
Get Started

This starter kit is proposed by the IRT teams

The Get Started presentation is part of

IRT Saint Exupéry LIV-S085L01-001

IRT SystemX ISX-S2C-LIV-1285

Get Started

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

The « Get Started » purpose
3

Give you the keys to start modelling by yourself

The aim of this documents is to help you to start modelling on

your own.

This presentation is not a user guide for a tool.

The example provided is done with Satodev Cecilia but the

good practices are applicable for any other MBSA tool. In

particular, the whole section “How to get started with MBSA” is

applicable with Satodev Cecilia or with APSYS SimfiaNeo or

any other tool using AltaRica language.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Table of contents
4

•How to get started with MBSA

•Main principles

•Questions to address before starting

•The different steps to follow

•Modelling the example

•Go Through the tool

•How do I do in practice to model

•How do I do in practice to simulate

•How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Table of contents
5

•How to get started with MBSA

•Main principles

•Questions to address before starting

•The different steps to follow

•Modelling the example

•Go Through the tool

•How do I do in practice to model

•How do I do in practice to simulate

•How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

MBSA definition and studied perimeter6

• MBSA stands for Model Based Safety

Analysis

• It is a structural and behavioral

organization to support abstraction of the

system of interest regarding Safety

assessment point of view.

• it models structure & behavior & failure

injection into the system studied and

allows:

• quantitative assessment of associated

failure conditions

• qualitative assessment such as DAL

assignation

• There are different kind of MBSA models

and method such as Petri, Markov, …

• The current presentation focuses on

AltaRica based model

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

AltaRica main principles7

• AltaRica is a language used when doing MBSA

• AltaRica is a high-level formal language designed for the modelling of systems. A model

describes a hierarchy of nodes; each component can embed several sub-nodes. These latter

describe behaviors of components of the system.

• AltaRica permits many kind of expressions: mathematic, logic, boolean operators.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Table of contents8

•How to get started with MBSA

•Main principles

•Questions to address before starting

•The different steps to follow

•Modelling the example

•Go Through the tool

•How do I do in practice to model

•How do I do in practice to simulate

•How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Questions to address before starting
9

• What is the model for?

• Support a Trade Off ?

• Capitalize data and information?

• What are the analysis to be performed?

• Support classical analysis ?

• FC quantification?

• Qualitative analysis?

• Which are the available information?

• Already existing artefacts or hypothesis at

physical of functionnal level coming from other

specialty domains?

• What is the existing change process and

change record versioning process?

• The answers will help to define:

• The information and the objects needed to

build the model

• The version and origin of information

manipulated into the model to be

manipulated in the model

• The information to be observed: in general

at safety level we assess Failure Conditions

• The level and granularity to be achieved

• Modelling approach and solutions choices

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Questions to address before starting
1

0

Related modelling activities before starting the

model:

• #MA1: Define the perimeter of the system studied (its

interfaces)

• #MA2: Raise a list of the main objects in the study

perimeter: list of system components, list of failure

conditions,…

• #MA3: Define the failure conditions in relationship with

the model perimeter

• #MA4: Define the assumptions about propagation laws

inside each modelling unit or node that results both:

• From potential error and observable failure modes of

all components/ functions

• From safety functions performed in the nominal case

In order to satisfy its intended use, the

model should:

• Fully cover the scope defined for the

system studied

• Enable the observation and the analysis

of a set of failure conditions

Go back to

previous

slide

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Table of contents1

1

•How to get started with MBSA

•Main principles

•Questions to address before starting

•The different steps to follow

•Modelling the example

•Go Through the tool

•How do I do in practice to model

•How do I do in practice to simulate

•How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

The different steps to follow: details1

2

•Definition of the Command / Monitoring (COM/MON)

pattern example

•Detailed definition of the components

•Definition of the observer

•Step by step simulation

1

3

0
4

/0
7

/2
0

2
2

The COM/MON pattern example

The different steps to follow – Definition of the COM/MON example

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

• Addressing the preliminary questions:

• The proposed model will be used to compute the Failure Conditions CutSets and probabilities

• The observers (embedded tool bricks addressed in slide 23) will be the failure conditions

• The model will be close to the system representing F1, F2, Comp and Ct

• The granularity of the model needs to show the SFMEA failure modes and functional reconfigurations
of the system

• The logics of the comparison needs to be written in a easy way to be validated by the system

1

4

0
4

/0
7

/2
0

2
2

The COM/MON pattern example

The different steps to follow – Definition of the COM/MON example

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

System description

Two input commands F1 and F2, one output command

The system sends a consolidated command order F1

The purpose of the system is to send a command order F1 consolidated
from two input commands.

The system monitors the two orders F1 and F2.

When F1 and F2 are different, an opening command is sent to the
Contactor, the Contactor opens and the command is lost.

When the Contactor does not receive the opening command, F1 is
transmitted.

The analysis purpose is to assess two FCs:

FC1: Erroneous output (CAT)

FC2: Loss of output (MIN)

Command/monitoring

description

The schematic represents the

system architctecture that the SA

has to assess

The system is composed of:

Two Inputs or sources F1 and F2

A comparator (Cmp)

A contactor (Ct)

1

5

0
4

/0
7

/2
0

2
2

The COM/MON pattern example

The different steps to follow – Definition of the COM/MON example

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

The analysis purpose is to assess two FCs:
• FC1: Erroneous output (CAT) => the CMD at the system output is erroneous

• FC2: Loss of output (MIN) => the CMD at the system output is lost

System output flow variable
CMD

Domain of the flow
OK, ERR, LOST

Variable CMD

Type : OK, ERR, LOST

Comparison between the two input

values and opening command when different
System output is defined as per #MA1 and #MA2

Domain is defined as per #MA3

The elements (sources, comparator, contactor) are

named as a component and not by their functions

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

The different steps to follow: details1

6

•Definition of the Command / Monitoring (COM/MON)

example

•Local modelling: the modelling units

•Definition of the observer

•Step by step simulation

1

7

0
4

/0
7

/2
0

2
2

The source

The different steps to follow – Local modelling: the modelling units

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

Components F1 and F2 can be seen as two
instances of the same component Source

The internal state of the Source depends on the failure modes
The domain of the State of the modelling unit/ physical component: State_OK, State_LOST, State_ERR

Existing failure modes

fail_LOSS

fail_ERR

In that case (no input) the output command only depends on the internal state of the component.

The associated transitions are:

State_OK |- fail_LOSS -> State_LOST

State_OK |- fail_ERR -> State_ERR

The source

Variable i_cmd_F2

Variable o_cmd

Variable i_cmd_F1

1

8

0
4

/0
7

/2
0

2
2

The source

The different steps to follow – Local modelling: the modelling units

trans

State=State_OK |- fail_LOSS -> State:= State_LOST;

State=State_OK |- fail_ERR -> State:= State_ERR;

assert

o_cmd = case{

(State=State_LOST): LOST,

(State=State_ERR): ERR,

else

OK

};

Internal State o_cmd

Type CMD

Domain OK, ERR,

LOST

State_OK OK

State_LOST LOST

State_ERR ERR

The assertion (assert in AltaRica) corresponds to the behavior logic . Here it means that

when I am in state State_OK then when the trigger fail_LOSS appears, the output

i_comd_F1 take the value Staet_LOST

The assumptions about propagation are defined as per #MA4 and #MA2

Domain is defined as per #MA3
© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

1

9

0
4

/0
7

/2
0

2
2

The comparator

The different steps to follow – Local modelling: the modelling units

No HW failure modes

The inputs of the comparator are F1 and F2 => CMD (OK, ERR, LOST)

The output domain type is a boolean (true/false) to send

or not the detection of the isolation cmd

true = isolation or opening command

false= « stay closed » command

In1

Type CMD

Domain OK, ERR, LOST

In2

Type CMD

Domain OK, ERR, LOST

Out

Type boolean

Domain: true/false

 Comparison

 isolation

OK OK false

OK LOST true

OK ERR true

LOST OK true

LOST LOST false

LOST ERR true

ERR OK true

ERR LOST true

ERR ERR false

The comparator
Definition of the local behavior

Comparison between

the two input values

and isolation command

when they are different

=> We choose to use a

boolean output

command

Isolation

command

This step has to be done according to #MA4

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

2

0

0
4

/0
7

/2
0

2
2

The comparator: Isolation

The different steps to follow – Local modelling: the modelling units

In1

Type CMD

Domain OK, ERR, LOST

In2

Type CMD

Domain OK, ERR, LOST

Out

Type boolean

Domain: true/false

 Comparison

 isolation

OK OK false

OK LOST true

OK ERR true

LOST OK true

LOST LOST false

LOST ERR true

ERR OK true

ERR LOST true

ERR ERR false

assert

// If Equal -> isolation

Out = case {

(In1 = In2) : false,

else

true

} ;

Isolation command (actuator)

This step has to be done according to #MA4

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

2

1

0
4

/0
7

/2
0

2
2

The contactor

The different steps to follow – Local modelling: the modelling units

The contactor is passive device that relies only on inptus . No power

supply influences are considered (e.g.: too low voltage to close)

Modelling unit State Domain
(State_OK, State_Stuck_Open, State_Stuck_Closed)

Existing failure modes

fail_closed

fail_open

and associated transitions

State_OK |- failed_closed -> State_Stuck_Closed

State_OK |- failed_open -> State_Stuck_Open

Internal State

OK,

failed_closed

failed_open

failed_oscillatory

i_cmd

Type CMD

Domain OK, ERR,

LOST

i_control

Type isolation

Domain true false

o_cmd

Type CMD

Domain OK, ERR,

LOST

State_OK OK false OK

State_OK OK true LOST

State_OK LOST false LOST

State_OK LOST true LOST

State_OK ERR false ERR

State_OK ERR true LOST

State_Stuck_Open ERR or LOST or OK ERR or LOST or OK LOST

State_Stuck_Closed OK true OK

State_Stuck_Closed OK false OK

State_Stuck_Closed LOST true LOST

State_Stuck_Closed LOST false LOST

State_Stuck_Closed ERR true ERR

State_Stuck_Closed ERR false ERR

i_control

o_cmd
Variable CMD

Domain : OK, ERR, LOSTVariable CMD

Domain :

OK, ERR, LOST

Variable isolation

Domain : true, false

i_cmd

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

2

2

0
4

/0
7

/2
0

2
2

The contactor

The different steps to follow – Local modelling: the modelling units

trans

(StateSwitch=OK) |-stuck_open ->

StateSwitch:=State_Stuck_Open;

(StateSwitch=OK) |-State_Stuck_Closed ->

StateSwitch:=State_Stuck_Closed;

assert

o_cmd = case {

(StateSwitch=State_Stuck_Closed): i_cmd,

(StateSwitch=State_Stuck_Open): LOST,

(i_control =true) and (StateSwitch= OK) : LOST,

else

true

};

StateSwitch i_cmd

Type CMD

Domain OK, ERR,

LOST

i_control

Type isolation

Domain true false

o_cmd

Type CMD

Domain OK, ERR,

LOST

State_OK OK false OK

State_OK OK true LOST

State_OK LOST false LOST

State_OK LOST true LOST

State_OK ERR false ERR

State_OK ERR true LOST

State_Stuck_Open ERR or LOST or OK ERR or LOST or OK LOST

State_Stuck_Closed OK true OK

State_Stuck_Closed OK false OK

State_Stuck_Closed LOST true LOST

State_Stuck_Closed LOST false LOST

State_Stuck_Closed ERR true ERR

State_Stuck_Closed ERR false ERR

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

2

3

0
4

/0
7

/2
0

2
2

The contactor: oscillatory failure

• A failure can be oscillatory: what to do then?

• An oscillatory failure happens when the state is not constant. Then it is
« oscillating » from true to false

• The way to manage this kind of failure and the impact on the model is
discussed on the next slide

The different steps to follow – Local modelling: the modelling units

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

2

4

0
4

/0
7

/2
0

2
2

The contactor: oscillatory failure

The different steps to follow – Local modelling: the modelling units

State In1

Type CMD

Domain OK, ERR,

LOST

In2

Type isolation

Domain true false

Out

Type CMD

Domain OK, ERR,

LOST

failed_oscillatory OK true OK

failed_oscillatory OK false LOST

failed_oscillatory LOST true LOST

failed_oscillatory LOST false LOST

failed_oscillatory ERR true ERR

failed_oscillatory ERR false LOST

Modelling unit State Domain
(State_OK, State_LOST, State_ERR)

Existing failure modes

failed_closed

failed_open

failed_oscillatory

and associated transitions

• State_OK |- failed_closed -> State_LOST

• State_OK |- failed_open -> State_ERRoneous

in1

in2

out2
Variable CMD

Domain : OK, ERR, LOSTVariable CMD

Domain : OK, ERR, LOST

Variable isolation

Domain : true, false

The aim of this slide is to introduce the

impact of oscillatory failures on the model. A

latch can be used to deal with this.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

The different steps to follow: details2

5

•Definition of the Command / Monitoring (COM/MON)

example

•Detailed definition of the component

•Definition of the observer

•Step by step simulation

2

6

0
4

/0
7

/2
0

2
2

Global modeling and observers

The different steps to follow – definition of the observers

Variable CMD

Type: OK, ERR, LOST

FC1: Erroneous output (CAT)

Observed value CMD=ERR

FC2 Loss of output (MIN)

Observed value CMD=LOST

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

The observers are modeling artefacts used in the MBSA tools to calculate the Failure Conditions. It

consists in a component that is observing the state of the variable associated to the failure condition. By

calculating the probability of the different states of this observers, we can get the probability of the FC.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

The different steps to follow: details2

7

•Definition of the Command / Monitoring (COM/MON)

example

•Detailed definition of the component

•Definition of the observer

•Step by step simulation

2

8

0
4

/0
7

/2
0

2
2

Step by step simulation

• If you want to use the simulation in the best way (graphical
options which can depend on the tool)

• Define explicit icons for modeling units

• Define colors for links

• Examples:
• OK: green, Erroneous: red, LOST: orange

• Drift high: red, Drift low: blue

• False: pink, True: blue green

The different steps to follow – Simulation

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

2

9

0
4

/0
7

/2
0

2
2

Table of contents

• How to get started with MBSA

• Main principles

• Questions to address before starting

• The different steps to follow

• Modelling the example

• Go Through the tool – SATODEV Cecilia WS

• How do I do in practice to model

• How do I do in practice to simulate

• How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

3

0

0
4

/0
7

/2
0

2
2

• You can open Cecilia using the Cecilia.bat

• Create a data base as described below:

Go through the tool

clic right on the field

“select database”

select Add database

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

3

1

0
4

/0
7

/2
0

2
2

Table of contents

• How to get started with MBSA

• Main principles

• Questions to address before starting

• The different steps to follow

• Modelling the example

• Go Through the tool – SATODEV Cecilia WS

• How do I do in practice to model

• How do I do in practice to simulate

• How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

3

2

0
4

/0
7

/2
0

2
2

• Create a new data base => you select the location and name
filling (the blank field in the image below or clicking on “Create
new database”)

• Write the name of your database in the field “Input the name for
database”

Go through the tool

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

3

3

0
4

/0
7

/2
0

2
2

• The window Cecilia appears again with the name chosen for your
data base. Select OK and you will be asked for the license “
license is invalid”. Enter the license path.

Go through the tool

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

3

4

0
4

/0
7

/2
0

2
2

• The default password is « admin »

• To import a file do: File> Create >
Import> Import (Cecilia .xml) then
select the » .xml » file to import.

Go through the tool

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

3

5

0
4

/0
7

/2
0

2
2

Go through the tool: create and organize

Definition of generic operators

Developped in the presentation

Possibly used in the event definition to support Attribute

cutset computation

Possibly used in the event failure rate definition

Definition of parameters such as Checks exposure time

The next three slides are dealing with the project creation and the organization of its content

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

3

6

0
4

/0
7

/2
0

2
2

Go through the tool : create and organize

Project window:

Click right

Click right

3

7

0
4

/0
7

/2
0

2
2

Go through the tool : create and organize

Right Click

3

8

0
4

/0
7

/2
0

2
2

Go through the tool : create and organize

Click right

Issue 1 of your model

Double Click

To open it

The new model appears in the browser

3

9

0
4

/0
7

/2
0

2
2

Go through the tool : Component and Equipment

This activity has to be done according to #MA2

4

0

0
4

/0
7

/2
0

2
2

A quick look at equipment definition

The model

The equipment definition

Double click

To refer to variables of the

components

in the AltaRica code :

Component_name.Variable

Input and output of the equipmentIn the following we focus on the modeling units

creation

4

1

0
4

/0
7

/2
0

2
2

Same principle of creation

than for the models

Types: define the domains,

of the State and of the flow

variable

Types - Definition of the State Domain

4

2

0
4

/0
7

/2
0

2
2

Enumerates

Bus

Composed type

Types - Definition of the State

Domain

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

4

3

0
4

/0
7

/2
0

2
2

For the simulation choice

of colour displayed

Types - Definition of the State Domain

The records

Example of Record creation

Use of record in AltaRica code « ^ »

At the connexion you choose which

data to connect

4

4

0
4

/0
7

/2
0

2
2

Add an enumerate

Choose the color

of the flow when

applicable

Note boolean (true/false) type are included in the language

so do not need to be created (but possible)

Types - Definition of the State Domain

(State_OK, State_LOST, State_ERR)

4

5

0
4

/0
7

/2
0

2
2

Access to the colors for a given model

You can select all the defined domains

Modeling unit creation: the component

The contactor

To edit

Double click

Or right click

and choose

Edition

4

6

0
4

/0
7

/2
0

2
2

4

7

0
4

/0
7

/2
0

2
2

Go through the tool: components creation

The contactor

Add a new issue

• Possibility to copy paste and modify

• Create a new issue

• Replace

4

8

0
4

/0
7

/2
0

2
2

Modeling unit creation
Creation of a component: the Contactor

! Tip! You can copy/paste any element

and modify it

Definition of the internal States

Definition of the events

Definition of the transition

and of the assertions

Definition of the I/O

The checks
© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

4

9

0
4

/0
7

/2
0

2
2

I/O

Modeling Unit

Flow orientation

Only compatible connexion

will be allowed

Local variable are allowed

« local »
Add

! When you modify an existing value:

Assign to take the modification into

account

Remove
choices to define

The position + manually

5

0

0
4

/0
7

/2
0

2
2

States

Modeling Unit

Initial valueTypeName

5

1

0
4

/0
7

/2
0

2
2

Events

Modeling Unit

In order to compute probability

you need to give a law

Possibility to link the

failure rate

Double click

Attributes

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

5

2

0
4

/0
7

/2
0

2
2

Modelling unit validation
The Contactor in the global model

Drag&Drop

5

3

0
4

/0
7

/2
0

2
2

Global modelling

• Connexion of the modeling units, « components », « equipment » and observers

• If necessary set configuration (States initial values), otherwise set to defined default values

• Set synchronizations

• Note: flows types and orientation need to be compatible

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

5

4

0
4

/0
7

/2
0

2
2

Global modeling

• Cecilia preferences : checks

• File provided

• High level advices

• At the very beginning you can remove everything: checks are only checks

• In a second time : select all checks and customize in order to understand what you remove

• Example : do not check the events verification if you do not have events

• The preferences can be saved or loaded

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

5

5

0
4

/0
7

/2
0

2
2

Best practices for modeling – episode 1

• The form matters
• To understand the model, it is necessary to make it readable

• Use harmonized connections when possible and hide them when they are
unnecessary

• Use the icons and colors and the convention associated to them

• To ease the reading

• To be in line with the referenced view points (System schematic or MBSE model)

• Do not hesitate to add information or observers

• Use the layers

• Only one state variable per modeling unit and the convention associated to it

• Prefer to use flows rather than state variable in dysfunctional modelling

• Advantages: prefer to use double flows rahter than state Diracs (to ease cut sets /
sequences exploitation)

• Drawbacks : less readable in step by step simulation, functional modeling less easy to
read

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

5

6

0
4

/0
7

/2
0

2
2

First very general modelling Advices

The Layers

15/03/2023

Add a layer

First : Open the

« layer »

window

Selected layer

for current modelling

Selected the visible

layers

Possibility to click

right on one or

several selected

objects to define the

layer

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

5

7

0
4

/0
7

/2
0

2
2

Access right

At every stage

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

5

8

0
4

/0
7

/2
0

2
2

Classical mistakes

• Be very carefull with the syntax including capitals

• Compatibility (Types, orientation,…)

• In the assertions you need to cover all possible cases in order to avoid computation problems

• If you use a Dirac law you need to handle the Dirac that may happen at the same « time »

There is syntax check and a consistency check

The consistency check is a global check

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

5

9

0
4

/0
7

/2
0

2
2

Classical Syntax rules in Satodev Cecilia

Refer to the MBSA modelling guide IRT Saint Exupéry LIV-S085L01-001 /IRT SystemX ISX-S2C-LIV-1001

trans

(DefinedStated=Value in State domain) |- event -> DefinedStated := assigned value ;
assert

ValueOutput1 = case {

(Condition1) : Assigned value to ValueOutput ,

(Condition2) : Assigned value to ValueOutput ,

…

else

Value

};

Important notes regarding assertions

Conditions1 can involve States and Flows

The case allows to go through all possible

conditions

As soon one condition is true the value is

assigned and you get out of the « case. »

Important notes regarding transitions

It is possible to have flows value and not only State

in the transition => Announced by the checks

Possibility to introduce determinist events

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

6

0

0
4

/0
7

/2
0

2
2

• Use the simulation capacities to validate the global behavior of your model

• Validate your model!

• Check non regression of your previous results when you made a change in your model.

• Validate your model « philosophy » in order to check your model will fulfil the needs:
before being too far in the modelling validate your model answer the need and is readable
and easy to validate

• Construction

Use the bricks hierarchy in order to limit the complexity of a brick level

Use incremental modeling

Best practice for modeling – episode 2

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

Cecilia WS

6

1

0
4

/0
7

/2
0

2
2

Table of contents

• How to get started with MBSA

• Main principles

• Questions to address before starting

• The different steps to follow

• Modelling the example

• Go Through the tool – SATODEV Cecilia WS

• How do I do in practice to model

• How do I do in practice to simulate

• How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

6

2

0
4

/0
7

/2
0

2
2

Step by Step Simulation

If the Syntax and Consistency you can start your simulation

Note: it may not go if you still have mistakes in your model depending on the checks performed

and of the kind of error you have made

Launch or stop simulation

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

6

3

0
4

/0
7

/2
0

2
2

Step by Step Simulation

Double clicks triggers the event

event triggeredStepper view

Possibility to

import a

simulation .xml

file generated

from

computation

6

5

0
4

/0
7

/2
0

2
2

Table of contents

• How to get started with MBSA

• Main principles

• Questions to address before starting

• The different steps to follow

• Modelling the example

• Go Through the tool – SATODEV Cecilia WS

• How do I do in practice to model

• How do I do in practice to simulate

• How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

6

6

0
4

/0
7

/2
0

2
2

Table of contents

• How to get started with MBSA

• Main principles

• Questions to address before starting

• The different steps to follow

• Modelling the example

• Go through the tool

• To simulate

• To compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

6

7

0
4

/0
7

/2
0

2
2

Compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

6

8

0
4

/0
7

/2
0

2
2

Compute output format

Minimum cutsets

Boolean equation (.xml format) to be imported

xml file to support simulation

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

6

9

0
4

/0
7

/2
0

2
2

Compute

target Output file

First step: Add one computation

Cutsets of this value

Regarding chosen

Configuration (States)
Note: possibility to set the

configuration during simulation

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

7

0

0
4

/0
7

/2
0

2
2

Compute: compute from the Aralia file

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

7

1

0
4

/0
7

/2
0

2
2

Compute: the results

You can also generate an Aralia object

and import it

You can generate an .xml to support the simulation

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

7

2

0
4

/0
7

/2
0

2
2

Compute: import Aralia file to compute

probability

Import a boolean equation

Maybe a tree in the current version

But not necessarily

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

7

3

0
4

/0
7

/2
0

2
2

Compute: compute from the Aralia file

From the boolean equation you can compute as well

You can handle the attributes (next session?)

Warning: you need to double click to select (open) the

object

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

7

4

0
4

/0
7

/2
0

2
2

Compute: The results

At this level if you define attributes you will have access to cut set

by attributes

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

7

5

0
4

/0
7

/2
0

2
2

Table of contents

• How to get started with MBSA

• Main principles

• Questions to address before starting

• The different steps to follow

• Modelling the example

• Go Through the tool – Airbus Protect SimfiaNeo

• How do I do in practice to model

• How do I do in practice to simulate

• How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

7

6

0
4

/0
7

/2
0

2
2

Table of contents

• How to get started with MBSA

• Main principles

• Questions to address before starting

• The different steps to follow

• Modelling the example

• Go Through the tool – Airbus Protect SimfiaNeo

• How do I do in practice to model

• How do I do in practice to simulate

• How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo7

7

Opening a model

• File> Import… then select General>

Existing Projects into Workspace then

Next>.

• Next wizard enables to choose between:

• “Select root directory”: enables choosing

a folder containing one or several

unzipped SimfiaNeo projects

• “Select archive file”: enables choosing a

zipped (.zip, .tar, .tar.gz, .tgz, .jar) file

containing one or several SimfiaNeo

projects

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo7

8

How to create a new project?

• Use the menu File> New> New

SimfiaNeo project

• Input a name for your Project and select

Finish.

• SimfiaNeo automatically creates a

Project, System and Model with the same

name. They can be seen in the Model

Explorer.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo7

9

Project view in the tool

• Top-level diagram of the Model is also

automatically opened. Properties view is

automatically updated depending on

currently selected element in Model

Explorer, Diagram, Library…

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo8

0

Create a domain

• Domains are managed through the

Domains table. Open the table by

selecting the menu Modeling> Open

domains.

• Domains can be organized in folders, but

this is not mandatory. Creation buttons are

situated in the top-right corner of the table.

Names of domains and values can be customized either directly in the table or through

the Properties view when the corresponding line/cell is selected in the table. Column

named Type is used mainly for documentation purposes and can be ignored when getting

started.

Structured domains (for connectors containing several variables) can also be defined in

this table. Each variable in the structured domain is called a field.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo8

1

Modelling unit creation in the tools; contactor example

• This chapter deals with how to build the modelling unit with the example of the COM/MON

contactor. It describes the GUI (Graphical User Interface).

• In SimfiaNeo, modelling units are called bricks, and are created directly in the model. They

can then be added to the Project Library if deemed necessary for reuse.

• To create a new brick, open the Model Diagram (e.g. by double-clicking on the Model level

in the Model Explorer on the left side), select the Brick tool in the Palette and click in the

Diagram.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo8

2

Modelling unit creation in the tools;

contactor example

• Right after its creation, the new brick is

automatically selected in the diagram,

hence the Properties view at the bottom of

the screen displays information on this

brick. Modify its name to “Contactor” and

its generic behavior to “Custom”.

Manage internal state variables

• State variables are managed in the

Behavior tab of the Properties view.

Dedicated table and buttons enable

creating/deleting variables, renaming

them, switching their domain, and setting

their value at initial time.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo8

3

Manage events and transitions

• Events and transitions are managed in

the Behavior tab of the Properties view.

Dedicated table and buttons enable

creating/deleting events, renaming them,

and customizing their

probability/determinist law.

Selecting an event in the table on the left updates the contents in the fields Guard and

Effects on the right. Guard field is used to input the Guard of the corresponding transition.

Effects field is used to input the actions of the corresponding transition. In both fields, the

shortcut Ctrl-Space enables using auto-completion feature.

Probability laws are filled directly in the Behavior tab (see above). Constants can be

created in the Constants table (menu Modeling> Open constants) to have several laws

share the same numerical parameters.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo8

4

Create the connectors and links (flows)

• Prior to link creation, it is recommended

to create connectors on the bricks.

Connectors can be created by using the

connector tools in the Palette of Diagrams,

or by using the Propagation tab of the

Properties view of a brick. In this tab,

dedicated table and buttons enable to

create or delete connectors, rename them

and define their domain. White dots are

input connectors while black dots are

output connectors.

To create the links, go in a Diagram, select the Link tool

in the Palette, click on an output connector (black dot),

then click on an input connector (white dot). It is also

possible to directly click on bricks instead of on

connectors, in which case new connectors are created.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo8

5

Create an assertion

• Assertions are filled in the Propagation

tab of the Properties view of a brick. When

selecting an output connector (black dot)

in the table on the left side, the right side

section is updated to display and edit the

assertion.

In this field, the shortcut Ctrl-Space enables using auto-completion

feature.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo8

6

Create the conditional style

• Style of the brick is defined in the Brick

Style tab of the Properties view of a brick.

Default color and Default image drop-

down menus enable defining style in

edition mode.

• Default conditional style for simulation is

based on internal state variable. It can be

customized by activating the bottom table.

Predicates are user-defined Boolean

formula to determine the image and/or

color of the brick. In this Predicate field,

the shortcut Ctrl-Space enables using

auto-completion feature.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo8

7

Put a brick in Library

• A brick that was created in a diagram

can be added to the Library at any step.

This is done with a right-click on a brick in

a diagram and selecting Library> Store in

library.

• Insert the name to use in the Library to

finish. This brick is now displayed in the

project Library available in the bottom-left

corner.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo8

8

Instantiate a brick

• If a brick is already defined in Library, it can be instantiated in the model. This can be

performed by following either of the following methods:

• Drag-and-drop the brick from the Library view (bottom-left corner) to the diagram

• Right-click in an empty space of the diagram and select Library> Instantiate existing class

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo8

9

Create the observers (link with FC)

• Observers are managed through the

Observers table. Open the table by

double-clicking on the Observers (eye

icon) in the Model Explorer

Creation button is situated in the top-right corner of the table. Name of the observer needs to

follow AltaRica variables naming rules (mainly no spaces, and no digit as the first character).

Stochastic Evaluation is kept to None (this option is linked to Monte-Carlo simulation). When

selecting an observer, its Boolean expression can be customized in the Properties view. This

expression takes the value true when the feared situation is reached. In this field, the shortcut

Ctrl-Space enables using auto-completion feature.

9

0

0
4

/0
7

/2
0

2
2

Table of contents

• How to get started with MBSA

• Main principles

• Questions to address before starting

• The different steps to follow

• Modelling the example

• Go Through the tool – Airbus Protect SimfiaNeo

• How do I do in practice to model

• How do I do in practice to simulate

• How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo9

1

Launch a step-by-step simulation

• To launch the step-by-step simulation,

use the menu Validation> Step by step

simulation

• Events can be triggered by double-click

on the left, or with a right-click on bricks in

diagrams. Simulation is exited by using the

Stop simulation (red square) button.

9

2

0
4

/0
7

/2
0

2
2

Table of contents

• How to get started with MBSA

• Main principles

• Questions to address before starting

• The different steps to follow

• Modelling the example

• Go Through the tool – Airbus Protect SimfiaNeo

• How do I do in practice to model

• How do I do in practice to simulate

• How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

Go Through the tool – Airbus Protect SimfiaNeo9

3

Calculate the Cut-Sets

• To compute the Cut-Sets, the first step is to define the

computation options. To open the corresponding table, use

the menu Exploitation> Open sequences computation.

• Creation buttons are situated in the top-right corner of

the table.

• After creating a computation config, go to the Options tab

of the Properties view to customize the computation

options. In particular, it is possible to define if you want

only qualitative results or also would like the numerical

probabilities. To launch the computation, right-click on the

line in the table and select Execute.

• Results are stored in the project but can also be

exported in Excel format.

9

4

0
4

/0
7

/2
0

2
2

Table of contents

• How to get started with MBSA

• Main principles

• Questions to address before starting

• The different steps to follow

• Modelling the example

• Go Through the tool – Open AltaRica

• How do I do in practice to model

• How do I do in practice to simulate

• How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

COM/MON example in Open AR9

5

•The model of the Com-Mon is divided in several parts.

• Domain, that is used to type variables (state or flow variables).

• Classes representing components,

• the main block, corresponding to the entry point to the Com-Mon

example.

9

6

0
4

/0
7

/2
0

2
2

Table of contents

• How to get started with MBSA

• Main principles

• Questions to address before starting

• The different steps to follow

• Modelling the example

• Go Through the tool – Open AltaRica

• How do I do in practice to model

• How do I do in practice to simulate

• How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

COM/MON example in Open AR9

7

The domain is used to type

variables (state or flow variables)

Domain definition

domain FailureMode {OK, LOST, ERR}

// OK - normal behavior

// ERR - the sensor produces erroneous data

// LOST - the sensor produces no data

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

COM/MON example in Open AR9

8

The classes represent the

components that would be

instanciated in the main block.

Class definition: the sensor

class Sensor

// definition of the state variable

FailureMode _mode (init = OK);

// definition of the output flow variable

FailureMode output (reset = LOST);

// definition of events

event failureLoss (delay = exponential(1.0E-4));

event failureErr (delay = exponential(1.0E-5));

// definition of transitions

transition

failureLoss:(_mode == OK) -> _mode := LOST;

failureErr: (_mode == OK) -> _mode := ERR;

// definition of the assertion

assertion

output := _mode;

end

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

COM/MON example in Open AR9

9

Class definition: the contactor

class Contactor

// definition of flow variables

FailureMode input, output (reset = LOST);

Boolean closeCondition (reset = false);

// definition of the state variable

Boolean _open (init = false);

// definition of the event

event openCT (delay = Dirac(0.0)) ;

// definition of the transition

transition

openCT: not _open and not closeCondition -> _open := true;

// definition of the assertion

assertion

output := switch {

case _open : LOST

default : input};

end

The classes represent the

components that would be

instanciated in the main block.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

COM/MON example in Open AR1

0

0

Class definition: the comparator

class Comparator

// definition of flow variables

FailureMode input1, input2 (reset = LOST);

Boolean output (reset = false);

// definition of the state variable

Boolean _working (init = true);

// definition of the event

event failure (delay = exponential(1.0e-5));

// definition of the transition

transition

failure: _working -> _working := false;

// definition of the assertion

assertion

output := if _working then (input1 == input2) else true;

end

The classes represent the

components that would be

instanciated in the main block.

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

COM/MON example in Open AR1

0

1

Block definition: the COM / MON

block ComMon

// components of the Com-Mon

Sensor F1, F2;

Comparator Cmp;

Contactor Ct;

// definition of connections between components

assertion

Ct.input := F1.output;

Ct.closeCondition := Cmp.output;

Cmp.input1 := F1.output;

Cmp.input2 := F2.output;

// definition of failure conditions

observer Boolean FC_B1 = (Ct.output == ERR);

observer Boolean FC_B2 = (Ct.output == LOST);

end

The block is where the above

classes are instanciated.

1

0

2

0
4

/0
7

/2
0

2
2

Table of contents

• How to get started with MBSA

• Main principles

• Questions to address before starting

• The different steps to follow

• Modelling the example

• Go Through the tool – Open AltaRica

• How do I do in practice to model

• How do I do in practice to simulate

• How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

COM/MON example in Open AR: simulation and

computation

1

0

3

Within the OpenAltaRica platform, this AltaRica 3.0 model of the Com-Mon

example is assessed by using the generator of critical sequences. There

are two parts to realize this assessment: a first one compiling the mode,

and a second one realizing the generation of the critical sequences

1

0

4

0
4

/0
7

/2
0

2
2

Table of contents

• How to get started with MBSA

• Main principles

• Questions to address before starting

• The different steps to follow

• Modelling the example

• Go Through the tool – Open AltaRica

• How do I do in practice to model

• How do I do in practice to simulate

• How do I do in practice to compute

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

COM/MON example in Open AR: compilation

0
4

/0
7

/2
0

2
2

1

0

5
domain FailureMode {OK, LOST, ERR}

block ComMon

Boolean Cmp._working (init = true);

FailureMode Cmp.input1 (reset = LOST);

FailureMode Cmp.input2 (reset = LOST);

Boolean Cmp.output (reset = false);

Boolean Ct._open (init = false);

Boolean Ct.closeCondition (reset = false);

FailureMode Ct.input (reset = LOST);

FailureMode Ct.output (reset = LOST);

FailureMode F1._mode (init = OK);

FailureMode F1.output (reset = LOST);

FailureMode F2._mode (init = OK);

FailureMode F2.output (reset = LOST);

event Cmp.failure (delay = exponential(1e-05));

event Ct.openCT (delay = Dirac(0.0));

event F1.failureErr (delay = exponential(1e-05));

event F1.failureLoss (delay = exponential(0.0001));

event F2.failureErr (delay = exponential(1e-05));

event F2.failureLoss (delay = exponential(0.0001));

observer Boolean FC_B1 = Ct.output == ERR;

observer Boolean FC_B2 = Ct.output == LOST;

transition

Cmp.failure: Cmp._working -> Cmp._working := false;

Ct.openCT: not Ct._open and not Ct.closeCondition

-> Ct._open := true;

F1.failureLoss: F1._mode == OK -> F1._mode := LOST;

F1.failureErr: F1._mode == OK -> F1._mode := ERR;

F2.failureLoss: F2._mode == OK -> F2._mode := LOST;

F2.failureErr: F2._mode == OK -> F2._mode := ERR;

assertion

Cmp.output := if Cmp._working then (Cmp.input1 == Cmp.input2)

else true;

Ct.output := if Ct._open then LOST else Ct.input;

F1.output := F1._mode;

F2.output := F2._mode;

Ct.input := F1.output;

Ct.closeCondition := Cmp.output;

Cmp.input1 := F1.output;

Cmp.input2 := F2.output;

end

© IRT Saint Exupéry & IRT SystemX: All rights reserved Confidential and property document

0
4

/0
7

/2
0

2
2

COM/MON example in Open AR: compilation1

0

6

Two computations are realized: a

first one to get all sequences of

events leading to the value ‘true’

of the observer ‘FC_B1’,, and a

second one to get all sequences

of events leading to the value

‘true’ of the observer ‘FC_B2’

• The result of the code provides the

critical sequences for the COM / MON

example

Generation of critical

sequences

Cmp.failure F1.failureErr

Cmp.failure F2.failureLoss F1.failureErr

Cmp.failure F2.failureErr F1.failureErr

Cmp.failure F1.failureLoss

Cmp.failure F2.failureLoss F1.failureLoss

Cmp.failure F2.failureErr F1.failureLoss

F1.failureLoss Ct.openCT

F1.failureErr Ct.openCT

F2.failureLoss Ct.openCT

F2.failureErr Ct.openCT

