AIDA is a study case for model based system engineering, made by MOISE project. This project contains the simulation model of AIDA (made with SimulationX in Modelica)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

236 lines
16 KiB

// CP: 65001
// SimulationX Version: 3.8.2.45319 x64
within AIDAModelica;
model ComputePositionAndTime "Compute drone position and time "
Modelica.Blocks.Interfaces.RealOutput Drone_position[3](
quantity="Basics.Length",
displayUnit="mm") "'output Real' as connector" annotation(Placement(
transformation(extent={{-10,-10},{10,10}}),
iconTransformation(extent={{90,40},{110,60}})));
Modelica.Blocks.Interfaces.RealOutput Time(
quantity="Basics.Time",
displayUnit="s") "'output Real' as connector" annotation(Placement(
transformation(extent={{-10,-10},{10,10}}),
iconTransformation(extent={{90,-10},{110,10}})));
Modelica.Blocks.Interfaces.RealInput Measured_positioning_signal[4] "'input Real' as connector" annotation(Placement(
transformation(extent={{-20,-20},{20,20}}),
iconTransformation(extent={{-120,30},{-80,70}})));
algorithm
equation
// enter your equations here
Drone_position[1] = Measured_positioning_signal[1];
Drone_position[2] = Measured_positioning_signal[2];
Drone_position[3] = Measured_positioning_signal[3];
Time = Measured_positioning_signal[4];
annotation(Icon(graphics={
Rectangle(
fillColor={255,255,255},
fillPattern=FillPattern.Solid,
extent={{-100,100},{100,-100}}),
Bitmap(
imageSource="iVBORw0KGgoAAAANSUhEUgAAAP8AAADFCAYAAACb6SQBAAAABGdBTUEAALGPC/xhBQAAFlBJREFU
eF7tnX+MZtVZx++GWItJNeGfjWvspk1r1JSldlsrASVkK6S7m8AGcCWbbegCBYSydqmRVatBNwht
R0kjBEqLEILSsLZII+maQgEroUgwbWg1u4W/NLGlK2haqkvxej7nvc/lvHfueX/MvD+f+/0kJzPz
zjuzzDCf59c5975FKWbO333z1fLKzw1f+w9/v/zOyyeqrxJiskj+OfCJLz5fFr/3UrnxhldaV7H/
tbjOufNVyS+mhuSfE0jdtu792qsxMCA/7wsxLST/AvHcf/yozvwSX0wbyb8gkPVNfMr9aUBwYQkB
kn9BYLg37T7/0lufLa9feaD6SHQdyb8AxD4/iE/mn1ZmJqAUVz1bfuSPPlG+ePy71aOiy0j+OYPs
iM9iC3Ba8L03XPdv5ZaLby6PvXC0elR0Gck/RxByVpP92Fbseaoszj5UHn7w/upR0WUk/5xIB3yI
OU34t5glkPmR/wOXXFZ9RnQZyT8nkHEW4kNsLUKFgfwbdt1VvuHt71ffLyT/PLDJPpmfcp/yP7cm
Af9GzPpXPRvlL4ozVPoLyT9rLAsjf/02swgOk9j2u3DlaO/fMvk3bY9Tf9FtJP8caMvwubVeCDax
3K8yf/Gbh8uT3ntV+WvnnKfSv+NIfucQQJryF2d9rDzlraeVR554pnqW6CKS3znMF1bJf/ahsti4
rbzj7turZ4kuIvkdE+cLCF9N+uP7ex8uf/y8P4/y79p9rkr/DiP5HWMlf5/8IfNH+d9xUVkUm3Xa
r8NIfsfELUWm/C3yM/QrfvJUlf4dRvI7xS7kWSV/KPvZ7jP5mfqLbiL5nWJbfCZ+U34m/pz0o/T/
xvNfr75KdAnJ7xSb8vdl/Yb81vd/5gt3Vl8luoTkd4qJ3ya/7fVH+UPpr9N+3UTyOyRu8XH5bkZ+
y/zW95+6fY+m/h1E8juEW4PnMv+GDz5WH/RBfuv77/mbI9VXi64g+Z3BlL++kGeA/DbxN/lV+ncP
ye+M9FTfIPkt81vfz1l/nfbrFpLfGc2SPyd/38R/03tC9i90jX/HkPzOoORP5ef9QfLH7B/l31xe
eeDD1XcRXUDyO6Lv2v0x5I99fzX1V+nfHSS/I7iQJ93iy8rf2O6L8lfZ/7FnHq2+m/CO5HcEL+s9
kvyW+bmuv6/v15Zfl5D8TrALeaLoDflN/Fp+y/yJ/Fb66/Ze3UHyOyG9dj8VfxT509KfLT+d9usG
kt8JvAjnJOSn9Nc1/t1A8juAkv/0G54bS/6074/bfUnfz9Rf+EfyOyBO+RF7LfJXmb+WvwoA6vv9
I/kdEG/XteepNclvt/SKASCRX6f9/CP5HRClNtFHlB/xB/X9utDHP5LfAYP6/ab8Mes35LfMn8p/
/iW/U3134RXJ74DcxTyD5G8e9IllfzL006v5+EfyO4Bpfzzdl8ifBoBB8scAYPJv2q7benUIye8E
AgAvxc0r+46U+cNKS/9iy0fLLRffrOO9HULyO8OCADsAzAL6xA9rw2VP9oZ+IfMz6Uf461cekPQd
RPI7hkDAyb+4DRikr8v78JaF8DrK210kv3Nq+UO2p8SvJ/obtynbdxzJ75w081sAiNlf8nceye+c
pvz0+nHAJ/k7j+R3Tlvml/wCJL9zJL/IIfmdo7Jf5JD8zpH8Iofkd47kFzkkv3Mkv8gh+Z0j+UUO
ye8cyS9ySH7nSH6RQ/I7R/KLHJLfOZJf5JD8zpH8Iofkd47kFzkkv3Mkv8gh+Z0j+UUOye8cyS9y
SH7nSH6RQ/I7p01+7tor+YXkd47kFzkkv3Mkv8gh+Z2z+w8/r55ftCL5ncOLeBYX/oMyv1iF5HeO
5Bc5JL9zJL/IIfmdI/lFDsnvHMkvckh+50h+kUPyO0fyixyS3zmSX+SQ/M6R/CKH5HeO5Bc5JL9z
JL/IIfmdI/lFDsnvHMkvckh+50h+kUPyO0fyixyS3zmSX+SQ/M6R/CKH5HeO5Bc5JL9zsvJv2i75
O47kd06Uf/ejkl+sQvI7R/KLHJLfOZJf5JD8zpH8Iofkd44GfiKH5HeOMr/IIfmdI/lFDsnvHJX9
Iofkd44yv8gh+Z2TlV/HezuP5HeOyn6RQ/I7R2W/yCH5nSP5RQ7J75xs2a+ev/NIfudo4CdySH7n
SH6RQ/I7R2W/yCH5nVNn/iC+5Bcpkt85ubL/DW9/f3nkiWeqZ4kuIvmdk8v8kl9IfufUPb/kFw0k
v3NU9osckt85kl/kkPzOUdkvckh+5yjzixyS3zm1/Mr8ooHkd47KfpFD8jtHmV/kkPzOUc8vckh+
56jsFzkkv3PaMn9x9iHJLyS/d9p6fskvQPI7J8q/56nXxZf8okLyOyeVf8Ouu+KS/AIkv3P6yv4g
/knvvaoszvqY5BeS3zvNzI/8iF+84yLJ33Ekv3Pa5C82vac85a2nSf6OI/md0yz7KfklvwDJ75yc
/MWbivLwg/dXzxJdRPI7J8pvJ/xS+YtCmb/jSH6nvPztY+W3Dh0qb333L5VnnPXbZbH34Z78Wz4a
S/7igqLc+bs7yseeebT6CtE1JL8zfnD8ePnkJ2+K0n8qZPdPV+t97zwvyv+zl15UnvxIUZ78T0VZ
3BPW/qJc+ctPlsdeOFp9B9EVJL8jjj3+WJTehGetVOv6sDZu3Vj+1P8W5Snhf/tPfC+I/0JYj4e1
8noQePH4d6vvJrwj+R2A9I986PK+TM/7Jv5NYZn8SI/8LAJBDALfDOtLYd1YlFuvfFccBCoI+Efy
LzGU+PT1qfS3hWXiIz3r98P6SFjvfEtPdJM/DQJv/PcNvSBwX1gHi/LSP95XfuP5r1f/kvCI5F9C
rK9HdJZJb5nexDfp94S1K6woP31+kJyMby1ANghc0QsCmgf4RPIvGU9/7v7Y15v0aYnfzPSXh7Uj
rKs3/XR598GDsZy/+8hny7Pv+NXy5M8HuUPPn7YBFgD65gG3hbU3fH8NBd0h+ZcE+vp/vvCCVulN
/ENh0dsjPZmeddvu34jbfin087f87UpP7CA42b6tCqiDQDIP+MwX7qy+i1h2JP+Cg7gM85A7V+Ij
Pdn+t8JCeLL9p/bujQFjEPT01957dWwF2PobGARsKHhQ5wO8IPkXFKSnr7938+ZaejJ9mu1Neuvr
rcR/6LN3xbnAqHzp6YfL7X9xbq/PHzIPSM8HXLNyjYaCS4zkXzCQloyN5Fbe50r8tr5+HOmbjDoP
iENBmwdcEf6bdD5gKZH8C4JJ/+mdO/rK+1H6eqRv9vVrBYkJAhz84STg0FaAIJDMAxQElgfJvwBY
X59m+ra+Hunp6ynxfz0ssv2wvn6t1PMAsvsIW4OxWtA8YKmQ/HPE9utN9pz0q/r607bELb9ZwPbe
WPMAnre/FwQ0D1hsJP8cQPrmfn1biZ/u11PeT6KvXwvWCjAPiBP/F1YHAFZsBcLnYhCo5gEMBXU+
YDGR/DNmWF9v2b7Z1197+865S0QQsFZgpHkAgWKlNw9gKDjroCUGI/lnxPGvfnXVxTdtJb719SY9
h3Sm1devFYJQHQSGnQ+wQ0IHi/KXb3q3LhpaICT/lCHbUaqn+/Wp9JT3VuLbMC/t6xc5W3752JFV
84A0AFgQiAGASqCaB+iiocVA8k8J6+tT6Vm5vt4uvqGvv++6A0tVIg87H8DisXooyCEhzQPmjuSf
ApTpuYtvbCF92tcjP9IvWok/KpTy41wvEIPAjWHtLco77r5drcAckPwTpG2/vpnpbeuuuV+/6CX+
qDSvF8i1AlYFpOcDdDfh2SL5JwDSk7WR27J9boKf9vXXbd06s/36WcNBn1HOB/B4GgTOOfA+HRKa
EZJ/HVhfj+zpMK+tr7cSH+lZXHwzqSO5iwq/n7uevLN3j8BxzgfsL8oDf7Zf84ApI/nXSJR+5466
vGelmd5K/LSvR/q26+u98/KJ/yw//rU/HXkeEK8XCAHjbVe/TecDpojkHxM7pEN2N+nb+nom+LZf
j/SjXF/vnfR6AbL8wCBgh4Ru7AUBnQ+YPJJ/RMg+9PWU9bm+3kp827pjmMf7XoZ5k4KePh4VHud6
gYO98wGaB0yOghL0fy67NK7yaHuPxek0Pv/Da6/t3B8xP6+9CIZl+lxfb+fwyfTzOoe/TPRdL5A5
JNQ3DyAI6HzAxCj440Tq/wt/sAi+6o81BIQfnnlm/Pz377mnetA//B7I2MMO6ViJn57D/3j4PXa9
xB+V+nzAKPcPSOYB9iIjCgJrJ5b9MQBkBCcg8Dif7wqIO+hmmSwyvef9+llTzwMGtAIsgkM6D7AX
GRHj83rPHzI8krMo84FAwMc/OPXUTvxB2yEdRDfxmyV+2379vtN/JW7difVDT08QiPv+mVbA5gF1
EAhVAEGAexGK0ekb+JnsZPn/euih8sSb3xyXBQOvIH3bfr0JT3nf7OvtSO4kb6EletAKNK8XQPi0
ErCP+4aCOh8wFn3yk92tzEf6mPVvuaX6rE+QftA5fOvr0/16Sny27iT9dBnregGqAOYB4blsDRIE
urQ1+OJr3ykPv/JX5YP//dfxXEUOPsfzWKu2+viDrsUP5b5X6OuRHtEHSU+mtxIf8ZGegCFmh7UC
I7++AEGAi4YOFjF4dCEIIPXOl7bF3wVi57j5xA3xOTx3lfxW+tvyVvJbX2/Cs9K+Ps306TCPtxrm
zReCQJz0DxgK8lhfK9Chi4aQnt/Hvpcuzmb/ba9tjb8nKoQ++REd4cn8tv1H9vdQ3iKtvQhGKr1l
ehbS2wTf9utZ2q9fHPij5nqBOA94JMhdzQPSAMDisb7zAft7Fw15ngfwN8rPzXr6xOqkzWP8bggA
tAm1/H3lftXnp/v/y0oqfVrip9LbMC/t663E1379YsLW4LB5ACu2AhYEeO4VvaGg1zsJ3frKSvy5
Keub8Dl+R3/y6h/Ej2v5TXQm/ZbleMtjaUBYJhA3vVkmq9nXs5Ce3t5KfO3XLw9IHE8JjnD/AFqF
uHuQvMiIN8jo9nOnsw4eJyCkVUGUH7Gj4Az4Gkd8rRVgLUv/TxXTvPimWeLbtl26Xz/L++GLyWKv
N5ieD2hWAmkQiOcDDoa1t3A3DyCzpxke6PH5HaQVQZHKzd5+G4OCw0IR/tu4+MZkt7dptre+3vbr
kR75tV+//FCpxVaAST9yh3K/WQkgRV8rUM0DPF00RGbn57TeHmzKT+lvRPmZ8A/L6gQG1iIKkvb1
Oenb+npK/EW8NbZYH5S7dukw84C2KoBlQcDOB9g8YNm3Bm3bj5/Ztv3s57dgAKu2+pYJpKdMN9Gt
xG/L9LZ1lw7zVOL7pr5eIDkf0AwAdSWQng8IQWDcVx7m32KGwNctwg1J020/m/Lzfsrc5EdcKo7n
PnR5XLw/DlQq7Ndbprdsb9Kn4jeHedq66xbMA+r7B1StQFoJ8D6rPh9QzQPYGhw2FCSTcpciXpCE
oFGcEVb4Ozt/9/lzDQBkf342Sn+rAuj7U+YiP+I9se+D5VfCL4n1dLX+ddu2oe0HbUfzphpt0tsE
P926U1/fXfibs5cez80DWDxWB4HkkFDb+YB/+dFz5Y5/PKf3OgS0DVQN+8O6IKw39QLAPM8VMPCz
n4sAkJb8MHP5+Z9Axv5ikNGkb662KoAoGvv6Df3SDxrmpSX+sKAiugEyjny9gA0FW84HIH7dKhBM
CBTNABD+9uZZAfDfaCf6GPg1mbn83zp0aKD4ttIAwFYMv0RERn5WmulNfOvrKfHPrN5qv160gcTx
1uIIO2BrMAYB2xoMz+V8AMGDTBoDwwgB4MoDH67+1dlCpkd+fo62E38zlZ/efhTxrRUg0//cu94S
f4G2fubHTorZPSc9AYL9el1fL0YhPR+AzLkgkJ4P4Hl8XD8WVgwEFgRoA2gvqnME/N1+4JLLZl4B
DDrtBzOTn7MCo4pvi+cjeyq/Lcp6yvtmic88QH29GAekjPOAAecD0iDA51h1AGC7sAoAXG8QDxpR
BVgAmEMFQNa3INYc9BkzkZ8S3oRuE56VSs9CfN6yP8/wJErP27B+PrzPMuE5qMOr32i/XqwHgkB6
PgCxm1WAldEWACwIxABgM4LwtfGio5YAwDbgNGE7j2W9/qAr/KYuP6X7sIzflJ71wIYNcfE+5bxJ
Ty9vV9vZIR3t14tJ0nY+AOFZDM4oowcGAWsDaBGoAggmSQswzQBg23q8pezPiQ9TlZ8J+7jim/Tp
YqLfFJ+AQF+vYZ6YFnY+wK4XsACAWGRUEy0NAtk2wAJAtQ04resJKPeZ8je39dqYmvyI//gv/kKr
8Kym9G3i22Sf9+ntkd76ekkvZkF9PiBkccpoRLe3aYmdBgECgAWBug0gADAIZK5ABbD5jXO/qnAq
8g/L+E3xm9KzTHxbTPZ1P3wxL5AcsU1yls0ArBJotgJtbUAaADZu3TjXi4kmL//Ro/GkHmK3ic8a
JH5T+vTorrK9mAeU0CZ0utJAgPhWCdhj9rwYBDIBgK3seZ0CnKz8QXxK/Zz4o0pvwqen+Jj6a7An
5kE8zUcGDwuR0wDAagsCNg+w57S2AQQArgcILcA8AsDE5GdvfVDGN+mb4qfSp+Kb9HZ8l4M97BwI
MWue+N5XetKG7J0GgWYgaAYBAkAzCNjX8/1iAGArMFQAu3afO/MAMBH5EZ+Xt2oTf5RsnwrPSk/v
pef12dYTYtbEO91SrpOxkdYCQRUMmoGgLQik84C0Cqh3AqoWYJanANct/zDxR5XeMjzlfSp9enUe
V+UJMWu+fOxIFBRR42L7jpUGgiHVAPLb4mN7bvweHAhiDlBVALMKAOuSnwFcTvxmiW/Cp9KzrLRH
+vRuOwhvt9C247ts8Qkxa5Ax9udkaCS9LwhLxqYaSCqCQW1BMwjwPo/H5/N14XtYAOCWYrMIAOuS
nwt1muK3ZftU+rYs3yY8h3hsIT6HfLTNJ+ZFvAyYK/UIAix69bZgkAkEQ4NAeH78Oo4EhwDAjUSm
zZrkJ+NzoU4q/SDx0yxvvTzCWy/fFN7O63N8l1N9iM8r4QoxL8jE3KKLS3rjhJ5FMODU3oiBoBkE
LACweKxuA/j68L25EGiaFcCa5Oea/Jz0luXTTJ9mecvw1senwpvsJjyLz3G4R1fqiUUAGe1+fdzc
IwYDjuyGbB0DgrUHrLZAkGkJ0iAQgwVfE74fAWdajC1/M+MjfprlTXrL8mmGT/t3RE9l532yO6Jz
4YNuwiGWBS6eISDwMmLXrFwTb/vFKwXHqiCtDCjpBwQCCwAEAx6Lc4Dw9dMKAGPJn2b8ZrZPS3sr
69Ps3szs3HAD2Zngc4EO/byyu/CAVQdcGESFQDCIN/hM24QkEKRtAeLbqquAUE1M40rAkeXnnv0I
n4pvmZ7S3ib1Jnyb7OzTm+hxbqDMLjoCAYFDPFwkxOXCdTCo2oTYHiSBwNoBFh8TMCZ9JeBI8iN+
U3qyvJX1dgstZEd6K9/J6vwHK6MLsRqCARf2UNYTEOI9BQkGDA6pCkIgSIMAAWKSAWCo/Fyhh/Qs
SnyyPMJbdmcqT1ZH9rR8V1YXYjysXaA6YGsx3hacWQGBIGT/GAAeKWI7MQkGym/ik+kp68nwiM6t
sMnqVr4LIaYDfhEQCAaX//2+8qxvnx6HhZw6XC9Z+e1mHLzaLSfrNJQTYv4QDLjKMHdTznHIyo/k
Kt+F8EpZ/j9fKh5c+K8EfgAAAABJRU5ErkJggg==",
extent={{-76.90000000000001,26.1},{-0.2,76.7}}),
Bitmap(
imageSource="iVBORw0KGgoAAAANSUhEUgAAAOEAAADhCAYAAAA+s9J6AAAABGdBTUEAALGPC/xhBQAAFZ5JREFU
eF7tna2THUUXh6+OQrImIgoTnUKiolA4LOv4A6hVOFQMEoPEYHAoHFWpQkVFoDBRCAxVFIW4L8+8
mWX25szc6e7TX9O/p+oUIdm9HzP9m+4+X306i+74559/zn/++ef5jz/+OP/++++T8f/8vegPibAB
/vrrr/OrV6/OP/744/nbb789f/XVV+dPP/30/PTp0/P7779/Pp1OUfbo0aPpNT7++OPz559/fv76
66+n1//hhx/OL1++nMQr6iMRFmKevX7++efzN998c/7yyy/Pz58/N8VT2t57773zZ599NokUgb55
80azakEkwkwwu/3yyy+T4JiFbm5uTAG0bMzGCPOnn37ScjcjEqETDFJEx1KylRnO2z766KPp+7Fs
Zj8qfJAIE2BP9f33308zHUs6a+Ae2T755JNppnz9+vX577//fntVRCgSYSC//fbbtMRkAFoDc1T7
8MMPp1ny119/1bI1EIlwBzgqEN5Rl5nexrL1xYsXkyBrw0MTaxmJcAUcKzgk8BpaA022z3hwERap
EQ65u7u7/xx8hlaRCC9g1uMpTnxtOZhkaUbM8osvvpjioSVgaXz5GVqdESXCtxC81qxXxpgdWWXk
Ai+19b48XFtkeBESnMapYN00WV5jtfHdd9+5OnLw0lrvhZE51CJDipCbzh6hxwD6EY37QKjHA8JF
1nvM1mKq3nAi5GZbN0dW38iTZWUSC0tc63WXRqJBawwjQnI2Hz9+bN4YWVv25MmT6X6FQMaS9VqX
hnOoNQ4vQjxiiu/1ac+ePZuycfawN3mCfSiCbYnDipDcRp561o2Q9WXcxy3h4Nyxfm/NWgtVHFKE
OF2siy/r26z9InFd62e3jOynljiUCEmTImXKuvBHM4LfJI3jWWSvO//36InkLDuXMxlhB+vntowS
rZY4hAiJDZHNb13wXmyugmf/ent7O2V84MkliYAsE4z9EQ8aBiEzAO52lt0s1Wbj7/h3fpbfwcHB
co0iYpIReH32Wr2HZ/hOzGjWv+2xlkqxuhchg7K3YPsHH3wwPdHJbWSJhVgQTslyIMSKUHHZI1Bm
B8Rpfd4jWqj3NSddizB0Q17LWCITREZwPDRaLYglaZ2HAbMvD4gje5VZabRClyJk2dVynicz3Sw6
BnXP9XUsewmC46E80n6b1VMr96U7EZKc2+J+Zi5qZYl31NYPDFpmcvbfRxBkKylsXYkwZSOew3Ck
zMWro7V3QJA8cNhP9pqJxHamBboQIctPHAfWhaxhLDWZkdVX5f/MBdB4da3r1apxH1ugeRGyp2KP
ZV3E0sas12IWfkuwFCdZopd4ZQs0LULcyNaFK2kkE7Ns6dm5UgscU62HPUpV+m/RrAhrhx9wPLQU
S+oZlqqtirGFFLYmRVjTAYP4iJMJfxBja04c7ndtmhMh+y7rYuU2wh4MEpGf1gqrcSzVpCkRLlvU
lbTWsupHgD12rQfupdWutm9GhDVq/3BRHzWw3gtk5NQOP/Hwr0kTIiwdX8JJ0IJXTPwHW4GamVA1
qS7C0k/BlhJ3xUPYm9XqhkA8uhZVRVhSgHjlyHIRbVNrn1gzha2aCNmPWRcjh1Fxob1f+xAasu5f
CaNsqxZVRGidE5DLWj4IRPwHS9Ha1TG1KP7OpQLx5JuS5S/6oOTKaM1qZUgVFSG5hNaX9za8rVp+
9gNxOus+lrZaTrtiIlw7KcfbjhZ4J5Qy94DBGChHCq9QldJKxQXJ+jUoIkICsiUu9JHSzigU3qpe
x5HAz/RO7UD9pdUg+7tS+FriwM0j7f+Y6azvaFnP37vFRl01yP6uuTfceNSOVGjLd7G+55oR/6Tz
QG8QHLe+T02jDWUNsoowdzt6lrhHc8DEPLR6zAJqsVFUrVVFNhHmdsSwie5xBtgi1knBbNjTw6jF
s0Lw3NciiwgZEDkdMQiwdg1YDkL2gpeG86sHeHC20jOIQ0nxPNe+dllEmLMx7xFnwJmU1UMvebEM
eOvzpxpneSAqBE4PWLyuJIMTsiIOieectDiWnKw4WuoZ5C7CnFXTXOCjChBSRNhLPxy85Xvb67PM
xrOOqDh9if0y+1+8qoiK78zqASdPz74BVxHmesphPOWOngUzggiB+4iY8EYyW9HRmz0ZMxXXgNmK
sXTkB+4SVxHmDLzWrPcqxSgiFA9xE2HOwGsv+51UJMIxcREhywtrYHhYTddxaSTCMXERYa6sGKqs
R0IiHJNkEaYMnC0jzDEaEuGYJIuQuJ01KFKMUMTRPaEWEuGYJIkwV5X8kerlQpAIxyRahMRwrMGQ
aiN3w5YIxyRahDmcMcQZR0YiHJMoEVLRbQ2EVBtxH7hEIhyTKBHuzf0LsZHigWtIhGMSLMIcDVpH
DEdYSIRjEixCMtqtQZBioy9DZyTCMQkSIeUj1gBIsZpnALSGRDgmQSL07gtSs/9/i0iEY7JbhNxk
6+an2AjlSSFIhH3BNooqfYxi5Vh2i5DKZuvmxxrFnOIhEmH7IDiKkNEDhebz9WeVSL+amIbMu0RI
pfPyhnvYKFXTIUiEbUOXOHrZWNd/aUwwIeN7lwi9T08dOTVtC4mwXUIzxJgZ93r9r4qQ6XeP+kNM
2EiEbRJ7ejBL1j1d3a4qwrtSQiGJdSTC9kjpBYvtOaR2U4R4fJ49e2a+eIzREFisIxG2R2oP3T1t
OjdFyI21XjjWNAtuIxG2BXs661qHGs2Ht9gUoXcn7Za6HreIRNgWKfdjaddK9FZFiEPGesFYk0f0
OhJhW3i28dw672JVhN59RBUXvI5E2BaeRzoQ4F9jVYS0KLdeLMbIJBDXkQjbItUzujTCFWuYIvQ+
U+IIZ6uXQCJsC+8+Sms6MEXoeYhjrSOIe0QibA/PXkprfhFThJ5LUdbVYh8SYXt41tAiaIt3ROjt
FVXV/H4kwvbgRGivk4XXVoXviNDTK6pypTAkwjbhLEXrmofabhF6roFpCiX2IxG2iZeXdG1SeiBC
ckWtX46xox9tnQOJsE3I9PJocLbmH3kgQs+4iJai4UiE7eJRTYS/xeKBCInqW78cY1qKhiMRtgsO
xpQTyHZnzHiFJm5ublZVL9aRCNuGa2xd+2tGlf1WI6h7EbLutV4gxkY/2CUWibB9KEuyrv+asZe8
Fqa7F6HnflB1g3FIhH1A+tnTp0/N+7A0Qht7uBehZ6qackXjkAj7Ar8HxQnL1oc0tMaJE5Kkci9C
r/gg7TBSGqGOjEQ4JvciXKo5xW5vb9++oghFIhyTSYSeJRs6ZzAeiXBMJhFyA60bG2N06xZxSIRj
MonQK2n78ePHqppIQCIck0mEXlniOuosDYlwTCYRep1Br3zRNCTCMZlEaN3UGFMVfRoS4Zi4ipBB
JOKRCMfkxGm51k2NMZ28m4ZEOCYnbp51U0MNz6iKeNOQCPuHnjQ0h8LZyTESZKLxZ1Lc+DeLE8F1
66aGGulqIg2JsG/Iv+bkMev+YExU1lFpJ68YofqLpiMR9gkrQGoGrftiGVpZHo508ooRKjyRjkTY
JzEtEZcx9ZNX9cRW+b7Yh0TYHxQsWPdjj831hicOqrB+INSuHYQoriMR9gV1s9a9CLGp2bZHKzdM
gyAdibAvKOi17kWITcX0Xi2+1V0tHYmwL1K6r802pYxuuVRDjB41Ig2JsB/wiHpoZyqmf/TokfmP
oaY6wnQkwn5wPjjJ/MtgU3OndFJEqO1AWaib9ZrA/jXzL4NNIkwnRYSqYCmLRHhQUkSI0XRZ24Iy
NClC3fx0UkU4G4nDeijmRSI8KF4inI1sKJWX5cFVhF4vpBBFOt4inI283jdv3rx9F+GBqwi94oQM
IJFGLhHOdnd3p9OynCBO6CZCapzMfwg0ucjTyS3C2Ugc5kku0thzKMw1ow735PFCmILF6ZQS4Wwv
XrxYrfYW1/HIHeUenEKKEbdMIkyH1YR1bXMbpwiJcDyqKKYeT16n8+pMwnQ8m27FmNV6QWyTUo87
F8K7FfXOBYoiHR5ojjGoYNMDNYyYSiR+Z25x4dbeAjELX5iZaomR99UJW/vAyRWyreNnl44xNXpq
HA5cZc9WS4w8sdU1YR/cp62QH/fQagPj1vKQCn2RD56ceNJqiZH7Sz9NsQ3xQ64TnlNyeTH+jONy
LSx04hesix5qVBnrmOz8EGz32kLEGD2J5An3RW3wO4U0NI84Vayx/VCWlA+uB8Iof7Q8PPhIR7Pu
RwljuaX7noarCLWBrwdi9Ao3xRjlU6qkiWMSoVfbQ8UK60MWR0pD2lRTLWM4kwiJ3FsXNNQUpmgH
ZiWWitZ9KmGqZdzPJMKpAalxIUONmJISgtuC/ZpXamKMqZbxOpMI2ctZFzDGtBRpEzyZU6NZ456V
MDy5qmW0mUTo2UNRAd22IcY31bAZ966E4TfQYbIPmUQI1gWLMZ54on14WHoVdMcY6VvLM/pG5l6E
XvsGMipEP5C2OLViN+5lCeu9lpGtHPteIgxkjbHk5wETEq65F+FU4WtcpFAjt1Eb8f6gebBXv6EY
662WketlfY+lUS2xx0N8L0JP54xyC/sFMdQUYw+dxEOTIq6VhN2LkAxv6wVibK4YFn1Su3yKvWqr
tYyxWUlbE9O9CMHrrEKmYW26+wcvJvubWmLEi9tSKmRK2R/77tVSprf/nfBMBFa2xHEghFWzlpGH
eu3QF0koqZ0JrYJeeCDCPZvNvaamQcejdvlUzVpGj054iNjKKHsgQs+gvfJIjwtirFk+xb6sdPaN
V361FTl4IEL2cV4VFZhCFceGLYfX4Aw1/Belxhd7Y4/z6TGrEPqBCMGzdYKWpGNAvnCNWsZSiSEs
ga33jzHruIh3ROjZBVpL0rFAjNQTWmMhl5Xwnno+YKxMmndE6HrazL8mL+l4MNBKlU9RM5kTz/g5
ZiWvvyNC8Fzn49oWY0ItY4nyqZwxac9MsrUHhilCrzaIGNkPKvQdG7Y4ng6/S8spQs+QzNrxAqYI
vadg1RgKYBx4ZWXNxtYppwg997hrYRVThOC5Gc29bhd9wRLPq5YRkeQED6z1vqG2pYFVEXq6ZTE5
aMQlZGil1jLm9o56+Ue2EtJXRYgXx3PpoMoKsQZ7pZjyqRJxQqpJrPcOMZbMa8nbsCpC8M4TLJ1q
JPqB8qmQWkYyWEqMJ1Zw1vuH2LUJaFOExHusF401NQcW15jLp7bEyD6w5AM91T9yrQPhpgjBa2M6
mxWsFOISlm/soxAAgX8cG6zMapx7QY5q7N51T5z8qghTChktU/Be9AiJ19Z43rK9fpCrIuSJ5N0a
b2uTKkSrsKzceyz2WgGvxVURgvehlCwxhOgREgNYHbI8vhzXFO2yZA7tQr9LhB4eoktT3FD0Ds4h
9osYf471d+wSIXhm0GClasGEaJ3dIsQrZYkpxZRTKkSACMG7RoxYUM7kWyF6IEiEOWZDBfDF6ASJ
EHIUacpJI0YmWIQ5ZkNiL0KMSrAIwYqRpFrvR2SJPqHrA+VQJI8zBqnoCDnWzIMoEeaIG2Klv7wY
F2J7W2E3ckXX2lF4EyVC8GwGNRsHgKgfjchNSD40vXFyV2xEi5DsAOtDpxppP0LkgmWnNe62jHS0
nEKMFiHEfKE9VqKhqxiPlJYtOfskJYkQvLtnzRaaBCvEFuwBb25uzLG213JleCWLMKbOao+xP1TJ
k/CArCyPbK9cxzokixC8k7tnu729ffsOQsTj6UTMsTd0ESEzlvWBPSykOFKISwgzWOMq1nK013AR
IXj27L80+lMKEQp+BWs8pViOfaGbCCFHJs1stY5JFv2S42SoHAklriJkWRrTxHWv1ei0JfokV1ZX
s3vCJUzX1of3MlVciD3kiGE37R295O7uzvwSXpY7jUj0T460yq3zJFLIIkLiMsT5rC/iZZoRxRbe
x3bn7ImURYSQa02+NFVdiDW8z1HJ+dDPJkLIGbaYjYwdIS7x3BPmzmXOKkKg7b31xTxNXdvEJeSK
WmMl1Er0QMouQvBen1vGk0+IJanjLmflxJIiIsRRs7eHf4qpFlEsSfFL4FjkzMQSFBEhEFbwPljG
MpLJVZ0vZmJOFSPhpKT3vZgIwfvQ0TVj1lU9opgJbWfBfrIkRUUIKdXNoVaqUY9oH4RFEgnnx1tj
heJ0/Ao1OsIXFyHELBFijeWpTgcWM+Q3v3z5chIcZXJzi8OaY6SKCMG7zmvLnjx5onhih7AvQzCz
kcB/xLNLqokQciTZbhnLkSPexKPBSom9mXUPeaASuzvS6qaqCIGux9bFzmV4vlSb2Cbs2/aGsriP
zI5HoLoIofSMiGmv2Bbsz6z7dM2OIMQmRAgl94hLU+uMurAqSS0ELx1S8KYZEUJJr+nS2H8orlgW
9uZe6YysanqmKRFCLSFiFIKqYDg/XGMOXLHuQaz13KO2OREC6/y1oGoJIwdVYswD+Zg5Cr57Tsxo
UoRAjIiDOKwLXsqYGXvfb7RGrAPmmvV87HqzIgSWGLQVsC56SWNmLJnQe1RyNonueV/YtAhneMpZ
F760UV+GN08B/zhy7vdZtfRKFyKEmg6bS8ObSpKBlqphePd9WVrPRd3diBBItM11FFusMTvygJAj
5zo52hDO1nOIqSsRAt61Eu0yQo2AM6dI0RRI+0ebXCIk1a1nuhPhTI1UtxBjYLD8onqj11mSz83q
Y7bUWFyu5WjvqWvdihAobakdxthjzJLPnz+fBiGd4VpdOvG5cDzxOfm8lwF1KhhYfscO+hwtMNmb
907XIgSWpyXaKnobe9t5P1nLwcPMRu4sZyyE7rVZeocmwPPznn2GjiBA6F6EMyyXepgV14xBXTL1
yiNojpc49DN7lK5x9vxRypjgMCKc6XFWnI1UvRJLVc9z+0JPKiLGmtL+kqXy0eK0hxMh4J1sIdMm
1nJ6V1kCW++ZYiypQ2D2ZH9pvdaaHbnS5ZAinMEJUjMRPNZYVueA/Z/1fqlGQnbo7MTP7w1ZhIq8
Nw4twpkel6g5Bp71Pl4WO3vze9yfS8cQKxmuwQgpgkOIEIh55czY8Dbv8/By93v1emiMILpLhhHh
DOGAXsToOSBzlRDNxuuLOIYT4QzLIMpfrAHVink6aHJ/16PE7GowrAhnGOi4vVObDeUwMoK8yJ1v
qzMi4xlehDPsGXmat1Sl4Zlzmrsms2SiwdGQCC8gtQonQ454WogRWvEkV3gC673bWW0kwg1m93mN
dDjvninMVNb7eNhRg+ilkAh3wKGj5CriVS0V/M+R1J2jlKjnivZWkAgDYblKzC1nmCNX+z4+u+ee
Vx5RHyTCBJghESRLR68lK8vfnLDETvUE812PVMVQG4nQEbyZOEBiZ8lSDWzZH4YmuDOD8rDROY/+
SIQZYbBTTc6yba18iOp1BneNwl5m8TUvMH/Pfo/4HzO+yIdEWBiEyWxCEXJLeZLM4jwIJLjSnM//
A4dnvJ/1vZrtAAAAAElFTkSuQmCC",
extent={{-0.3,-83.5},{79.7,-10.2}})}));
end ComputePositionAndTime;