below presents a summary of methods and tools used for availability application. The objective of this part
is to provide an overview of the project member’s methods and tools.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 63 / 97

Table 5 : Availability models

Method
Examples of tools

 (not exhaustive, examples only)
Comments

Analytical
Formula

Pencil and Paper

Excel

Simple to use

Limited to theorical case

Analytical computation

Reliability Block
Diagram

Excel

Blocksim from ReliaSoft

BFiab from GRIF

RBD from RAM Commander

Simple to use

Tools ensure computation

Analytical computation

Reliability Block
Diagram with
simulation
(Monte Carlo)

Blocksim from ReliaSoft

RBD from BQR

RFiab from GRIF

Simple presentation as classic
reliability block diagram but taking
into account more parameters as
repair team, spare management,,
etc….

Allows to take complex stock
management, and repair teams
availability into consideration.

Stochastic computation

Markov Markov from RAM Commander

Markov from GRIF

Markov from BQR

Combinatorial explosion

Stochastic computation, Analytical
calculation possible for simple cases

Stochastic Petri
nets

Petri from GRIF

CPN Tools from Aarhus University

Good adaptability and flexibility in
use

Stochastic computation

Interactive HMI associated with a
stepper

6.2.4 Modelling for testability analysis

Testability usual requirements are listed from (Dominique Riera, 2018) and (Deschamps, 2014):

- Coverage rate (% of failure covered),
- Location rate (% of ambiguity).

The coverage rate represents the ratio between the number of failures detectable by a given set of tests and the total
number of potential system failures. It’s also possible to define the coverage rate by considering the failure rate of
components. The location rate represents the capacity of the test to identify the part or the sub-assembly failed down.

A basic method to perform such an analysis is testability FMECA. Specific methods to consider test propagation are also
used.
In order to determine the coverage rate, the tests are graphically modeled by selecting the monitored flow (available
with (EXPRESS) for example).
A dependency model is so created by adding in all the functions of the components and then building the functional
relationships between the functions of the design to represent how function flows through the design. Failure modes
are then added to the components to define how the components and their associated functions will fail. The
dependency model once created then can allow for accurately defining the tests that will be realized.
This activity can be performed with dedicated tool (Deschamps, 2014) or using more generic software like (EXPRESS).
Some experiments have been performed with AltaRica. Testability performances (coverage and location rates) can be
computed using tools from (Open-Altarica, s.d.) according to (Sylvain Breton, 2018). This ability is used to perform
analysis on diagnosis with AltaRica in (Dominique Riera, 2018).

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 64 / 97

Different tests have been performed using AltaRica with other tools to address testability but no published literature
has been found.
Other approaches using Bayesian networks are sometimes used for testability (see (Lefebvre, 2014)). They allow to
adapt the model results using the in-service data in order to improve the ability to identify the right part to be “removed
and replaced".

Bayesian networks are a commonly used model to describe causal relationships between variables to calculate
conditional probabilities.. A Bayesian networks is generally described like an acyclic graph whose nodes represent
random variables and whose arcs represent probabilistic relationships. They can thus be used to model the causal
relationships between variables, events or phenomena physical to make a diagnosis.

The table below presents a synthesis of methods and tools used for testability.

Table 6 : Testability models

Method
Tools

 (not exhaustive, examples only)
Comments

Testability
FMECA

Excel

FMECA tool from generic
dependability tool (for example
RAM Commander)

Simple implementation

Allow to estimate test coverage rate,
location rate.

Risk: not exhaustive approach.

Flow tool eXpress from DSI international
[EXPRESS]

Allow to estimate main testability
performance indicators

Optimization of tests in regards of
duration, cost, …

AltaRica Cecilia Ocas Several experiments performed to
use AltaRica language in order to
perform some testability analysis.

6.3 Using MBSA propagation models in industry

This section focuses on the S2C members feedbacks about MBSA failure propagation models (as defined in §6.1.1) S2C
members come from different domain and have very different concerns. They use MBSA with different levels of maturity
and expectations. Our intent is to provide an overview of their different viewpoints and lessons learnt.

Even though all dependability attributes may be alluded this section focuses more specifically on safety.

6.3.1.1 History

This section presents a quick history of the failure propagation MBSA in aeronautical developments from the S2C
member’s point of view. It shows that this type of safety analyses have been developed since the nineties and have
driven the interest of a very large range of academics and industrials.

Three timelines are provided hereunder.

The first is focused on AltaRica languages and associated tools (Figure 34 : AltaRica propagation - Selected dates about
languages and tools), the second presents an overview of R&D projects (Figure 35) and the last one is dedicated to the
operational use and certification aspects of MBSA (Figure 36Figure 36).

These timelines are not exhaustive and could be completed with additional information from S2C project members.

As a complement of

Figure 34 : AltaRica propagation - Selected dates about languages and tools the list below provides a synthesis of the
tools presented in the timeline with details:

- FIABEX: Software workshop for modeling and analyzing the reliability of industrial systems. It has been

developed by DATA CEP, for the industrial club FIABEX which brought together the largest French companies.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 65 / 97

- Cecilia OCAS: Dassault tool based on AlatRica modeling. The last version of this tool is now called Cecilia only

(without OCAS).

- RAMSES: Airbus tool for the analysis of safety models of systems.

- Sofia: First MBSA APSYS tool based on Unix OS.

- SimFia: MBSA APSYS tool based on Windows OS (Sophia evolution).

- SimFia (V2): Evolution of SimFia with integration AltaRica Dataflow.

- SImFiaNeo : Evolution on SimFia V2 with user interface and post-processing enhanced

In addition, the Figure 34 also shows that the development of languages around AltaRica has been driven by the
academic sector and more precisely by the following laboratories:

- the LaBRI (Laboratoire Bordelais de Recherche en Informatique) for the first version of the AltaRica langage.
- the IML (Institut de Mathématiques de Luminy) for the AltaRica DataFlow.
- the LIX (Laboratoire d'informatique de l'École polytechnique) for the AltaRica 3.0 version.

To support the understanding of the Figure 35 : AltaRica propagation in industry – Overview of R&D projects (limited
to S2C members)the legend “R&D about MBSA” can be precised as “Research and development dealing with the MBSA
itself”. For instance it can be an assessment of MBSA by comparison with FTA model.

Moreover, in order to precise the information provided in this figure several precisions maybe brought. First it can be
added that the DGA R&D methods discussed from 2010 to today are not only for aircrafts, but in various domains such
as missile, satellite, air traffic management, system of systems and also on multiple types of analyzes such as
vulnerability, security, human factors.

In addition, for Airbus defense and space, the period 2005-2012 served to apprehend classic MBSA method on R&D
contexts by trying to extend to modeling and analysis of the dynamics of fault tolerance mechanisms (FDIR, Fault
Detection, Isolation and Recovery). This started by mixing AADL and UML with respectively OSATE and Rhapsody tools.
Then this continued on AADL (with OSATE) associated with timed automates for the dynamic properties’ demonstration
by model-checking (Kermeta use for model transformation). There has also been work on an association between
AltaRica (with Cecilia OCAS) and Luster (Scade), in a study that focused on hybrid modeling (Linear Hybrid Automata,
Hytech).

To complete Figure 36 : AltaRica propagation in industry – Overview of operational developments and certification
projects, it is important to outline that Dassault aviation is the only industrial to have successfully achieved aeronautical
certification of a system using the MBSA in 2007. This was done for the Falcon7X fuel system and digital flight control
system. Thanks to this experience and according to exchanges already carried out in 2002 with the European and
American authorities, Dassault continues to be a major actor for MBSA by participating in the redaction of ARP4761 A
which includes the MBSA approach.

Eventually, regarding the operational projects of Airbus defense and space, it can precise that since the pilot project,
there have been other operational activities according to punctual projects needs. Generally the tool used have been
Simfia.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation,
Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA, ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 66 / 97

Figure 34 : AltaRica propagation - Selected dates about languages and tools

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation,
Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA, ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 67 / 97

Figure 35 : AltaRica propagation in industry – Overview of R&D projects (limited to S2C members)

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation,
Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA, ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 68 / 97

Figure 36 : AltaRica propagation in industry – Overview of operational developments and certification projects

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 69 / 97

6.3.1.2 Members, domain and activities

The table below presents the S2C members who have shared their experience and feedbacks about MBSA propagation
models. In particular, it gives an overview of the different domain and activities they are involved in. One can note that
all the participants of our survey are actors of the aeronautic industry even though they may have a larger field of
interest.

Note that additional contributions are expected and will be added in further versions.

Table 7 : Members domain and activities

 Description Domain Activity of involved members

Dassault-
Aviation

Aircraft
manufacturer

Aeronautics

Civil, business and military
aviation,

Development, activities for
certification and manufacturing

SAFRAN
HELICOPTERE
ENGINES

Engines
manufacturer
for helicopters
and planes.

Aeronautics, missile and railway Development, activities for
certification and manufacturing

LIEBHERR
Aerospace –
Toulouse

Air System
manufacturer

Aeronautics Development, activities for
certification and manufacturing

THALES SA Electronic
systems
manufacturers

Aeronautics, space, transport,
digital identity and security,
defense and security

Development, activities for
certification and manufacturing

APSYS Consulting

MBSA tool
development

Aeronautics, space, defense,
naval, automotive, air traffic
management, energy, nuclear
and industry

Development and certification
activities for customers

MBSA tool development

Training in methods and tool

LGM Consulting

Aeronautics, space, railway,
naval, defense, energy and
nuclear

telecommunications air traffic,
infrastructure , building,
automotive

Development and certification
activities for customers and training

Safety and availability studies for
military applications

Testability for military products.

Availability studies for stadium
opening roof

ONERA Studies and
Research
institute

Aeronautics, space and defense Research, consultancy service

DGA Research and
expertise.

French Defense
Procurement
Agency

Aeronautics, space, naval,
terrestrial, drones, missiles, air
traffic control, testing facilities,
systems of systems for civil &
military applications

Certification/Qualification, Safety
analyses

Test center for the qualification of
military and civil aeronautical
platforms and their components

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 70 / 97

6.3.1.3 The use of MBSA by our members

This section provides a synthesis of the use of propagation models by S2C members. It highlights the fact that MBSA is
used mostly in R&T, but also for operational developments and to support aeronautical certification (Dassault Aviation).
It is used in different domains such as aeronautics, rail transport or naval industry. In addition, systems analyzed can
have very different specificities or characteristics: they can be mostly electrical or involving physical flows as well as
mechanical constraints. To provide generic MBSA solutions these different characteristics need to be taken into account.

Table 8 : Members MBSA usage

 Description of MBSA use Context of MBSA
use

Domain of
MBSA use

Some information about
the systems analyzed
using MBSA

Dassault
Aviation

Safety analyses for
certification of several
systems

This approach is used for
all new civilian and military
programs.

* In certification: Flight
controls

* In Development: Flight
Controls, Multi-System
Approach

Operational and
certification in
aeronautics

Civil, military
and business
aviation

Flight control system :

Size: around 2000
constituents

Types of information:
digital, physical and
resources

Safran
Helicopter
Engines

Evaluation and evaluation
(two dedicated PhD):

* 2005-2008: Declination
of system requirements
towards software (Sophie
HUMBERT).

* 2008-2011: Multi-
physical modeling and
validation of models
(Romain ADELINE)

R&T evaluation Aeronautics Types of information:
digital, mechanical,
physical and resources
To be completed

LIEBHERR
Aerospace -
Toulouse

Evaluation of MBSA
interest for safety analyses
and certification support

R&T evaluation

Feasibility
demonstrator

Aeronautics Types of information:
digital, mechanical,
physical (air) and
resources

THALES SA Part of the development
but not used for
certification

Operational
(outside of
aeronautics)

Aeronautics,
defense and
space

To be completed

APSYS Support of customer
activities

Studies for customers

Rise in terms of skill: MBSA
tool development and
released

Operational
(outside of
aeronautics)

R&T

Automotive,
aeronautics,
naval, industry,
space

Mainly logical systems
for aeronautics, logical
and physical systems for
industry

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 71 / 97

 Description of MBSA use Context of MBSA
use

Domain of
MBSA use

Some information about
the systems analyzed
using MBSA

LGM Support of customer
activities

Operational (30%)
but not for
certification /
Intern (50%) / R&T
extern (20%)

Internally for R&T
and benchmarking

Telecommunica
tion, naval, Land
transport,
defense, Air
traffic, energy,
Railway,
Aeronautics,
Defense,
automotive

Aeronautical system

Robot (operational,
functional, physical up to
electrical components),

Military applications,

Construction sector.

ONERA Internal research and
support of customer
Validation &Verification
activities and trade-offs

Operational but
not for certification

R&T

Aeronautics,
space and
defense

CdV elec, Hydrau, Elec,
Motor control

Drone and ground
station

Network of external
functions providing the
services

Networks of technical
functions performing
external functions

"Equipment": networks
of physical components
performing the technical
functions

DGA Support of safety analyses

On request of projects,
mainly on critical systems
(in the security sense)

Support for specification

Support for qualification
and certification activities
of new systems produced
by major manufacturers

Support for modifications
and renovations.

Support for the BEA
analyses (Bureau
d'enquêtes et d'analyses
pour la sécurité de
l'aviation civile).

Operational and
R&T (exploration of
new areas of
application)

All civil and
military fields
(aeronautics,
land, naval,
space, air traffic
control, missile,
test facility,
drone, etc.)

Types of information:
high level information;
zonal information,
digital, and resources

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 72 / 97

6.3.1.4 Different kind of systems, analyses, and developments phases

This section focuses on the analyses performed using the MBSA propagation models. Note that in the table below we
did not limit the analyses to safety analyses in order to give a larger overview. Furthermore, it is also interesting to
outline that in order to perform quantitative and qualitative analyses members mainly used the MBSA models we
defined as functional and dysfunctional models in Section 6.1.1.

As industrial members need quantitative results to complete their safety analyses, they use the MBSA to compute
probabilities while the DGA or ONERA privileged the qualitative results and the expressiveness of the models. In all cases
cut sets and sequences need post processing (manually or automatically) in order to be analyzed.

Whether models are dynamic or static, quantitative results are considered satisfactory. Nevertheless some members
such Dassault Aviation tend to privilege static models and during Safran Helicopter Engines evaluation the quantitative
computation or allocation have been discarded when using dynamics models due to their excess of conservatism.

Table 9 : MBSA for analysis

 The analyses performed using
MBSA models

System level * Development phases

Dassault
Aviation

Operational quantitative and
qualitative safety analysis,

maintenance

System and multi-
systems

V&V activities and trade-offs

Safran
Helicopter
Engines

Declination of system requirements
towards software and safety

Safety analysis

No quantitative analysis or
allocation

Evaluation of dispatch analysis

System Preliminary design activities

LIEBHERR
Aerospace -
Toulouse

Evaluation of quantitative and
qualitative analysis

System Preliminary design activities

R&T trade-offs

THALES SA PSSA support System Preliminary design activities

APSYS Safety analysis quantitative and
qualitative (including FMEA)

Availability

System V&V activities and trade-offs

LGM Safety , testability, availability,
Simulation

System and system of
systems

V&V activities and trade-offs

ONERA Safety analysis quantitative and
qualitative, with a majority of
quantitative analyses

Reliability, availability, testability

System, multi-systems
and system of systems

V&V activities and trade-offs

DGA Mainly qualitative safety analysis :

DAL allocation

Analysis of Common Causes
(common modes, particular risks,
zonal analyzes)

Principle of FAIL SAFE

Systems, Integrated
systems, System of
systems

Specification,
certification/qualification,
modification

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 73 / 97

6.3.1.5 MBSA models exploited by our members

As a generality the MBSA output exploited by members are the cut sets or sequences according to whether they chose
static or dynamic modeling (see Section 0 for details and definitions).

The table below details the MBSA tools used to support members the safety analyses, the formalism they use as well as
their computation type.

Table 10 : MBSA tools usage

 Static or dynamic
modelling

Language and tool Formalism and type of
computation

Dassault
Aviation

Static AltaRica Cecilia

State machines and boolean
equations

Computation by simulation
and analytical (BDD)

Safran
Helicopter
Engines

Dynamic AltaRica Cecilia

State machines and boolean
equations

Computation by simulation
and analytical (BDD)

LIEBHERR
Aerospace -
Toulouse

Dynamic AltaRica Cecilia

AltaRica SimfiaNeo

State machines and boolean
equations

Computation by simulation
and analytical (BDD)

THALES SA Static Safety Architect Boolean equations (TBC)

APSYS Static and dynamic AltaRica SimfiaNeo State machines and boolean
equations

Computation by simulation

LGM Static and Dynamic AltaRica SimfiaNeo

eXpress

Petri

State machines and boolean
equations.

Safety assessment

Computation by simulation

ONERA Mostly Dynamic AltaRica Cecilia State machines and boolean
equations

Computation by simulation
and analytical (BDD)

DGA Static and Dynamic AltaRica Cecilia State machines and boolean
equations

Computation by simulation
and analytical (BDD)

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 74 / 97

6.3.1.6 Return of Experience

The table below provides an overview of S2C member’s feedback about the strengths and weaknesses of the MBSA.

Globally MBSA has been experimented as a way to communicate efficiently, to improve complexity handling and favor
collaborative work. MBSA models are considered as easier to maintain than fault trees and an efficient way to improve
the capitalization of information.

On the other hand, the MBSA requires investment in training and in deployment of a customized methodology. More
specifically some modelling difficulties can be encountered and guidance and skilled are required to solve those
technical blocking points (in particular to handle the “looped systems”). Eventually some members outlined their wish
to improve the post-processing of the models output and to include them in current documentation.

Table 11 : Members MBSA experiences

 Assests of the MBSA Weaknessess

Dassault
Aviation

Produced studies are consistent and maintainable

Update easier than with other methods

Appropriate approach for complex or highly integrated
systems

Difficulties to model looped systems.

DGA Easier to master the complexity of systems

Collaborative work and capitalization

Great communication tool

Fairly high entry ticket (adaptation of
working methods, training in the tool
and building its library of components)

Language limitations (looped system
and dynamic system)

ONERA Explicit capture of knowledge useful for analysis

dysfunctional (failures) and functional hypotheses
(monitoring logic, isolation, etc.)

Static (topologies) and dynamic dependencies
(reconfiguration, cascade of events, etc.)

Component-based modeling for complex cases

Progressiveness of the construction and debug of the
model

Reuse of standardizable components

Overall behavior emerging from the composition

Automated calculations of event propagations in a
dependency network

Simulation of failure cases for validation of the model

Calculation of combinations of events causing failure
cases

Representation and graphical simulation for
information sharing

View of the propagation paths of failures in the
network

More precise and more homogeneous analysis results

Methodology to acquire to be
operational quickly

Debug of the emerging behaviors of
the composition (ex : oscillation =
model error or system error?)

Time-consuming graphic modelling for
large models : currently there is no
tool to assist the placement of boxes
and wires to avoid unreadable
spaghetti dishes

No simultaneous update of several
library components

Post-processing limitations

Safran
Helicopter
Engines

Consistent view for system architectures and safety
modeling more easy than with fault trees;

Simulation of fault propagation

Easier communication with other specialists

Difficulties to compute the sequences

Difficulties to perform efficient
probabilities allocation from cutsets or
sequences

Difficulties to know how to integrate
the MBSA analyses in official
documentation and in the ARP process
for certification

Difficulty to integrate the models :
Intellectual property issues.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 75 / 97

 Assests of the MBSA Weaknessess

Liebherr
aerospace

Efficient to share and trace the system description
understanding between system and safety specialist

Greatly ease the updates for local modification (failure
rates, control logics)

Integration of MBSA analyses in official document is
easier since ARP process has been updated with MBSA
approach (ARP.4754B)

Necessity to create a customized
methodology which is time consuming.

Need of an MBSA specialist in order to
handle blocking modeling issues

THALES SA Better consistency between engineering artifacts
(System & Safety) (support-tooled)

Easier impact analysis (tooled)

Sharing by System & Safety engineers of a single base
of concepts & language of modeling (from Capella-
Arcadia)

Support tooled for System / Safety Co-Engineering
(Coupling with dedicated external tool (FMEA, FTA))

Life cycles, modeling objectives, Model-
Based adoption speed & maturation of
the different models between System
Engineering & Safety
(Desynchronization, granularity)

→ Need to consolidate the Co
engineering methodology

APSYS Enable modeling complex systems or functions whose
dysfunctional behavior is difficult to characterize with
conventional approaches (FTA or DD)

Ease update for local modification

Enable sharing with system designers based on a
common graphical formalism (model structure) and
simulation scenarios.

Generate many results (cutsets or
sequences) which requires post-
processing

Requires specific skills and tooling

LGM Process architectures quickly for Trade-Offs

Discussion around the model with integrator

Modeling of different possible layers

 1 single model possible for several CF

Allows fault propagation analysis (no need to be part
of the system in FMEA)

Allows dynamic modeling (network)

Adapted to deal with developments

Coupling with optimization algorithms ("early design"
approach)

Uncommon method and tooling

Loop modeling

Some modeling tricks are sometimes
necessary

Graphic representation (define a
framework, a method)

Probabilities computation

Need of reassuring of the user and
customers

6.3.1.7 Conclusions

It is worth outlining in this conclusion that the MBSA community is a small community and that S2C projects involves a
significant number of its actors and recognized experts.

The overview provided in this section shows that expectations and level of expertise of S2C members greatly differ.
Nevertheless, there is a strong will of the experts to disseminate their methodology. On the other hand, the main points
preventing a better diffusion and integration of the MBSA in operational developments have also been identified.

In order to allow a larger use of the MBSA, S2C project will aim to provide adaptable generic methods and guidance for
modelling. It will also support the safety activities within the development process as well as the certification.

Eventually it is also important to point that in order to fit the member’s choice and experience, S2C project will focus

on the MBSA defined as Functional and Dysfunctional modeling in Section 6.1.1. The chosen modelling language will

be AltaRica.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 76 / 97

6.4 Review of modelling languages of propagation models for safety

The scope of this review matches with the scope of the project S2C. Consequently, it focuses on the Model Based System
Analysis defined in ARP4761A guidelines. Note that at the time of writing ARP4761A has not been issued yet but has
been released for review.

ARP4761A current version defines MBSA as the “[…] technique which models system content and behavior in order to
provide safety analysis results. MBSA employs an analytical model called a Failure Propagation Model (FPM).”

We explain and analyze the different formalisms corresponding to this definition as well as the methods and tools
solutions supporting those formalisms. The methods and tools analyzed targeted are the ones with enough maturity to
be used in an industrial context, and suitable for aeronautics developments.

In the following, we review different languages supporting the MBSA modelling within S2C scope. To describe efficiently
languages, Section 6.4.1 presents and defines some language characteristics, Section 6.4.2 introduces the different
languages and finally Section 6.4.3 gives an overview and provides a comparison between languages.

The following modelling languages supporting the MBSA approach are considered:

- AltaRica (AltaRica LaBRI, AltaRica DataFlow, AltaRica 3.0)
- Figaro
- SAML
- HiP-HOPS
- Component Fault Trees
- GRIF version of Generalized Stochastic Petri Nets
- Safety Architect

6.4.1 Modeling language characteristics

Modeling languages enable capturing the knowledge about a system with more or less accuracy and flexibility. The
modelling language characteristics have an impact on the problems one can solve as well as the efficiency of the
modelling. In order to describe and to compare modelling languages and associated assessment tools we consider the
following characteristics:

1. Expressive power of the language;
2. Structural constructs;
3. Autonomy regarding architecture/design models;
4. Graphical or textual modeling;
5. Processing algorithms and outputs;
6. Model verification and validation methods.

These characteristics are explained below.

6.4.1.1 Expressive power

The expressive power of a modeling language is its capacity to capture the system behavior with the needed level of
discernment. It depends on the syntax and semantics of the language.

Modeling languages provide at least writing conventions called also the language syntax. A syntax defines the usable
symbols (e.g. letters for textual languages) and predefined concepts (e.g. key words or constructs) to build system
models. It also defines grammatical rules to combine symbols and predefined concepts into well-formed system models,
i.e. system models readable by tools and users.

For instance, fault trees are a subset of well-formed formulae of the Boolean algebra. Leaves of the trees are atomic
independent propositions. They are combined by constructs “and” and “or” into intermediate events until the top event.
According to the grammatical rules, the “and” construct (gate) has two inputs and each input shall be connected to an
event (leaf or intermediate event).

It is worth noting that a syntax with high level constructs helps to write concise system models. For instance, equivalent
fault trees can be written only with gates “and” and “or”. The gate “k/n” helps to encode with a unique gate a
predefined combinations of several “and” and “or” gates.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 77 / 97

Formal modeling languages have also a semantics to give an unambiguous meaning to the system models. A semantics
defines the usable mathematical structures for interpreting system models as observation of the system behavior. It
also defines the semantical rules to decide whether a given interpretation satisfies a system model, i.e. whether it
represents one observable behavior of the system model. Users and tools can have the same understanding of a well-
formed system model if this model is satisfiable by at least one interpretation. Unsatisfiable models lead to runtime
errors or to wrong analyses.

For instance, the interpretation structures associated to the fault trees are snapshots of one system state during a
simulation, i.e. the assignments of one value to each observable variables of the system. In this case, the observable
variables of the system are the fault tree leaves, which represent atomic independent failure events. A leaf value is
Boolean, i.e. “true” or “false”. The leaf is “true” means that the corresponding failure event occurred before the system
snapshot. A system cut-set is a set of leaves that makes the top event true when their assignment is true. The set of cut-
sets of a top event represents all the interpretation structures that satisfies the top event.

It is worth noting that system models are equivalent if and only if they are satisfied by the same interpretations. For
instance, a k/n gate of a system model can be replaced without ambiguity by any equivalent combination of “and” and
“or” gates.

Usual interpretation structures used for failure propagation analysis are system states (like for fault trees) or traces (i.e.
sequences of system states that characterize model runs) or automata that generate traces. For instance, AltaRica
models can be interpreted over both automaton and traces. Rich interpretation structures help to observe more
accurately the system behavior. System model shall be built with a language expressive enough to capture the system
behavior with the expected level of discernment.

The equivalence of system models can be used to compare the expressive power of two modeling languages. Let L1
and L2 be two modeling languages that can be interpreted over the same class of structures. L1 is at least as expressive
as L2 if and only if, for each system model M2 of L2 there exist a system model M1 of L1 equivalent to M2 over the
considered class of interpretation structures.

For instance, fault trees are interpreted over system states. Therefore, they can be interpreted over system traces
reduced to a sequence of one state. It is possible to build for each fault tree an AltaRica model that is satisfied by the
same reduced traces. It means that AltaRica has at least the same expressive power as fault trees. The reverse is false.
The AltaRica models can discern the temporal orders between the several system states. The classical fault trees cannot
discern such details of the system behavior.

More generally speaking, these concepts can be used to refine formal definitions given earlier.

Static system models discern only system states whereas dynamic system models can also discern system traces.

Determinist system models discern traces such that the next system state of a sequence is fully defined by the current
state and the system input or event.

Failure logic modelling languages (FLM) discern only the occurrence of failure events and the system variables that
describes the system error states.

Functional and Dysfunctional modeling (FDM) can discern not only the failure events and the error states but also the
functional events and modes.

6.4.1.2 Structural constructs

The second characteristic is related to the ability of the language to organize models, to make them easily readable,
maintainable and reusable.

The basic structural construct is a block, also called a prototype. A block is a container for variables, parameters and all
the other modeling artifacts. The simplest structuring relation is the composition. A block may be composed of several
other blocks. Classical safety analysis formalisms, such as Fault Trees and Reliability Block Diagrams, use only blocks and
composition for structuring models.

In order to be able to reuse blocks, structured programming languages introduce the notions of class and instantiation
of classes. A class is a reusable “on-the-shelf” block, which is stored in a library and can be reused everywhere in the
model via instantiation.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 78 / 97

In some cases, it is necessary to modify or to extend a modeling unit (a class or a block) without instantiation. It can be
achieved via inheritance relation introduced in object-oriented programming languages. If a modeling unit A inherits
from a modeling unit B, then A contains all the characteristics of B and adds some new characteristics.

There are cases where the same component is used in several places or to contribute to different functions of the
system. In other words, a modeling unit is shared between several other modeling units. This kind of “uses” relation
between modeling units is called aggregation.

In object- oriented programming languages, the reuse of modeling units is done by means of instantiation of classes. In
modeling languages using only blocks (called prototype-oriented languages), the reuse of blocks is also possible. It is
achieved via the notion of cloning. If a block A is a clone of a block B, then the block A has exactly the same characteristics
as the block B.

To know more about structuring constructs of modeling languages see (Michel Batteux, 2018).

To summarize, there are the following constructs to organize and structure models:

- Two types of modeling units: block and class;
- Three structural relations: composition, inheritance and aggregation; and
- Two mechanisms making possible to reuse modeling elements: prototype/cloning and class/instantiation.

These constructs originate from programming languages (see the table below) and are exploited in different ways by
MBSA formalisms.

Table 12 : Structural constructs

Structuring paradigm Structural constructs

1 Block diagrams Blocks + composition

2 Structured programming Classes + composition

3 Object-oriented programming Classes + composition + inheritance

4 Prototype-oriented and object-oriented
programming

Blocks + Classes + composition + inheritance + aggregation +
cloning

Not only modeling units, but also flows may be structured to gather them (see Figure 37 for example). It requires the
definition of a structured domain.

Figure 37: An example of simple flows (left hand) and structured flow (right-hand)

Languages structural construct can be more or less complex. Even though complexity is usually positive as it provides a
large range of possibilities of maintainability and reusability, it is worth noting that it can also be difficult to handle,
understand and read. For example, class structure enables to modify several blocks in one operation and thus ensure
some internal consistency at cost of training people handling the model to know the concept of class and making less
direct the modification of only one block.

6.4.1.3 Autonomy regarding architecture models

The third characteristics deals with the links between safety and design models. If the failure propagation model is
autonomous, it is fully built and exploited independently from any architecture model.

Some MBSA languages are extensions of system architecture modeling languages and models are built by annotating
design models. In this case, there is no autonomy.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 79 / 97

There are MBSA languages that are domain specific languages. In this case, the creation of safety models is completely
independent from the creation of system design models.

6.4.1.4 Graphical or textual modeling language

Modeling languages can be textual or graphical. Examples of graphical modeling languages are UML or SysML. Classical
safety assessment formalisms, like Fault Trees and Reliability Block Diagrams, have both a graphical and a textual format.

In general, MBSA languages are textual. However, modeling tools propose different graphical views to represent, to edit
and to animate failure propagation models. Contrary to full graphical formalisms such as fault trees, most MBSA
languages are displayed graphically partially only. Graphical views offered by tools can be organize in two categories:

- Graphical support of text edition (with optionally graphical representation of model breakdown and state
machine) without graphical representation of flows. The model is mainly represented as text and navigation in
text is eased.

- Graphical support of flows. The model is mainly represented as a diagram with blocks and flows. Some subpart
of the model are displayed textually.

Regarding description view, text edition is very efficient for experts whereas graphical edition is easier to learn,
especially for safety engineers from industry. Regarding simulation view, it is a consensus that graphical representation
of failure propagation through flows is a significant support.

6.4.1.5 Model processing algorithms and outputs

Different processing algorithms are available for Model Based Safety Assessment:

1. Boolean equations generation (see Appendix A);
2. Sequence generation (see Appendix A);
3. Markov chain generation;
4. Monte-Carlo simulation (see Appendix A);
5. Model-checking;
6. Probabilistic model-checking.

Boolean equations generation.

When it is possible (the input model is static), MBSA models are transformed into a set of Boolean equations. The
generated Boolean equations are assessed by classical Fault Tree Assessment tools in order to calculate Minimal Cut
Sets (MCS) and probabilistic indicators. Note that some dynamic models also can be transformed into Boolean
equations. However, some information can be lost.

Sequence generation.

For dynamic models, the generation of Boolean equations is not advisable. Then the sequence generation is used. The
output is critical sequences of failure events (in some cases the most probable).

Markov chains generation.

In some cases, when the input model is quite small and it obeys Markovian property, it is possible to transform it to
continuous or discrete time Markov chains. Then the generated Markov chains are assessed in order to calculate
probabilistic indicators.

Monte-Carlo simulation.

Monte-Carlo simulation consists in running a pseudo-random a set of executions (histories) of the model and making
statistics on them. In case of MBSA, it is used to calculate probabilistic indicators.

Model-checking.

In general, model-checking is a method for checking whether a finite-state model of a system verifies a given set of
properties. If the property is not satisfied, the model checker provide a counter example scenario. In case of MBSA, it
enables to generate counter example sequences of failure events that lead to an unsafe system state.

https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Formal_specification

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 80 / 97

Probabilistic model-checking.

Probabilistic model-checking is used for modeling and analysis of systems that exhibit probabilistic behavior. In case of
MBSA, it enables to calculate probabilistic indicators such as the system reliability at a time instant.

6.4.1.6 Model and validation methods

In the following, we consider that the verification of a model ensures that the model complies with construction rules
defined by a given modeling method. On the other hand, the validation activity of a model ensures that the model
structure and behavior are valid relatively to what it represents.

Model verification

Model verification usually relies on syntactical analysis. Construction rules can restrict the use of the language,
forbidding given structural constructs or given behavioral features such as synchronization in AltaRica. They can also
prescript to use some features, such as to add comments to each model element.

Verification relies on simple techniques of language analysis and may be integrated in modeling tools.

Model validation

There are three main classes of tooled validation methods:

- Review of model elements,
- Stepwise or step by step simulation,
- Model checking.

The review of model elements is simple to perform and does not require any other tool on top of edition tools. It enables
a validation of model elements separately from one another: it is local.

Stepwise simulation consists in testing failure scenarios by triggering events and visualizing each step of failure
propagation (this propagation can be visualized graphically or textually, see Section 6.4.1.6). Stepwise simulation
enables the modeling engineer to play some defined scenarios. Contrary to review, these scenarios may involve several
model elements that are linked with one another. A scenario represents the behavior of the model in one precise case.
If the simulated behavior is as expected, the model is validated against the simulated scenarios. When the set of
simulated scenarios is sufficient, the engineer infers that the model is globally validated. By nature, simulation only gives
access to a limited number of scenarios (within the whole set of scenarios possible in the model).

Model checking techniques aim at ensuring that the model complies with defined formal properties and can be used
for model validation. By default, model checking applies to the whole set of scenarios possible in the model.
Consequently, it can state that a precise behavior exists or does not exist in the model. It is worth noting that the use
of model checking strongly depends on the ability to define formally the properties to be checked.

6.4.2 Modeling languages overview

6.4.2.1 AltaRica

AltaRica is a high-level textual formal domain specific modeling language dedicated to Safety Analysis. AltaRica is an
event-centric language. The behavior of components is described by means of state machines. The state of a component
is represented by variables (the so-called state variables) and their values. The changes of state are possible when, and
only when, an event occurs. The occurrence of an event updates the values of the variables, by the firing of a transition:
a triple <guard, event, action>, where a guard is a Boolean expression built over the variables and an action is an
instruction which modifies the value of state variables.

AltaRica distinguishes two types of variables:

- State variables that can be modified only through the firing of transitions;
- Flow variables whose values are calculated the values of state variables thanks to a mechanism described by means

of the so-called assertion. The assertion is executed after each transition firing. Flow variables are used to model
information circulating between nodes of a model.

The behavior of components is described inside nodes. Nodes can be assembled into hierarchies, their input and output
flow variables can be connected and their transitions can be synchronized. Nodes –can be stored in the libraries of
reusable components and are reused by instantiation, like in structured programming languages.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 81 / 97

AltaRica is an asynchronous language: only one transition can be fired at a time. However, it offers a mechanism to
synchronize events. For example, common cause failures, shared repair crews, broadcasts can be represented by means
of synchronizations.

There are three versions of AltaRica modeling language:

- AltaRica LaBRI, the first version of the language developed by LaBRI;
- AltaRica DataFlow, the second version of the language implemented in several industrial tools; and
- AltaRica 3.0 developed by AltaRica Association and implemented in the OpenAltaRica platform by AltaRica

Association and IRT SystemX.

The main differences between the three versions can be divided into three parts:

- The semantics of the assertion (calculation of values of flow variables);
- The structural constructs of the language;
- The underlying model of time.

AltaRica LaBRI

The first version of the language has been created at the Computer Science Laboratory of Bordeaux (LaBRI) at the end
of the nineties. The semantics of the first version of AltaRica is defined in terms of Constraint Automata (A. Arnold,
2000). In this version of the language, the assertion is a set of constraints. There is no input or output variables. Each
time a transition is fired, first the action of the transition is executed to calculate the values of state variables, second a
set of constraints (the assertion) is resolved to calculate the values of flow variables. Constraints have a large expressive
power. However, in general, solving constraints involves multiple computation iterations and may be very resource
consuming. A set of constraints may have several acceptable solutions resulting in non-deterministic model. In addition,
there may be no solution. In this case, the initial model is incorrect. Modeling errors in the assertion are detected during
the execution of the model.

AltaRica language permits to specify priorities between events. Priorities are locally defined in a node by a partial order
on events. In a given configuration, if two events are enabled then only the one having the highest priority can actually
occur. If two events are incomparable with respect to the specification (same priority or no defined priority) then they
are both possible, that means that the transitions labelled by these events are enabled.

The first version of AltaRica is supported by AltaRica studio, a workbench developed by LaBRI. Several assessment tools
have been developed, such as model-checkers (Alain Griffault, 2004), a Fault Tree compiler and a generator of critical
sequences of events.

AltaRica DataFlow

This first version of AltaRica, AltaRica LaBRI, was too resource consuming for industrial scale models (for instance, to
perform stochastic simulation). Moreover, industrial models are mainly based on oriented flows of data, or energy that
do not require the full expressiveness of constraints. To be able to assess industrial scale models, a second version,
AltaRica DataFlow, has been created reducing the expressive power of the assertion (Boiteau, 2006). Its semantics is
based on Mode Automata (Rauzy, Mode automata and their compilationinto fault trees, 2002). In this version of the
language, the assertion is a set of DataFlow assignments. Each flow variable is assigned only once in the model and there
is no circular definitions. The order of the execution of the DataFlow assignments is calculated only once during the
compilation of the model. When a transition is fired, first, the value of state variables is calculated; second, the value of
the flow variables is calculated by executing the DataFlow assignments only once, which is more efficient than resolving
constraints. In addition, modeling errors in the assertion are detected during the compilation of the model.

In AltaRica DataFlow, two types of events are introduced: stochastic and deterministic. Stochastic events are associated
with probability distributions (for example, exponential, Weibull, etc.). When a transition labelled by a stochastic event
becomes enabled (that means that its guard is satisfied in a current configuration), then it is fired after a certain delay,
calculated randomly according to the associated probability distribution. Deterministic events are associated with
probability distribution named “Dirac(T)”, where T≥0 . When a deterministic transition becomes enabled, it should be
fired exactly after a delay T. A special case of deterministic transitions are immediate transitions, associated with
Dirac(0), they should be fired as soon as their guards become true. There are cases, when several immediate transitions
are enabled at the same time. These transitions may be synchronized if they should be fired exactly at the same time.
It is also possible to add a priority to immediate (also called instantaneous) events. A priority is a positive number

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 82 / 97

associated with an event. When several immediate transitions are enabled at the same time, they are fired according
to the priorities of their events.

A set of efficient assessment tools has been developed for this version of the language, including a Fault Tree compiler
(Rauzy, Mode automata and their compilationinto fault trees, 2002) , a generator of critical sequences of events, and a
stepwise simulator. The definition of timed and stochastic semantics of AltaRica DataFlow made it possible to develop
a compiler to Markov chains (Rauzy, An experimental study on iterativemethods to compute transient solutions of large
markovmodels, 2004), a probabilistic model-checker (TEICHTEIL-KÖNIGSBUCH, 2011) and a Monte Carlo simulator
(Khuu, 2008).

AltaRica DataFlow is used as a description language of several industrial modeling tools:

- Cecilia OCAS (Dassault Aviation), and
- Simfia V3 and SimfiaNeo (Apsys).

Many industrial scale experiments have been conducted with this version of the language [(Romain Bernard, 2007),
(Pierre Bieber, 2008), (Xavier Quayzin, 2009)].

AltaRica 3.0

In 2012, the third version of AltaRica has been created, called AltaRica 3.0 (T.Prosvirnova, 2013). The idea for this version
of the language is:

- to enrich AltaRica DataFlow with new constructs to structure, and to organize models;
- to define new semantics for the assertion to support circular definitions, and
- to stay compatible with AltaRica DataFlow (semantic of execution except priority)

Along with nodes (called classes in this version of the language) and composition relation, AltaRica 3.0 implements
inheritance and aggregation relations. It also introduces the concept of block and cloning (another way to reuse
modeling elements). AltaRica 3.0 unifies structural constructs coming from object-oriented paradigm of programming
languages: prototype-based and class-based.

The semantics of AltaRica 3.0 is defined in terms of Guarded Transition Systems [(A.Rauzy, 2008), (Batteux M., 2017)].
To be able to model easily some kind of looped systems, for instance networks or electrical systems, AltaRica 3.0
introduces the concept of bidirectional assignment. If x and y are variables, x :=: y is a bidirectional assignment, which
is equivalent to two assignments: x:=y, y:=x. The assertion is an instruction, where each variable may be defined in
several assignments and there may be circular definitions. After each transition firing, first the action of the transition
is executed to calculate the value of state variables, second, the value of flow variables is calculated by fix point solving
of the assertion.

It is possible to create DataFlow models with AltaRica 3.0. In this case, the complexity of calculations is the same as for
AltaRica DataFlow. In general, fix point solving of the assertion is more resource consuming than calculation of DataFlow
assignments, but less resource consuming than resolving constraints used by AltaRica LaBRI. Modeling errors of
incorrect assertions are detected during the execution of the model.

Like in AltaRica DataFlow, there are also two types of events: stochastic and deterministic. The concept of priority for
immediate transitions does not exist. Only the concept of expectation, associated with immediate events remains. It
corresponds in a certain way to the probability of occurrence of the event. When several transitions t1, t2,…, tn, labelled
by the events e1, e2, …, en, are enabled at the same time, the probability of each transition to be fired is calculated as
follows:

𝑃(𝑡𝑖) =
𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝑒𝑖)

∑ 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 (𝑒𝑗)𝑛
𝑗=1

AltaRica 3.0 also introduces other types of probability distributions, which may be associated with events:

- A uniform distribution, and
- A user defined distribution (described by a set of points).

AltaRica 3.0 is supported by AltaRica wizard developed by the project OpenAltaRica. A set of assessment tools has been
developed, as a joint effort of AltaRica Association and IRT SystemX, including:

- AltaRica Wizard, a textual user interface for AltaRica 3.0 projects management (Batteux M, 2018),
- A stepwise simulator,
- A compiler to Boolean equations (Prosvirnova, 2015), and

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 83 / 97

- A stochastic simulator (Benjamin Aupetit, 2015).

A prototype of a generator of Markov chains also has been developed (Pierre-Antoine Brameret, 2015).

Differences between the three versions of AltaRica are summarized in the following table:

Table 13 : The three versions of Altarica

 AltaRica LaBRI AltaRica DataFlow AltaRica 3.0

Assertion

Computation Constraints solving DataFlow assignments
solving

Fixpoint solving

Bidirectional
flows

Yes No Yes

Computational
cost

High Low Middle

Errors
detection

During the execution
of the model

During the compilation
of the model

During the execution of the
model

Structural constructs

- Class,
- Composition,
- Class instantiation

- Class,
- Composition,
- Class instantiation

- Class and block,
- Composition, inheritance,

aggregation,
- Block cloning, class

instantiation

Timed/stochastic models

- Stochastic:
Exponential,
Weibul, etc.

- Determistic: Dirac(T)
- Priority

- Stochastic:
Exponential, Weibull,
etc.

- Deterministic:
Dirac(T)

- Priority

- Stochastic: Exponential,
Weibull, etc.

- Stochastic: Uniform, user
defined distribution.

- Deterministic: Dirac(T)

6.4.2.2 Figaro

Figaro (Bouissou M V. N., 1991) is a domain specific textual modeling language dedicated to dependability assessment
of complex systems developed by EDF R&D. It combines object-orientation language features, like inheritance and
hierarchical representation, and first order production rules:

- interaction rules to model the propagation of instantaneous effects and
- occurrence rules, yielding a list of events that may happen in a state of the system and that have a particular

semantics related to time.

The semantics of the language is defined in terms of stochastic processes.

Figaro is used as a description language to create libraries of reusable components called knowledge bases for KB3
(Bouissou M, 2005), a workbench developed by EDF R&D to automatically perform systems dependability assessment.
In the KB3 workbench, graphical representations are associated to textual models.

KB3 workbench provides different assessment tools, including Boolean equation generation, Monte-Carlo simulation,
Markov chain generation and quantification and generation of critical sequences of events (in some cases the most
probable).

6.4.2.3 SAML (Safety Analysis Modelling Language)

SAML (Safety Analysis Modeling Language) (Gudemann, 2010) is a formal textual domain specific modeling language.
The special feature of SAML is that it is a synchronous language. A SAML model is expressed in terms of finite stochastic
state automata. Automata are all executed in discrete time steps with parallel composition. The semantics of a SAML
model is defined as Markov decision process.

VECS (Marco Filax, 2014) is a design and verification environment focused on SAML models. It provides a model editor
and model analysis tools: a stepwise simulator and translators to the input languages of the probabilistic model checker

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 84 / 97

PRISM and the symbolic model checker NuSMV. Analysis with PRISM model checker enables to compute probabilistic
indicators, such as reliability or availability at a given instant of time. Analysis with NuSMV model checker provides
minimal cut sets or sequences of events leading from an initial state to a failure state defined in the model.

6.4.2.4 CFT

This section will be completed in next revision.

6.4.2.5 HiP-HOPS

HiP-HOPS (Hierarchically Performed Hazard Origin & Propagation Studies) (Papadopoulos, et al., 2011) is a modeling
language and a processing tool for dependability analysis, mainly availability and safety. The tool has an architecture
optimization feature (with respect to availability and cost) that is out of the scope of this document.

To use HiP-HOPS, the first requirement is to have a detailed design model in SimulationX or Simulink (with a nominal
behavior and continuous physics as level of representativeness). The system breakdown is reused and components are
annotated with dysfunctional behavior, with a logical level of representativeness. Each component has

- Failure modes, modeling its internal failures (contrary to AltaRica, the transitions between failure modes are
not specified)

- Inputs, propagating failure modes from upstream components
- Outputs that propagate downstream failure modes that are function of internal failure modes and input failure

modes (use of AND and OR operators)

Each component is then equivalent in expressiveness to a “mini fault-tree” in the sense it combines only failures and
Boolean operators.

The HiP-HOPS tool is able to generate a fault tree by exploring backwards failure propagation (resolving Boolean
equations). Resulting cutsets are then outputted in a so-called FMEA table that takes into account multiple failures.
Probability of feared event at system level is computed based on cutsets. An extension to dynamic models with PAND
(Priority-AND) and POR (Priority-OR) is available to get sequenced behavior.

Recent publications present extensions for dynamic modeling, either using “Priority-AND gates”[Papadopoulos2018] or
Semi Markov processes[Papadopoulos2019] but these features are not documented in the user manual of the tool [HiP-
HOPS2013]). Consequently, they are not considered in Section 6.4.3.

6.4.2.6 Underlying formalism of GRIF (Stochastic Petri Nets ++)

To be completed in next revision

6.4.2.7 Underlying formalism of Safety Architect (CFT)

Safety Architect relies on the original concepts of Interface Focused-FMEA (Y. Papadopoulos, 1999) and Component
Fault Tree (CFT)) (B. Kaiser, 2003)

6.4.3 Languages characteristics summary

In the following, we compare MBSA formalisms presented in this section using modeling languages characteristics
described in section 6.4.1.

6.4.3.1 Expressive power

The studied formalisms can be divided into 2 categories according to their expressive power:

- Combinatorial formalisms, describing the system only in terms of states;
- States/transitions formalisms, describing the system in terms of states and transitions.

Hip-HOPS and component Fault Trees are classified in the first category. They are based on Probabilistic Boolean
Algebras. They can describe only static and deterministic models using Failure Logic Modeling (FLM) approach. Recent
publications present extensions of HiP-HOPS taking into account dynamic modeling, either using “Priority-AND gates”
[Papadopoulos2018] or Semi Markov processes [Papadopoulos2019].

Figaro, SAML, the underlying formalism of GRIF and all the versions of AltaRica are part of the second category. They
are based on different types of transitions systems and enables to describe either static or dynamic models,

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 85 / 97

deterministic or non-deterministic models, using FLM (Failure Logic Modeling) or FDM (Functional and Dysfunctional
Modeling) approaches.

The comparison of expressive power of studied MBSA formalisms is summarized in the following table.

Table 14 : Summary of expressive power characteristic

Modeling
formalism

Mathematical
formalism

States/Transitions FLM/FDM Deterministic/non-
deterministic

Static/Dynamic

AltaRica LaBRI Constraint
Automata

States and
transitions

FLM or FDM Deterministic or
non-deterministic

Static or dynamic

AltaRica
DataFlow

Mode Automata (or
DataFlow Guarded
Transition Systems)

States and
transitions

FLM or FDM Deterministic or
non-deterministic

Static or dynamic

AltaRica 3.0 Guarded Transition
Systems

States and
transitions

FLM or FDM Deterministic or
non-deterministic

Static or dynamic

Figaro Stochastic
Processes

States and
transitions

FLM or FDM Deterministic or
non-deterministic

Static or dynamic

SAML Markov decision
process

States and
transitions

FLM or FDM Deterministic or
non-deterministic

Static or dynamic

HiP-HOPS Probabilistic
Boolean Algebra

States FLM Deterministic Static

Component
Fault Trees

Probabilistic
Boolean Algebra

States FLM Deterministic Static

GRIF Generalized
Stochastic Petri

Nets

States and
transitions

FLM or FDM Deterministic or
non-deterministic

Static or dynamic

6.4.3.2 Structural constructs

The following table summarizes the structural constructs of MBSA formalisms.

Table 15 : Summary of structural constructs

Modeling
formalism

Flow structure Block structure

Structuring paradigm Structural constructs

AltaRica LaBRI Yes Structured programming Classes + composition

AltaRica DataFlow Yes Structured programming Classes + composition

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 86 / 97

AltaRica 3.0 Yes Prototype-oriented and object-
oriented programming

Blocks + Classes + composition +
inheritance + aggregation + cloning

Figaro No Object-oriented programming Classes + composition + inheritance

SAML No Block diagrams Blocks + composition

HiP-HOPS To be completed Block diagrams Blocks + composition

Component Fault
Trees

To be completed Block diagrams Blocks + composition

GRIF To be completed To be completed To be completed

HiP-HOPS, SAML and Component Fault Trees are based on Block diagrams, like classical safety analyses formalisms:
Fault Trees and Reliability Block Diagrams.

AltaRica LaBRI, AltaRica DataFlow and the underlying formalism of GRIF have classes (called nodes in AltaRica LaBRI and
AltaRica DataFlow) and composition relation.

Figaro is an object-oriented modeling language. In addition to classes and composition relation, it also implements
inheritance relation.

The new version of AltaRica, AltaRica 3.0, includes structural constructs coming from object-oriented and prototype-
oriented programming languages. It implements both modeling units (blocks and classes), the three relations
(composition, inheritance and aggregation) and both ways to reuse models (class/instantiation and block/cloning). It
offers a full range of ways to structure models.

6.4.3.3 Autonomy regarding architecture/design models and graphical/textual modeling

Figaro, SAML, the underlying modeling language of GRIF, component Fault Trees and all the versions of AltaRica are
independent from design models domain specific languages dedicated to Safety analyses. HiP-HOPS models are quite
different because they are created by annotating design models (SimulationX or Simulink).

In general, MBSA modeling languages are textual. It is the case of Figaro, SAML and all the versions of AltaRica. However,
it is possible to associate graphical representations to textual models. For example, Integrated Modeling and Simulation
Environments, like Cecilia OCAS or Simfia, propose different types of graphical views for AltaRica DataFlow models. KB3
workbench also provides graphical representations for Figaro models. Components Fault Trees and the underlying
formalism of GRIF are graphical.

A special case is HiP-HOPS, which is both graphical and textual: annotations are textual, but the annotated models are
graphical.

The following table summarizes the comparison.

Table 16 : Summary regarding autonomy and graphical characteristics

Modeling formalism Autonomous
language

Graphical or textual Graphical modeling facilities

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 87 / 97

AltaRica LaBRI Yes Textual Graphical support of text edition with graphical
representation of model breakdown and state
machine

AltaRica DataFlow Yes Textual Graphical support of flows. Edition and simulation
supported by Cecilia Workshop and SimfiaNeo.

AltaRica 3.0 Yes Textual Graphical support of text edition.

Prototype of graphical visualization of model
structure under development

Figaro Yes Textual Graphical support of flows. Edition and simulation
supported by KB3 tool

SAML Yes Textual

HiP-HOPS No Graphical and textual Textual annotations for Simulink or SimulationX
design models

Component Fault Trees Yes Graphical

GRIF Yes Graphical Graphical support of flows

6.4.3.4 Model processing algorithms and outputs

Combinatorial formalisms, such as HiP-HOPS and Component Fault Trees, are transformed into Boolean equations.
Recent publications present extensions of HiP-HOPS taking into account dynamic modeling.

AltaRica LaBRI is supported by AltaRica Studio, an open source tool, developed by LaBRI. It includes a prototype of a
graphical front-end for ARC model checker. It can be downloaded from https://AltaRica.labri.fr/wp/?page_id=286.
Boolean equations and sequences are generated using ARC model-checker.

Cecilia OCAS, developed by Dassault Aviation, and SimfiaNeo, developed by Airbus/Apsys, use AltaRica DataFlow as a
description language. These tools provide graphical user interfaces for edition and stepwise simulation of AltaRica
DataFlow models. Cecilia OCAS includes a Boolean equation and a sequence generator. SimfiaNeo also provides a
Monte-Carlo simulator. SimfiaNeo is a commercially distributed modeling tool. A Markov chains generator and a
probabilistic model-checker have been developed for AltaRica DataFlow by research teams. However, today they are
not available for the large audience.

AltaRica 3.0 is at the core of the OpenAltaRica platform, developed by AltaRica Association and IRT SystemX. It is freely
available for research and education purposes and can be downloaded from https://www.openAltaRica.fr/docs-
downloads/. The OpenAltaRica platform is composed of several tools:

- AltaRica Wizard, a textual user interface for AltaRica 3.0 projects management,
- A stepwise simulator,
- A compiler to Boolean equations, and
- A stochastic simulator.

A sequence generator and a prototype of graphical visualization of model structure are under development. A prototype
of a compiler to Markov chains has been developed; today it is not available for the large audience.

Figaro is supported by the KB3 platform developed by EDF Research and Development. It includes a graphical user
interface and a set of tools: generators of Boolean equations, sequences and Markov chains, stepwise and Monte Carlo
simulators.

SAML is supported by VECS, an Eclipse-based specification framework for the analysis of software-intensive systems. It
includes an implementation of the SAML language and model transformations to verification engines NuSMV for model
checking and PRISM for probabilistic model checking.

https://altarica.labri.fr/wp/?page_id=286
https://www.openaltarica.fr/docs-downloads/
https://www.openaltarica.fr/docs-downloads/

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 88 / 97

The underlying formalism of GRIF, developed by SATODEV, is an extended version of Generalized Stochastic Petri Nets.
Models are assessed by Monte Carlo simulation.

The following table summarizes the assessment tools available for the studied MBSA formalisms. Available tools are
marked:

- In green, if they are open source tools;
- In blue, if they are freely available for education and research purposes;
- In grey, if they are research prototypes not available for the large audience;
- In orange, if they are industrial or commercial tools.

Table 17 : Summary of processing algorithm

Modeling
formalism

Boolean
equations

Sequences Model-
checking

Probabilistic
model-
checking

Monte-Carlo
simulation

Markov chains

AltaRica
LaBRI

Yes Yes Yes No No No

AltaRica
DataFlow

Yes Yes Yes Yes Yes Yes

AltaRica 3.0 Yes Yes No No Yes Yes

Figaro Yes Yes No No Yes Yes

SAML No No Yes Yes No No

HiP-HOPS Yes No No No No No

Component
Fault Trees

Yes No No No No No

GRIF No No No No Yes No

6.5 AltaRica MBSA modelling methods

S2C aims at developing a shared methodology based on members experience and best practices. This section provides
an overview of the AltaRica modeling methodologies developed by S2C members within their company. Our goal is to
give a general survey of the key features of existing methodologies, provided as an organized list for each contributor.

6.5.1 Key features of ONERA AltaRica modeling method

This part deals with ONERA AltaRica modeling method main features. It does not provide an exhaustive description but
outlines the main features of the approach.

Main principles

A general modeling and analysis methodology tuned according to the analysis goal and context:

- Specify the analysis goal: for example, model of the procedures of system operation to consolidate the
classification of failure condition (FHA), model of the system technical functions to compute functional

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 89 / 97

failure sets and support the FDAL allocation, model of the physical architecture of the system to support
PSSA or SSA.

- Specify the analysis context: available system documents, former reusable models of components or
system, etc.

- Specify the model contents according to the analysis goal and context: failure conditions, basic entities of
the model (for example, external function, technical function or physical component), failure/functioning
modes local to entities or global ones, safety functions used to monitor hazard and reduced the risk.

- Reuse, adapt or develop new AltaRica library of models according to the analysis goal and context. Models
are grouped into library depending on the type of propagated values. For instance, a model of reliability
blocks propagates Boolean values (the block is working or not). The model of alarm function propagates
three status values: alarm is ok, false or lost. The models of electrical components can propagate physical
failure modes such as “short-circuit” and so on.

- Connect the basic components into a hierarchical structure that is as close as possible to the structure of
reference specifications, for example, like BPMN models of procedures, like functional chains or like the
physical architectures.

- Validate the model by simulation of reference scenarios.
- Compute and analyze the sequences of events or the cut-sets leading to the failure conditions.
- Reuse these outputs for DAL allocation (manually or automated with ONERA Dalculator) or for quantifying

the probability of occurrence of the failure condition via fault tree tools.

Points of special importance

 Experience returns enable a large capitalization of former models via libraries of family of reusable
components.

Modeling patterns helps also to prevent modeling errors such as circular variable definition, oscillation of events …

Graphical conventions are systematically associated to the component of libraries to ease model reading without
entering into the detail of the AltaRica code. They help also to see failure propagation paths inside the model.

Kind of models

- Models are dynamic because they incorporate the reconfigurations

Models output

- Sequence generated :
- functional failure sets of operation or functional models;
- physical failure sets from the system architecture models.

- FDAL allocation and requirement for functional segregation.
- Verification of the fail safe (resp. fail operational) criteria i.e. no single (no double) failure leads to an unsafe

situation.
- Quantification of the probability of occurrence of failure conditions.

6.5.2 Key features of APSYS AltaRica modeling method

This part deals with APSYS AltaRica modelling method main feature. It does not provide an exhaustive description but
outlines the main features of the approach.

Main principles

- Models for very different systems and study objectives, necessary to adapt to each context, no end-to-end method.
- Given the identification of feared events and indicators to study, modeling begins with the identification of one (or

several) domain (s) to be used in most of the model (e.g. {ok, err, lost} or float number).

Points of special importance

- Modeling of physical architecture
- No reuse of bricks from a model to another (this method point may be updated in close future)

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 90 / 97

- Avoid using synchronization, because it endangers model readability and complexify model semantics
- Documentation inside each brick (description field of the brick)

Kind of models

- For safety: static or lowly dynamic models to compute cutsets or sequences
- For availability: highly dynamic models to compute availability rate through Monte Carlo computation

Models output

- Minimal cutset or sequences (with post-treatment support)
- Simulation mode: validation of dysfunctional and/or functional behavior, support to help cutset or sequence

understanding

- Indicators computed with Monte Carlo simulations

6.5.3 Key features of DGA AltaRica modeling method

This part deals with DGA AltaRica modeling method main feature. It does not provide an exhaustive description but
outlines the main features of the approach.

Main principles

- Used to validate the integration of several systems
- Each block, each flow, each failure of the model is specified
- Granularity : item for DAL allocation, unless an important logic stands underneath
- Three views : functional, organic and zonal
- Maximal use of the graphical tool in order to ease the validation and the maintainability
- Generic library which is the basis of each model
- Modeling rules followed to ease the re-use and the collaborative work
- Use of synchronizations to catch potential common modes as soon as possible

Points of special importance

- Modeling guidelines (why, when and how model)
- Formalized generic components library (specified, verified, use of modeling rules)
- Formalized models (clear concepts, identified objectives)

Kind of models

- Dynamic models (reconfigurations), few highly looped models
- Dysfunctional approach (except the reconfiguration part), trying to use also the models for a functional use

(depending on the program needs)

Models output

- Functional failure sets generation for DAL allocation validation (automatic post-treatment)
- Minimal cut-sets generation for fail safe principle (no probability computation yet)
- Identification of common causes (common modes, particular risks, zonal analysis)
- Simulation mode used to validate the model and support the cut-sets understanding

Note: Functional failure sets and Minimal cut-sets are generated through Boolean equations (when possible) or
sequence generation (for looped or time dependent models)

6.6 S2C Lot 4 Modeling Guide and Validation Report

The Modeling Guide and Validation Report proposed by S2C project, provides methodological guidance for MBSA using
AltaRica Data flow modelling languages and related tools. It presents general principles as well as main identified
difficulties that modellers can encounter. Our intent is to provide recommendable generic practices to use MBSA for
the support of classical ARP4761A PSSAs and SSAs analyses.

The recommended practices are illustrated using the AltaRica Data Flow language supported by Cecilia OCAS (Dassault
Aviation), SimfiaNeo (Apsys) tools and Open AltaRica.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 91 / 97

7 MBSA Dissemination State of the art

This section provides a state of the art of Model Based Safety Analysis (MBSA) dissemination by presenting different
type of formations, existing groups and conferences available.

7.1 Formations

The table below gives a presentation of the current panel of dissemination. For now, this document version is focused
on information from actors in the Toulouse area.

Table 18 : Dissemination actions

 Audience School,
university

Level Time/Content Tools Cost

SATODEV All N/A All 12h CECILIA V6 Paid

LGM Internal
employee

(10 persons
trained)

N/A Safety
engineer

2 days

Lessons, theoretical
exercises and
practical exercises (e-
learning type)

OAR

SIMFIA

CECILIA

Free

Polytechnic

(ONERA)

All N/A All 1 day

Safety and formal
method

OAR Paid

ONERA Student ENSEEIHT
computing
specialty

5th year 6h

(4h lesson, 2h
practical exercises)

OAR Free

ONERA Student INSA

electrical
engineering

5th year 3h

(1h lesson, 2h
practical exercises)

CECILIA Free

ONERA Student ISAE

engineering
and
autonomous
systems

5th year 10h

(6h lesson, 4h
practical exercises)

CECILIA Free

ONERA Student ISAE

System
engineering
and
embedded
systems

Master 5h

(3h lesson, 2h
practical exercises)

CECILIA Free

EUROSAE

(DGA)

All N/A All Level 1 : 12h (9h
lesson,3h theoretical
exercises)

Level 2 : 24h

(9h lesson,3h
theoretical exercises,
12h practical
exercises)

CECILIA Paid

DGA Student INSA
engineering
system

5th year 16h

(4h lesson,4h
theoretical exercises,
8h practical
exercises)

CECILIA Free

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 92 / 97

 Audience School,
university

Level Time/Content Tools Cost

DGA Internal
employee

(10
person/year
since 4
years)

N/A N/A TBC TBC Free

APSYS Student Université
Toulouse III -
Paul Sabatier

Master/5t
h year

8h, practical exercices SimfiaNeo Free

APSYS Student ISAE-Supaero Advanced
master

20h, dependability
theory and practice
(availability and
safety analyses)

SimfiaNeo Paid

APSYS Student Hochschule
Ruhr West

Bachelor 24h, practical
exercices

SimfiaNeo Free

APSYS Custormer
or internal
employee

N/A N/A 2 days, tool practice SimfiaNeo Paid

 Table 19 : MBSA trainings available

(In 2015, EUROSAE (DGA) formed thirty experts from EASA. On opportunity, ONERA can give informal training to his
study partners).

The synthesis table shows the existence of several channels of dissemination.

Two types of population are concerned. First, there’s students and so future engineers in job market with MBSA skills.
Then, some employees, with generally safety expertise, are formed to MBSA methodology. Nevertheless, we find that
the time allowed to the formation seems to be low.

There does not seem to be a common method of training. Each member offers an adaptation that reflects their own
experience or use.

This list is not exhaustive but reflect the status at the time of the document delivery.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 93 / 97

7.2 Existing groups, conferences: industrials, academics

7.2.1 Working groups

At the time of writing, within ARP4761A WG63 and S18 working groups, there is a section dedicated to MBSA (Appendix
Q).

Except from some specific dedicated days organized by the ONERA (French Aerospace), AFIS (Association Française
d’Ingénierie Système) or GIFAS (Groupement des Industries Françaises Aéronautiques) there are no industrial or
academic dedicated working group dedicated to MBSA.

7.2.2 Conferences

The following table lists the main conferences having MBSA dedicated sessions.

SafeComp

(every year)

International Conference on Computer Safety, Reliability and Security

SAFECOMP was established in 1979 by the European Workshop on Industrial Computer Systems.
Since then, it has contributed to the progress of the state-of-the-art in dependable application of
computers in safety-related and safety-critical systems. SAFECOMP has contributed to the progress
of the state-of-the-art in dependable application of computers in safety-related and safety-critical
systems.

IMBSA

(every year)

International Symposium on Model-Based Safety and Assessment

Latest developments in model-based engineering, formal techniques, probabilistic analyses and
cutting edge optimization to address hard problems in the design of safe complex systems including
software intensive and open cyber-physical systems. The objectives are to present experiences and
tools, to share ideas, and to consolidate and grow the community

Esrel

(every year)

European Safety and Reliability Conference

The annual European Safety and Reliability Conference (ESREL) is an international conference under
the auspices of the European Safety and Reliability Association (ESRA) .

lambda mu

(every 2 years)

Congrès de maîtrise des risques et de sureté de fonctionnement de l’Institut de Maîtrise des Risque
(IMdDR)

ERTS

(every 2 years)

Embedded Real Time Systems

Embedded computing platforms and networked systems (MBSE/MBSA)

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 94 / 97

Appendix A Principles of MBSA computation

This appendix describes the principles of 3 possible MBSA computations. It is intended to guide a modeling engineer
to understand the overall computation working and to get him aware of the validity and limitations of results. Note
that it will completed in a future revision of the document.

As a pre-requisite, the reader is expected to have a (small) experiment in MBSA model behavior or, otherwise, to have
read the section “An introduction to AltaRica DataFlow”. Three types of computations are briefly described in their
principles, Monte Carlo simulation, Sequence generation and Boolean equation building and resolution. Section A.4
addresses the qualitative differences between the three computations.

A.1 Monte Carlo simulation

Objective: compute numerical indicators, such as average number of failures during the mission time, availability
percentage, etc.

Model particularities: dynamic model, including stochastic and Dirac probability distributions.

The principle of Monte Carlo simulation is to generate a large number of random scenarios, to get a meaningful average
value of a given numerical indicator.

More precisely, many clones of the model are generated and each clone lives a different story with events occurring at
different times, randomly chosen. For each story, the indicator is computed. Once all stories are executed, the value of
the meaningful indicator is computed as the average value on all the stories, as shown in Figure 38.

Figure 38: Principle of Monte Carlo simulation

Figure 39: Example of Monte Carlo simulation for availability computation

Figure 39 shows an example for an availability indicator. According to events randomly fired, the system is available
(depicted in green in the figure) or not (depicted in red). For each story, the ratio of the time when the system is available
relatively to the total time is computed, enabling to compute the average availability.

A safety indicator could also be defined for instance to observe whether the final state of the model is a feared event
or not. A reliability indicator could count the number of times the system fails.

Obviously, the occurrence of the events inside each story must follow the probability distributions assigned to events.
This is managed by the choice of the firing dates of events. To simplify following explanations, please note that we do
not distinguish transitions and events, considering that an event labels only one transition. Let now focus on the
generation of theses firing dates.

Monte Carlo simulation is based on a pseudorandom number generator:

a function f such as for any 𝑢𝑛 ∈]0,1[, 𝑢𝑛+1 = 𝑓(𝑢𝑛) and (𝑢𝑛) is a periodic sequence with random terms inside one
period. As the period is very high, the terms of (𝑢𝑛) are considered as random numbers.

To launch simulation, a seed (a number in]0,1[) is either given by the user or generated by the computer. This seed is
used as the initial term of the sequence, i.e., as 𝑢0.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 95 / 97

When launching a Monte Carlo simulation, firstly, the list of enabled stochastic events is determined and a term of the
sequence (𝑢𝑛) is associated to each event. An event is said enabled at time t if the guard of its transition is true at time
t.

Let consider a model with Event1 (exponential λ1) and Event2 (exponential λ2), both initially enabled. Then association
between terms of pseudo-sequence of events is:

- Event1 is associated to 𝑢1 = 𝑓(𝑢0)

- Event2 is associated to 𝑢2 = 𝑓(𝑢1)

For each event, according to its probability distribution, a firing date is computed, as represented in Figure 40, using the
inverse of the integral of the probability distribution (this integral is named cumulative distribution function).

Figure 40: Computation of time of each stochastic event.

The computation is based on the inverse of cumulative distribution function (integral) of probability law

Finally, firing dates computed for stochastic events are compared. The event associated with the lowest firing date is
triggered. In the example, 𝑇1<𝑇2. As a consequence, Event1 is triggered at time 𝑇1, making the first step of the story. In
the simulated model, the event has consequences: state changes, value propagation, triggered immediate Dirac events
(i.e. Dirac with delay equal to 0). Then a new list of enabled events is determined and the process is redone to get a new
step of the story.

If the model contains events with delayed Dirac (i.e., Dirac(T) with T>0), their delays are compared to the firing dates
computed for stochastic events. If Event3 with Dirac(𝑇3) is added to the example, we compare the delay 𝑇3to the
computed firing dates 𝑇1and 𝑇2 and the event with the lowest time is triggered.

The result of a Monte Carlo simulation is a numerical indicator. Depending on tools, stories are available or not. For
safety use, the number of occurrence of a feared situation can be transformed into a probability. Nevertheless, if stories
are unavailable, no clue is given about the weakest points of the system.

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 96 / 97

A.2 Sequence generation

Objective: compute minimal sequences that result in a feared situation

Model particularities: dynamic model, including stochastic and Dirac probability distributions.

The principle of sequence generation is to examine each possible sequence in the model and to determine whether it
results in the situation that must be observed, i.e. the feared situation.

Sequences are composed of one or several events. The order of a sequence is the number of events that compose the
sequence.

As an example, the left part of Figure 41 shows a model composed of three nodes. For the sake of simplicity, no flows
are considered between nodes and only events are necessary to the following explanations. In this model, transitions,
labeled by the events A, B and D are initially enabled, whereas the transition labeled by C, is not enabled as long as B
has not occurred. The right part of the figure shows all possible sequences in the model. In the initial state of the model,
transitions, labeled by the events A, B and D, are enabled, resulting in 3 sequences of order 1. Considering the sequence
(A), the possible next events are B and D: the sequence (A) results in two branches: (A, B) and (A, D). On the sequence,
to continue the sequence (B), the event C is possible, resulting in 3 branches: (B, A), (B, C) and (B, D). The whole set of
possible sequences is generated in the same way.

Figure 41: Example of the set of sequences (right part) possible in a given model (left part)

The objective of the computation is to find the sequences resulting in the observed situation. Consider that the observed
situation in Figure 41 is the state resulting after the firing of the transition labeled by the event (then the observation
depends only on the state of Node 3, which is a very simple observation). The red sequences result in this situation and
are the results of the sequence exploration. Nevertheless, the safety analyst needs only minimal sequences. To get
them, the computation filters resulted sequences and/or takes into account the resulted sequences during the space
exploration.

For each minimal sequence, the probability is computed from the probability distribution of each event.

When industrially used, the number of events generates a space that is too large to be exhaustively explored. Then, the
computation is usually limited to a given order of sequences. The rationale is that the higher is the order, the less
probable is the sequence.

A.3 Boolean equation building and solving

To be completed.

A.4 Qualitative differences between computations

During sequence generation, the space is subject to combinatorial explosion, in function of the number of events. On
the contrary, the Monte Carlo simulation computation is linear in number of events. In particular, models with
numerous delayed Dirac are difficult to compute with sequence generation while Monte Carlo is well-fitted to them. If

PROJECT CONFIDENTIAL

LIV-S085L01-001

ISX-S2C-LIV-1001

Version : V2

Un trait vertical ou un surlignage indique si nécessaire, une mise à jour du texte par rapport à la précédente édition Ce document est la propriété des Participants du projet S2C : IRT Saint Exupéry, IRT
SystemX, IRIT, CNRS, Safran Tech, Safran HE, Safran LS, Safran Aerosystems, Airbus Defence & Space, Dassault Aviation, Thales AVS, Thales SA, Liebherr, LGM, APSYS, Samares Engineering, DGA,
ONERA, .SupMeca.

 Il ne peut être utilisé, reproduit ou communiqué sans leur autorisation écrite. 97 / 97

a model has periodic events, the Monte Carlo execution time is impacted by the lowest period (equivalent to a
simulation step).

Sequence generation and Boolean equation methods are usually bounded to a maximum order, while, according to the
number of stories, Monte Carlo results are bounded to a probability.

Rare events are not a problem for sequence generation or Boolean equation methods because probabilities are
computed analytically. On the contrary, Monte Carlo simulation requires a high number of stories to make visible and
to compute accurately the probability of rare events.

To be completed.

End of document

